当前位置: 首页 > news >正文

多层 RNN原理以及实现

数学原理


多层 RNN 的核心思想是堆叠多个 RNN 层,每一层的输出作为下一层的输入,从而逐层提取更高层次的抽象特征。


1. 单层 RNN 的数学表示

首先,单层 RNN 的计算过程如下。对于一个时间步 t t t,单层 RNN 的隐藏状态 h t h_t ht 和输出 y t y_t yt 可以表示为:

h t = activation ( W i h x t + b i h + W h h h t − 1 + b h h ) h_t = \text{activation}(W_{ih} x_t + b_{ih} + W_{hh} h_{t-1} + b_{hh}) ht=activation(Wihxt+bih+Whhht1+bhh)
y t = W h o h t + b h o y_t = W_{ho} h_t + b_{ho} yt=Whoht+bho

其中:

  • x t x_t xt 是时间步 t t t 的输入。
  • h t h_t ht 是时间步 t t t 的隐藏状态。
  • h t − 1 h_{t-1} ht1 是时间步 t − 1 t-1 t1 的隐藏状态。
  • W i h W_{ih} Wih W h h W_{hh} Whh W h o W_{ho} Who 是权重矩阵。
  • b i h b_{ih} bih b h h b_{hh} bhh b h o b_{ho} bho 是偏置项。
  • activation \text{activation} activation 是激活函数(如 tanh ⁡ \tanh tanh ReLU \text{ReLU} ReLU)。

2. 多层 RNN 的数学表示

假设我们有一个 L L L 层的 RNN,每一层的隐藏状态为 h t ( l ) h_t^{(l)} ht(l),其中 l l l 表示第 l l l 层, t t t 表示时间步。多层 RNN 的计算过程如下:

(1) 第一层( l = 1 l = 1 l=1

第一层的输入是原始输入序列 x t x_t xt,隐藏状态 h t ( 1 ) h_t^{(1)} ht(1) 的计算公式为:

h t ( 1 ) = activation ( W i h ( 1 ) x t + b i h ( 1 ) + W h h ( 1 ) h t − 1 ( 1 ) + b h h ( 1 ) ) h_t^{(1)} = \text{activation}(W_{ih}^{(1)} x_t + b_{ih}^{(1)} + W_{hh}^{(1)} h_{t-1}^{(1)} + b_{hh}^{(1)}) ht(1)=activation(Wih(1)xt+bih(1)+Whh(1)ht1(1)+bhh(1))

其中:

  • W i h ( 1 ) W_{ih}^{(1)} Wih(1) W h h ( 1 ) W_{hh}^{(1)} Whh(1) 是第一层的权重矩阵。
  • b i h ( 1 ) b_{ih}^{(1)} bih(1) b h h ( 1 ) b_{hh}^{(1)} bhh(1) 是第一层的偏置项。
(2) 第 l l l 层( l > 1 l > 1 l>1

l l l 层的输入是第 l − 1 l-1 l1 层的输出 h t ( l − 1 ) h_t^{(l-1)} ht(l1),隐藏状态 h t ( l ) h_t^{(l)} ht(l) 的计算公式为:

h t ( l ) = activation ( W i h ( l ) h t ( l − 1 ) + b i h ( l ) + W h h ( l ) h t − 1 ( l ) + b h h ( l ) ) h_t^{(l)} = \text{activation}(W_{ih}^{(l)} h_t^{(l-1)} + b_{ih}^{(l)} + W_{hh}^{(l)} h_{t-1}^{(l)} + b_{hh}^{(l)}) ht(l)=activation(Wih(l)ht(l1)+bih(l)+Whh(l)ht1(l)+bhh(l))

其中:

  • W i h ( l ) W_{ih}^{(l)} Wih(l) W h h ( l ) W_{hh}^{(l)} Whh(l) 是第 l l l 层的权重矩阵。
  • b i h ( l ) b_{ih}^{(l)} bih(l) b h h ( l ) b_{hh}^{(l)} bhh(l) 是第 l l l 层的偏置项。
(3) 输出层

最后一层(第 L L L 层)的输出 h t ( L ) h_t^{(L)} ht(L) 作为整个网络的输出 y t y_t yt

y t = W h o h t ( L ) + b h o y_t = W_{ho} h_t^{(L)} + b_{ho} yt=Whoht(L)+bho

其中:

  • W h o W_{ho} Who b h o b_{ho} bho 是输出层的权重矩阵和偏置项。

3. 多层 RNN 的数据流向

以下是一个 L L L 层 RNN 的数据流向的数学描述:

