当前位置: 首页 > news >正文

Llama 3:开源大模型的里程碑式突破

标题:Llama 3:开源大模型的里程碑式突破

文章信息摘要:
Meta通过Llama 3展现了开源LLM的重大突破:采用超大规模训练数据和多阶段训练方法(SFT、rejection sampling、PPO和DPO),突破了传统的Chinchilla最优比例法则。在产品策略上,针对8B和70B两种规模采用不同的训练数据截止日期,实现差异化定位。即将发布的400B模型有望达到GPT-4级别性能,但同时也凸显了开源模型在成本控制和商业可持续性方面的挑战。这些突破标志着开源LLM已具备与闭源模型直接竞争的技术实力。

==================================================

详细分析:
核心观点:Meta通过Llama 3的发布展现了开源LLM的重大突破:采用超大规模训练数据和400B参数规模,突破了Chinchilla最优比例法则的限制,证明开源模型在技术实力上已经能够与闭源模型展开直接竞争
详细分析:
让我帮你分析这个重要观点。Meta通过Llama 3的发布确实展现了开源LLM的重大突破,主要体现在以下几个方面:

  1. 突破传统训练范式
  • 打破了Chinchilla最优比例法则(该法则建议模型参数量与训练数据量应该保持特定比例)
  • 8B模型按Chinchilla法则本应只训练200B token,但Meta实际训练了超过15T token
  • 证明了"用尽可能多的数据训练"这一策略的有效性
  1. 规模化突破
  • 发布了8B和70B参数规模的模型
  • 即将发布400B参数规模的模型,这将接近GPT-4的规模
  • 展示了开源阵营具备训练超大规模模型的能力
  1. 训练基础设施的实力
  • 使用了24,000个GPU进行训练(最大并行16,000个)
  • 处理了超过15万亿个token的训练数据
  • 证明开源阵营已具备与商业巨头相当的算力基础设施
  1. 性能突破
  • 70B模型在多项评测中已接近闭源商业模型的水平
  • 即将发布的400B模型预计将达到与GPT-4相当的性能
  • 在人工评估中甚至超过了Claude 3 Sonnet
  1. 商业影响
  • 对API服务提供商形成重大压力
  • 自托管开源模型的成本远低于使用API服务
  • 为开源生态系统提供了强有力的技术支持

这些突破表明,开源LLM已经在技术实力上有能力与闭源模型展开直接竞争,打破了"开源模型无法达到顶级性能"的认知。Meta的这一成就也为整个开源AI社区带来了新的发展机遇。

==================================================

核心观点:Llama 3在技术路线上采用了全面的优化策略:结合SFT、rejection sampling、PPO和DPO的多阶段训练方法,同时通过显著增加代码训练数据(4倍于前代)来提升模型在编程和推理任务上的表现
详细分析:
好的,我来详细分析Llama 3在技术路线上的优化策略:

  1. 多阶段训练方法的组合
  • 采用了4种主要的训练方法:

    • SFT(Supervised Fine-Tuning): 基础的有监督微调
    • Rejection Sampling: 通过reward model筛选高质量的模型输出
    • PPO(Proximal Policy Optimization): 近端策略优化
    • DPO(Direct Preference Optimization): 直接偏好优化
  • 训练流程推测:

    1. 首先进行SFT基础微调
    2. 使用Rejection Sampling筛选高质量数据
    3. 应用DPO进行偏好优化
    4. 最后使用PPO进一步优化
  1. 数据质量的重视
  • 特别强调了prompt和preference rankings数据质量的重要性
  • 通过多轮人工标注质量保证(QA)来确保数据质量
  • 使用了超过1000万条人工标注的样本
  1. 代码训练数据的显著增加
  • 相比Llama 2增加了4倍的代码训练数据
  • 目的是提升模型在:
    • 编程能力
    • 推理任务表现
    • 逻辑思维能力
  1. 训练效果的体现
  • 在推理和编码任务上有明显提升
  • 模型展现出了更好的推理链路生成能力
  • 通过preference rankings训练,提高了模型选择正确答案的能力
  1. 创新点
  • 首次在大规模模型中结合使用DPO和PPO
  • 使用了Llama 2来生成训练数据的质量分类器
  • 采用了8192 tokens的训练序列长度,并确保self-attention不跨文档边界