(1) 输入序列

输入序列为 x 1 , x 2 , … , x T x_1, x_2, \dots, x_T x1,x2,,xT,其中 T T T 是序列长度。

(2) 初始化隐藏状态

每一层的初始隐藏状态 h 0 ( l ) h_0^{(l)} h0(l) 通常初始化为零或随机值:

h 0 ( l ) = 0 或 h 0 ( l ) ∼ N ( 0 , σ 2 ) h_0^{(l)} = \mathbf{0} \quad \text{或} \quad h_0^{(l)} \sim \mathcal{N}(0, \sigma^2) h0(l)=0h0(l)N(0,σ2)

(3) 时间步 t t t 的计算

对于每个时间步 t t t,从第一层到第 L L L 层依次计算隐藏状态:

  1. 第一层
    h t ( 1 ) = activation ( W i h ( 1 ) x t + b i h ( 1 ) + W h h ( 1 ) h t − 1 ( 1 ) + b h h ( 1 ) ) h_t^{(1)} = \text{activation}(W_{ih}^{(1)} x_t + b_{ih}^{(1)} + W_{hh}^{(1)} h_{t-1}^{(1)} + b_{hh}^{(1)}) ht(1)=activation(Wih(1)xt+bih(1)+Whh(1)ht1(1)+bhh(1))

  2. l l l 层( l > 1 l > 1 l>1
    h t ( l ) = activation ( W i h ( l ) h t ( l − 1 ) + b i h ( l ) + W h h ( l ) h t − 1 ( l ) + b h h ( l ) ) h_t^{(l)} = \text{activation}(W_{ih}^{(l)} h_t^{(l-1)} + b_{ih}^{(l)} + W_{hh}^{(l)} h_{t-1}^{(l)} + b_{hh}^{(l)}) ht(l)=activation(Wih(l)ht(l1)+bih(l)+Whh(l)ht1(l)+bhh(l))

  3. 输出
    y t = W h o h t ( L ) + b h o y_t = W_{ho} h_t^{(L)} + b_{ho} yt=Whoht(L)+bho

(4) 序列输出

最终,整个序列的输出为 y 1 , y 2 , … , y T y_1, y_2, \dots, y_T y1,y2,,yT


4. 多层 RNN 的特点

(1) 逐层抽象
  • 每一层 RNN 可以看作是对输入序列的不同层次的抽象。
  • 较低层捕捉局部和细节信息,较高层捕捉全局和语义信息。
(2) 参数共享
  • 每一层的参数(权重矩阵和偏置项)在时间步之间共享。
  • 不同层的参数是独立的。
(3) 梯度传播
  • 在反向传播时,梯度会通过时间步和层数传播。
  • 由于梯度消失或爆炸问题,训练深层 RNN 可能会比较困难。

可视化原理

下面是一个可视化的结构显示图:其中每一层神经元都要有两个方向的输出,一个是向本时间步的下一层传送,另一个是向下一个时间步的本层传送。而且,每一个神经元都有两个权重矩阵。注意:下方右图仅仅是逻辑上展开的数据流,其中不同世间步上的同一层,用的是同一个权重矩阵。

在这里插入图片描述

代码实现


1. 示例任务

假设有一个简单的任务:

  • 处理一个长度为 4 的序列
  • 批次大小为 2
  • 每个时间步的输入特征维度为 3
  • 希望使用一个 2 层的单向 RNN
  • 隐藏状态维度为 5。

2. 输入数据

输入句子
  • 句子 1: “I love PyTorch”
  • 句子 2: “RNN is fun”
输入数据的形状
  • 序列长度 (seq_len): 4(假设每个单词是一个时间步)
  • 批次大小 (batch_size): 2
  • 输入特征维度 (input_size): 3(假设每个单词用一个 3 维向量表示)
具体输入数据
import torch# 输入数据形状: (seq_len, batch_size, input_size)
input_data = torch.tensor([# 时间步 1[[0.1, 0.2, 0.3],  # 句子 1 的第一个单词[0.4, 0.5, 0.6]], # 句子 2 的第一个单词# 时间步 2[[0.7, 0.8, 0.9],  # 句子 1 的第二个单词[1.0, 1.1, 1.2]], # 句子 2 的第二个单词# 时间步 3[[1.3, 1.4, 1.5],  # 句子 1 的第三个单词[1.6, 1.7, 1.8]], # 句子 2 的第三个单词# 时间步 4[[1.9, 2.0, 2.1],  # 句子 1 的第四个单词[2.2, 2.3, 2.4]]  # 句子 2 的第四个单词
])
print("Input shape:", input_data.shape)  # 输出: torch.Size([4, 2, 3])

3. 初始隐藏状态

初始隐藏状态的形状
  • RNN 层数 (num_layers): 2
  • 方向数 (num_directions): 1(单向 RNN)
  • 批次大小 (batch_size): 2
  • 隐藏状态维度 (hidden_size): 5
具体初始隐藏状态
# 初始隐藏状态形状: (num_layers * num_directions, batch_size, hidden_size)
h0 = torch.zeros(2, 2, 5)  # 2层RNN,批次大小为2,隐藏状态维度为5
print("h0 shape:", h0.shape)  # 输出: torch.Size([2, 2, 5])

4. 定义 RNN 模型

import torch.nn as nn# 定义 RNN
rnn = nn.RNN(input_size=3,  # 输入特征维度hidden_size=5, # 隐藏状态维度num_layers=2,  # RNN 层数batch_first=False  # 输入形状为 (seq_len, batch_size, input_size)
)

5. 前向传播

计算输出
# 前向传播
output, hn = rnn(input_data, h0)print("Output shape:", output.shape)  # 输出: torch.Size([4, 2, 5])
print("hn shape:", hn.shape)          # 输出: torch.Size([2, 2, 5])
输出解析
  1. output:

    • 形状为 (seq_len, batch_size, hidden_size),即 (4, 2, 5)
    • 包含了每个时间步的隐藏状态。
    • 例如,output[0] 是第一个时间步的隐藏状态,output[-1] 是最后一个时间步的隐藏状态。
  2. hn:

    • 形状为 (num_layers, batch_size, hidden_size),即 (2, 2, 5)
    • 包含了最后一个时间步的隐藏状态。
    • 例如,hn[0] 是第一层的最终隐藏状态,hn[1] 是第二层的最终隐藏状态。

6. 具体输出值

output 的值
print("Output (所有时间步的隐藏状态):")
print(output)

输出示例:

tensor([[[ 0.1234,  0.5678,  0.9101,  0.1121,  0.3141],[ 0.4151,  0.6171,  0.8191,  0.0212,  0.2232]],[[ 0.4252,  0.6272,  0.8292,  0.0313,  0.2333],[ 0.4353,  0.6373,  0.8393,  0.0414,  0.2434]],[[ 0.4454,  0.6474,  0.8494,  0.0515,  0.2535],[ 0.4555,  0.6575,  0.8595,  0.0616,  0.2636]],[[ 0.4656,  0.6676,  0.8696,  0.0717,  0.2737],[ 0.4757,  0.6777,  0.8797,  0.0818,  0.2838]]],grad_fn=<StackBackward>)
hn 的值
print("hn (最后一个时间步的隐藏状态):")
print(hn)

输出示例:

tensor([[[ 0.4656,  0.6676,  0.8696,  0.0717,  0.2737],[ 0.4757,  0.6777,  0.8797,  0.0818,  0.2838]],[[ 0.4858,  0.6878,  0.8898,  0.0919,  0.2939],[ 0.4959,  0.6979,  0.8999,  0.1020,  0.3040]]],grad_fn=<StackBackward>)

batch_first=True时

以下是一个具体的例子,展示当 batch_first=True 时,PyTorch 中 torch.nn.RNN 的输入、输出以及参数的作用。


任务

假设有一个简单的任务:

  • 处理一个长度为 4 的序列
  • 批次大小为 2
  • 每个时间步的输入特征维度为 3
  • 希望使用一个 2 层的单向 RNN
  • 隐藏状态维度为 5
  • 并且设置 batch_first=True

2. 输入数据

输入句子
  • 句子 1: “I love PyTorch”
  • 句子 2: “RNN is fun”
输入数据的形状
  • 批次大小 (batch_size): 2
  • 序列长度 (seq_len): 4(假设每个单词是一个时间步)
  • 输入特征维度 (input_size): 3(假设每个单词用一个 3 维向量表示)
具体输入数据
import torch# 输入数据形状: (batch_size, seq_len, input_size)
input_data = torch.tensor([# 句子 1[[0.1, 0.2, 0.3],  # 第一个单词[0.7, 0.8, 0.9],  # 第二个单词[1.3, 1.4, 1.5],  # 第三个单词[1.9, 2.0, 2.1]], # 第四个单词# 句子 2[[0.4, 0.5, 0.6],  # 第一个单词[1.0, 1.1, 1.2],  # 第二个单词[1.6, 1.7, 1.8],  # 第三个单词[2.2, 2.3, 2.4]]  # 第四个单词
])
print("Input shape:", input_data.shape)  # 输出: torch.Size([2, 4, 3])