这种全面的优化策略显示了Meta在模型训练方面的深度思考,通过多种方法的组合来实现模型性能的整体提升。

==================================================

核心观点:Meta展现了差异化的产品策略:针对不同规模的模型版本(8B、70B)采用不同的训练数据截止日期,既确保了大规模模型的性能优势,又保持了小规模模型的实用性和部署灵活性
详细分析:
让我来分析一下Meta在Llama 3中展现的差异化产品策略:

  1. 不同规模模型的数据时效性差异
  • 8B模型使用截至2023年3月的训练数据
  • 70B模型使用截至2023年12月的训练数据
  • 这种差异化策略显示Meta针对不同规模的模型有不同的定位和目标
  1. 战略考量
  • 小型模型(8B)定位

    • 面向本地部署和资源受限场景
    • 保持较好的推理效率
    • 虽然数据较旧但仍具有实用价值
  • 大型模型(70B)定位

    • 追求最高性能表现
    • 与闭源商业模型竞争
    • 使用最新数据以确保竞争力
  1. 产品策略优势
  • 通过差异化满足不同用户群体需求
  • 在资源投入和性能之间取得平衡
  • 为未来的400B模型预留发展空间
  1. 市场影响
  • 小型模型满足了开源社区的基础需求
  • 大型模型对商业API提供商形成竞争压力
  • 整体策略有助于扩大Llama在不同应用场景的覆盖面

这种差异化策略显示Meta在开源AI领域采取了精心设计的产品矩阵approach,而不是简单地追求统一的技术路线。

==================================================

核心观点:Llama 3的发布强化了Meta在开源LLM生态中的领导地位,但同时也凸显了开源模型在成本控制和商业可持续性方面的挑战。其400B参数规模的尝试可能对商业封闭源模型形成竞争压力,推动整个行业的技术创新
详细分析:
好的,我来分析一下这个观点的几个关键方面:

  1. Meta的领导地位强化
  • Llama 3展现了Meta在计算资源和技术实力上的优势
  • 8B和70B模型的性能显著提升,特别是70B模型已经可以与一些商业闭源模型相媲美
  • 承诺即将发布的400B模型更是展示了Meta在大规模模型训练上的野心
  1. 开源模型面临的挑战
  • 训练成本急剧上升:从Llama 3的1亿美元到Llama 4可能接近10亿美元
  • 只有大型科技公司才能负担如此高昂的训练成本
  • 这种成本压力可能影响开源LLM生态的可持续发展
  • 对风投支持的初创公司来说,可能需要重新思考商业模式
  1. 对商业封闭源模型的影响
  • 如果400B模型确实达到GPT-4级别的性能,将对商业API提供商形成巨大压力
  • 自托管开源权重模型的成本远低于使用API服务
  • 这可能迫使商业模型提供商改变定价策略或寻找新的差异化优势
  1. 行业创新推动
  • Meta的开源策略迫使其他玩家必须在效率和创新上寻求突破
  • 像Mistral这样的公司更注重效率和迭代速度
  • 小型模型(<1B参数)市场仍存在巨大机会,尚未被主要玩家重视
  1. 未来展望
  • Meta的开源承诺为LLM生态带来了前所未有的活力
  • 但长期来看,高昂的训练成本可能限制参与者数量
  • 商业可持续性将成为开源模型发展的关键考量因素

总的来说,Llama 3的发布代表了开源LLM发展的一个重要里程碑,但也揭示了这个领域面临的根本性挑战。未来的发展可能需要在开源理念、商业可持续性和技术创新之间找到平衡点。

==================================================

相关文章:

Llama 3:开源大模型的里程碑式突破

标题&#xff1a;Llama 3&#xff1a;开源大模型的里程碑式突破 文章信息摘要&#xff1a; Meta通过Llama 3展现了开源LLM的重大突破&#xff1a;采用超大规模训练数据和多阶段训练方法&#xff08;SFT、rejection sampling、PPO和DPO&#xff09;&#xff0c;突破了传统的Chi…...