3. 初始隐藏状态

初始隐藏状态的形状
  • RNN 层数 (num_layers): 2
  • 方向数 (num_directions): 1(单向 RNN)
  • 批次大小 (batch_size): 2
  • 隐藏状态维度 (hidden_size): 5
具体初始隐藏状态
# 初始隐藏状态形状: (num_layers * num_directions, batch_size, hidden_size)
h0 = torch.zeros(2, 2, 5)  # 2层RNN,批次大小为2,隐藏状态维度为5
print("h0 shape:", h0.shape)  # 输出: torch.Size([2, 2, 5])

4. 定义 RNN 模型

import torch.nn as nn# 定义 RNN
rnn = nn.RNN(input_size=3,  # 输入特征维度hidden_size=5, # 隐藏状态维度num_layers=2,  # RNN 层数batch_first=True  # 输入形状为 (batch_size, seq_len, input_size)
)

5. 前向传播

计算输出
# 前向传播
output, hn = rnn(input_data, h0)print("Output shape:", output.shape)  # 输出: torch.Size([2, 4, 5])
print("hn shape:", hn.shape)          # 输出: torch.Size([2, 2, 5])
输出解析
  1. output:

    • 形状为 (batch_size, seq_len, hidden_size),即 (2, 4, 5)
    • 包含了每个时间步的隐藏状态。
    • 例如,output[0] 是第一个句子的所有时间步的隐藏状态,output[1] 是第二个句子的所有时间步的隐藏状态。
  2. hn:

    • 形状为 (num_layers, batch_size, hidden_size),即 (2, 2, 5)
    • 包含了最后一个时间步的隐藏状态。
    • 例如,hn[0] 是第一层的最终隐藏状态,hn[1] 是第二层的最终隐藏状态。

6. 具体输出值

output 的值
print("Output (所有时间步的隐藏状态):")
print(output)

输出示例:

tensor([[[ 0.1234,  0.5678,  0.9101,  0.1121,  0.3141],[ 0.4252,  0.6272,  0.8292,  0.0313,  0.2333],[ 0.4454,  0.6474,  0.8494,  0.0515,  0.2535],[ 0.4656,  0.6676,  0.8696,  0.0717,  0.2737]],[[ 0.4151,  0.6171,  0.8191,  0.0212,  0.2232],[ 0.4353,  0.6373,  0.8393,  0.0414,  0.2434],[ 0.4555,  0.6575,  0.8595,  0.0616,  0.2636],[ 0.4757,  0.6777,  0.8797,  0.0818,  0.2838]]],grad_fn=<TransposeBackward0>)
hn 的值
print("hn (最后一个时间步的隐藏状态):")
print(hn)

输出示例:

tensor([[[ 0.4656,  0.6676,  0.8696,  0.0717,  0.2737],[ 0.4757,  0.6777,  0.8797,  0.0818,  0.2838]],[[ 0.4858,  0.6878,  0.8898,  0.0919,  0.2939],[ 0.4959,  0.6979,  0.8999,  0.1020,  0.3040]]],grad_fn=<StackBackward>)

相关文章:

多层 RNN原理以及实现

数学原理 多层 RNN 的核心思想是堆叠多个 RNN 层&#xff0c;每一层的输出作为下一层的输入&#xff0c;从而逐层提取更高层次的抽象特征。 1. 单层 RNN 的数学表示 首先&#xff0c;单层 RNN 的计算过程如下。对于一个时间步 t t t&#xff0c;单层 RNN 的隐藏状态 h t h_t…...

Unity阿里云OpenAPI 获取 Token的C#【记录】

获取Token using UnityEngine; using System; using System.Text; using System.Linq; using Newtonsoft.Json.Linq; using System.Security.Cryptography; using UnityEngine.Networking; using System.Collections.Generic; using System.Globalization; using Cysharp.Thr…...

java+vue项目部署记录

目录 前言 一、java和vue 二、部署记录 1.获取代码 2.运行前端 3.运行后端 三、其他 1.nvm 总结 前言 近期工作需要部署一套javavue前后分离的项目&#xff0c;之前都略有接触&#xff0c;但属于不及皮毛的程度&#xff0c;好在对其他开发语言、html js这些还算熟&am…...

PID 控制算法(二):C 语言实现与应用

在本文中&#xff0c;我们将用 C 语言实现一个简单的 PID 控制器&#xff0c;并通过一个示例来演示如何使用 PID 控制算法来调整系统的状态&#xff08;如温度、速度等&#xff09;。同时&#xff0c;我们也会解释每个控制参数如何影响系统的表现。 什么是 PID 控制器&#xf…...

深入MapReduce——计算模型设计

引入 通过引入篇&#xff0c;我们可以总结&#xff0c;MapReduce针对海量数据计算核心痛点的解法如下&#xff1a; 统一编程模型&#xff0c;降低用户使用门槛分而治之&#xff0c;利用了并行处理提高计算效率移动计算&#xff0c;减少硬件瓶颈的限制 优秀的设计&#xff0c…...

在Spring Boot中使用SeeEmitter类实现EventStream流式编程将实时事件推送至客户端

&#x1f604; 19年之后由于某些原因断更了三年&#xff0c;23年重新扬帆起航&#xff0c;推出更多优质博文&#xff0c;希望大家多多支持&#xff5e; &#x1f337; 古之立大事者&#xff0c;不惟有超世之才&#xff0c;亦必有坚忍不拔之志 &#x1f390; 个人CSND主页——Mi…...

Qt实践:一个简单的丝滑侧滑栏实现

Qt实践&#xff1a;一个简单的丝滑侧滑栏实现 笔者前段时间突然看到了侧滑栏&#xff0c;觉得这个抽屉式的侧滑栏非常的有趣&#xff0c;打算这里首先尝试实现一个简单的丝滑侧滑栏。 首先是上效果图 &#xff08;C&#xff0c;GIF帧率砍到毛都不剩了&#xff09; QProperty…...

基于ESP32-IDF驱动GPIO输出控制LED

基于ESP32-IDF驱动GPIO输出控制LED 文章目录 基于ESP32-IDF驱动GPIO输出控制LED一、点亮LED3.1 LED电路3.2 配置GPIO函数gpio_config()原型和头文件3.3 设置GPIO引脚电平状态函数gpio_set_level()原型和头文件3.4 代码实现并编译烧录 一、点亮LED 3.1 LED电路 可以看到&#x…...

OpenCV文字绘制支持中文显示

OpenCV版本&#xff1a;4.4 IDE&#xff1a;VS2019 功能描述 OpenCV绘制文本的函数putText()不支持中文的显示&#xff0c;网上很多方法推荐的都是使用FreeType来支持&#xff0c;FreeType是什么呢&#xff1f;FreeType的官网上有介绍 FreeType官网 https://www.freetype.or…...

jenkins-k8s pod方式动态生成slave节点

一. 简述&#xff1a; 使用 Jenkins 和 Kubernetes (k8s) 动态生成 Slave 节点是一种高效且灵活的方式来管理 CI/CD 流水线。通过这种方式&#xff0c;Jenkins 可以根据需要在 Kubernetes 集群中创建和销毁 Pod 来执行任务&#xff0c;从而充分利用集群资源并实现更好的隔离性…...

消息队列篇--基础篇(消息队列特点,应用场景、点对点和发布订阅工作模式,RabbmitMQ和Kafka代码示例等)

1、消息队列的介绍 消息&#xff08;Message&#xff09;是指在应用之间传送的数据&#xff0c;消息可以非常简单&#xff0c;比如只包含文本字符串&#xff0c;也可以更复杂&#xff0c;可能包含嵌入对象。 消息队列&#xff08;Message Queue&#xff0c;简称MQ&#xff09…...

Jetpack架构组件学习——使用Glance实现桌面小组件

基本使用 1.添加依赖 添加Glance依赖: // For AppWidgets supportimplementation "androidx.glance:glance-appwidget:1.1.0"// For interop APIs with Material 3implementation "androidx.glance:glance-material3:1.1.0"// For interop APIs with Mater…...

go读取excel游戏配置

1.背景 游戏服务器&#xff0c;配置数据一般采用csv/excel来作为载体&#xff0c;这种方式&#xff0c;策划同学配置方便&#xff0c;服务器解析也方便。在jforgame框架里&#xff0c;我们使用以下的excel配置格式。 然后可以非常方便的进行数据检索&#xff0c;例如&#xff…...

Linux系统下速通stm32的clion开发环境配置

陆陆续续搞这个已经很久了。 因为自己新电脑是linux系统无法使用keil&#xff0c;一开始想使用vscode里的eide但感觉不太好用&#xff1b;后面想直接使用cudeide但又不想妥协&#xff0c;想趁着这个机会把linux上的其他单片机开发配置也搞明白&#xff1b;而且非常想搞懂cmake…...

快慢指针及原理证明(swift实现)

目录 链表快慢指针一、快慢指针基本介绍二、快慢指针之找特殊节点1.删除链表的倒数第k个结点题目描述解题思路 2.链表的中间节点题目描述解题思路 三、快慢指针之环形问题1.判断环形链表题目描述解题思路 2.判断环形链表并返回入环节点题目描述解题思路 3.变种——判断快乐数题…...

web前端3--css

注意&#xff08;本文一切代码一律是在vscode中书写&#xff09; 1、书写位置 1、行内样式 //<标签名 style"样式声明"> <p style"color: red;">666</p> 2、内嵌样式 1、style标签 里面写css代码 css与html之间分离 2、css属性:值…...

一文大白话讲清楚webpack基本使用——5——babel的配置和使用

文章目录 一文大白话讲清楚webpack基本使用——5——babel的配置和使用1. 建议按文章顺序从头看&#xff0c;一看到底&#xff0c;豁然开朗2. babel-loader的配置和使用2.1 针对ES6的babel-loader2.2 针对typescript的babel-loader2.3 babel配置文件 一文大白话讲清楚webpack基…...

Python自动化运维:一键掌控服务器的高效之道

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在互联网和云计算高速发展的今天,服务器数量的指数增长使得手动运维和管理变得异常繁琐。Python凭借其强大的可读性和丰富的生态系统,成为…...

基于quartz,刷新定时器的cron表达式

文章目录 前言基于quartz&#xff0c;刷新定时器的cron表达式1. 先看一下测试效果2. 实现代码 前言 如果您觉得有用的话&#xff0c;记得给博主点个赞&#xff0c;评论&#xff0c;收藏一键三连啊&#xff0c;写作不易啊^ _ ^。   而且听说点赞的人每天的运气都不会太差&…...

HTML常用属性

HTML标签的常见属性包括许多不同的功能&#xff0c;可以为元素提供附加信息或控制元素的行为。以下是一些常见的属性及其解释&#xff1a; 1. src 描述&#xff1a;src&#xff08;source&#xff09;属性指定一个资源的路径&#xff0c;通常用于图像、音频、视频等标签。常见…...

在 Babylon.js 中使用 Gizmo:交互式 3D 操作工具

在 3D 应用程序中&#xff0c;交互式操作对象&#xff08;如平移、旋转、缩放&#xff09;是一个常见的需求。Babylon.js 提供了一个强大的工具——Gizmo&#xff0c;用于在 3D 场景中实现这些功能。本文将介绍如何在 Babylon.js 中使用 Gizmo&#xff0c;并展示如何通过代码实…...

蓝桥杯练习日常|递归-进制转换

蓝桥云课760数的计算 一、递归 题目&#xff1a; 我的解题代码&#xff1a; #include <iostream> using namespace std; int sum0; int main() {// 请在此输入您的代码int n;cin>>n;int fun(int n);fun(n); cout<<sum<<\n;return 0; } // void fu…...

LabVIEW滤波器选择与参数设置

在信号处理应用中&#xff0c;滤波器是去除噪声、提取目标信号的重要工具。LabVIEW 提供多种类型的滤波器&#xff08;如低通、高通、带通、带阻&#xff09;&#xff0c;用户需要根据采样频率、信号特性和应用需求合理选择滤波器类型及参数设置。本文以 采样率 100kHz&#xf…...

【c语言日寄】Vs调试——新手向

【作者主页】siy2333 【专栏介绍】⌈c语言日寄⌋&#xff1a;这是一个专注于C语言刷题的专栏&#xff0c;精选题目&#xff0c;搭配详细题解、拓展算法。从基础语法到复杂算法&#xff0c;题目涉及的知识点全面覆盖&#xff0c;助力你系统提升。无论你是初学者&#xff0c;还是…...

C#中的Timers.Timer使用用法及常见报错

System.Timers.Timer 是一个基于服务器的计时器&#xff0c;它可以在应用程序中定期触发事件。这个计时器特别适合用于多线程环境&#xff0c;并且不应该与用户界面(UI)直接交互。在 ASP.NET 中&#xff0c;通常使用 System.Timers.Timer 来处理周期性的任务。 主要使用步骤&am…...

chrome小插件:长图片等分切割

前置条件&#xff1a; 安装有chrome谷歌浏览器的电脑 使用步骤&#xff1a; 1.打开chrome扩展插件 2.点击管理扩展程序 3.加载已解压的扩展程序 4.选择对应文件夹 5.成功后会出现一个扩展小程序 6.点击对应小程序 7.选择图片进行切割&#xff0c;切割完成后会自动保存 代码…...

mysql数据被误删的恢复方案

文章目录 一、使用备份恢复二、使用二进制日志&#xff08;Binary Log&#xff09;三、使用InnoDB表空间恢复四、使用第三方工具预防措施 数据误删是一个严重的数据库管理问题&#xff0c;但通过合理的备份策略和使用适当的恢复工具&#xff0c;可以有效地减少数据丢失的风险…...

K8S-Pod资源清单的编写,资源的增删改查,镜像的下载策略

1. Pod资源清单的编写 1.1 Pod运行单个容器的资源清单 ##创建工作目录 mkdir -p /root/manifests/pods && cd /root/manifests/pods vim 01-nginx.yaml ##指定api版本 apiVersion: v1 ##指定资源类型 kind: Pod ##指定元数据 metadata:##指定名称name: myweb ##用户…...

Unity Line Renderer Component入门

Overview Line Renderer 组件是 Unity 中用于绘制连续线段的工具。它通过在三维空间中的两个或两个以上的点的数组&#xff0c;并在每个点之间绘制一条直线。可以绘制从简单的直线到复杂的螺旋线等各种图形。 1. 连续性和独立线条 连续性&#xff1a;Line Renderer 绘制的线条…...

计算机工程:解锁未来科技之门!

计算机工程与应用是一个充满无限可能性的领域。随着科技的迅猛发展&#xff0c;计算机技术已经深深渗透到我们生活的方方面面&#xff0c;从医疗、金融到教育&#xff0c;无一不在彰显着计算机工程的巨大魅力和潜力。 在医疗行业&#xff0c;计算机技术的应用尤为突出。比如&a…...

翻译:How do I reset my FPGA?

文章目录 背景翻译&#xff1a;How do I reset my FPGA?1、Understanding the flip-flop reset behavior2、Reset methodology3、Use appropriate resets to maximize utilization4、Many options5、About the author 背景 在写博客《复位信号的同步与释放&#xff08;同步复…...

在Unity中使用大模型进行离线语音识别

文章目录 1、Vosk下载下载vosk-untiy-asr下载模型在项目中使用语音转文字音频转文字2、whisper下载下载unity项目下载模型在unity中使用1、Vosk 下载 下载vosk-untiy-asr Github链接:https://github.com/alphacep/vosk-unity-asr 进不去Github的可以用网盘 夸克网盘链接:h…...

SpringBoot+Vue使用Echarts

前言 在vue项目中使用echarts&#xff0c;本次演示是使用vue2 1 前端准备 echarts官网&#xff1a; https://echarts.apache.org/zh/index.html 官网提供了基本的使用说明和大量的图表 1.1 下载echarts 执行命令 npm install echarts 直接这样执行很可能会失败&#xff0c;…...

【QT】-explicit关键字

explicit explicit 是一个 C 关键字&#xff0c;用于修饰构造函数。它的作用是防止构造函数进行隐式转换。 为什么需要 explicit&#xff1f; 在没有 explicit 的情况下&#xff0c;构造函数可以用于隐式类型转换。这意味着&#xff0c;如果你有一个接受某种类型的参数的构造…...

docker: Device or resource busy

(base) [rootbddx-vr-gpu-bcc2 /]#rm -rf /ssd1/docker/overlay2/8d96a51e3fb78e434fcf2b085e952adcc82bfe37485d427e1e017361a277326d/ rm: cannot remove ‘/ssd1/docker/overlay2/8d96a51e3fb78e434fcf2b085e952adcc82bfe37485d427e1e017361a277326d/merged’: Device or re…...

Vue - toRefs() 和 toRef() 的使用

一、toRefs() 在 Vue 3 中,toRefs()可以将响应式对象的属性转换为可响应的 refs。主要用于在解构响应式对象时&#xff0c;保持属性的响应性。 1. 导入 toRefs 函数 import { toRefs } from vue;2. 将响应式对象的属性转换为 ref const state reactive({count: 0,message:…...

(2024,MLLM,Healthcare,综述)多模态学习是否已在医疗保健领域实现通用智能?

Has Multimodal Learning Delivered Universal Intelligence in Healthcare? A Comprehensive Survey 目录 0. 摘要 1. 简介 5. MLLM 5.1 模态编码器与跨模态适配器 5.1.1 图像编码器 (Image Encoder) 5.1.2 语言模型 (Language Model) 5.1.3 跨模态适配器 (Cross-moda…...

css命名规范——BEM

目录 引言 BEM是什么? 块Block 元素Element 修饰语Modifier BEM解决了哪些问题? 在流行框架的组件中使用 BEM 格式 实战 认识设计图 如何使用当前的css规范正确命名? 引言 css样式类命名难、太难了,难于上青天,这个和js变量命名还不一样。看看项目中五花八门的样…...

使用PHP函数 “is_object“ 检查变量是否为对象类型

在PHP中&#xff0c;变量可以保存不同类型的值&#xff0c;包括整数、字符串、数组、布尔值等等。其中&#xff0c;对象是一种特殊的数据类型&#xff0c;用于封装数据和方法。在处理PHP代码中&#xff0c;我们经常需要检查一个变量是否为对象类型&#xff0c;以便进行相应的处…...

Golang:使用DuckDB查询Parquet文件数据

本文介绍DuckDB查询Parquet文件的典型应用场景&#xff0c;掌握DuckDB会让你的产品分析能力更强&#xff0c;相反系统运营成本相对较低。为了示例完整&#xff0c;我也提供了如何使用Python导出MongoDB数据。 Apache Parquet文件格式在存储和传输大型数据集方面变得非常流行。最…...

Moretl FileSync增量文件采集工具

永久免费: <下载> <使用说明> 我们希望Moretl FileSync是一款通用性很好的文件日志采集工具,解决工厂环境下,通过共享目录采集文件,SMB协议存在的安全性,兼容性的问题. 同时,我们发现工厂设备日志一般为增量,为方便MES,QMS等后端系统直接使用数据,我们推出了增量采…...

消息队列篇--原理篇--Pulsar(Namespace,BookKeeper,类似Kafka甚至更好的消息队列)

Apache Pulusar是一个分布式、多租户、高性能的发布/订阅&#xff08;Pub/Sub&#xff09;消息系统&#xff0c;最初由Yahoo开发并开源。它结合了Kafka和传统消息队列的优点&#xff0c;提供高吞吐量、低延迟、强一致性和可扩展的消息传递能力&#xff0c;适用于大规模分布式系…...

linux 扩容

tmpfs tmpfs 82M 0 82M 0% /run/user/1002 tmpfs tmpfs 82M 0 82M 0% /run/user/0 [输入命令]# fdisk -lu Disk /dev/vda: 40 GiB, 42949672960 bytes, 83886080 sectors Units: sectors of 1 * 512 512 bytes Sector size (logi…...

数据表中的数据查询

文章目录 一、概述二、简单查询1.列出表中所有字段2.“*”符号表示所有字段3.查询指定字段数据4.DISTINCT查询 三、IN查询四、BETWEEN ADN查询1.符合范围的数据记录查询2.不符合范围的数据记录查询 五、LIKE模糊查询六、对查询结果排序七、简单分组查询1.统计数量2.统计计算平均…...

深入了解 Java split() 方法:分割字符串的利器

Java 提供的 split() 方法是 String 类中一个常用的工具&#xff0c;它可以将一个字符串根据指定的分隔符切割成多个子字符串&#xff0c;并以字符串数组的形式返回。这个方法常用于字符串的处理、数据解析等场景。本文将详细介绍 Java 中 split() 方法的使用方式&#xff0c;并…...

Ubuntu 安装 docker 配置环境及其常用命令

Docker 安装与配置指南 本文介绍如何在 Ubuntu 系统上安装 Docker&#xff0c;解决权限问题&#xff0c;配置 Docker Compose&#xff0c;代理端口转发&#xff0c;容器内部代理问题等并进行相关的优化设置。参考官方文档&#xff1a;Docker 官方安装指南 一、安装 Docker 1…...

Android Studio安装配置

一、注意事项 想做安卓app和开发板通信&#xff0c;踩了大坑&#xff0c;Android 开发不是下载了就能直接开发的&#xff0c;对于新手需要注意的如下&#xff1a; 1、Android Studio版本&#xff0c;根据自己的Android Studio版本对应决定了你所兼容的AGP&#xff08;Android…...

leetcode 面试经典 150 题:有效的括号

链接有效的括号题序号20题型字符串解法栈难度简单熟练度✅✅✅ 题目 给定一个只包括 ‘(’&#xff0c;‘)’&#xff0c;‘{’&#xff0c;‘}’&#xff0c;‘[’&#xff0c;‘]’ 的字符串 s &#xff0c;判断字符串是否有效。 有效字符串需满足&#xff1a; 左括号必须…...

C语言 指针_野指针 指针运算

野指针&#xff1a; 概念&#xff1a;野指针就是指针指向的位置是不可知的&#xff08;随机的、不正确的、没有明确限制的&#xff09; 指针非法访问&#xff1a; int main() {int* p;//p没有初始化&#xff0c;就意味着没有明确的指向//一个局部变量不初始化&#xff0c;放…...

【HarmonyOS之旅】基于ArkTS开发(二) -> UI开发之常见布局

目录 1 -> 自适应布局 1.1 -> 线性布局 1.1.1 -> 线性布局的排列 1.1.2 -> 自适应拉伸 1.1.3 -> 自适应缩放 1.1.4 -> 定位能力 1.1.5 -> 自适应延伸 1.2 -> 层叠布局 1.2.1 -> 对齐方式 1.2.2 -> Z序控制 1.3 -> 弹性布局 1.3.1…...