Spring 框架基础:IOC 与 AOP 原理剖析及面试要点

在上一篇中&#xff0c;我们深入探讨了 Java 反射机制&#xff0c;了解了它在运行时动态操作类和对象的强大能力。而今天&#xff0c;我们将进入 Spring 框架的世界。Spring 框架作为 Java 企业级开发中最流行的框架之一&#xff0c;极大地简化了企业级应用的开发过程。对于春招…...

《开源与合作:驱动鸿蒙Next系统中人工智能技术创新发展的双引擎》

在当今科技飞速发展的时代&#xff0c;鸿蒙Next系统作为一款具有创新性和前瞻性的操作系统&#xff0c;为人工智能技术的发展提供了广阔的舞台。而开源和合作则是推动鸿蒙Next系统中人工智能技术创新和发展的两大关键引擎。 开源&#xff1a;创新的源泉 代码共享与知识传播&am…...

Redis使用基础

1 redis介绍 Redis&#xff08;Remote Dictionary Server )&#xff0c;即远程字典服务 ! 是完全开源的&#xff0c;遵守 BSD 协议&#xff0c;是一个高性能的 key-value 数据库。 使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库&#xff0c;并…...

React和Vue有什么区别,如何选择?

React和Vue有什么区别&#xff0c;如何选择&#xff1f; React 和 Vue 是当前最受欢迎的前端框架之一&#xff0c;两者在开发者中都有极高的声誉。它们都旨在帮助开发人员构建用户界面&#xff0c;但在实现方式和适用场景上有所不同。如果你正考虑在项目中选择 React 或 Vue&a…...

C++|开源日志库log4cpp和glog

文章目录 log4cpp 和 glog对比1. **功能对比**2. **易用性和配置**3. **性能**4. **线程安全**5. **日志输出**6. **功能扩展**7. **适用场景**8. **总结** 其它开源C日志库1. **spdlog**2. **easylogging**3. **Boost.Log**4. **loguru**5. **Poco Logging**6. **Qt Logging (…...

安卓程序作为web服务端的技术实现(三):AndServer作为服务

安卓程序作为web服务端的技术实现&#xff1a;AndServer 实现登录权限拦截-CSDN博客 安卓程序作为web服务端的技术实现&#xff08;二&#xff09;&#xff1a;Room 实现数据存储-CSDN博客 经过两次捣鼓 AndServer已经能正常访问了 但是发现一个问题 就是当我app退出时 AndSe…...

数据结构(Java)——二叉树

1.概念 二叉树是一种树形数据结构&#xff0c;其中每个节点最多有两个子节点&#xff0c;通常被称为左子节点和右子节点。二叉树可以是空的&#xff08;即没有节点&#xff09;&#xff0c;或者由一个根节点以及零个或多个左子树和右子树组成&#xff0c;其中左子树和右子树也分…...

深度学习系列76:流式tts的一个简单实现

1. 概述 使用queue&#xff0c;producer不断向queue中添加audio&#xff0c;然后consumer不断从queue中消费audio。 下面的样例使用melo来生成语音&#xff0c;需要先下载melo.tts。模型在https://myshell-public-repo-hosting.s3.amazonaws.com/openvoice/basespeakers/ZH/ch…...

数据结构(三) 排序/并查集/图

目录 1. 排序 2.并查集 3.图 1.排序: 1.1 概念: 排序就是将数据按照某种规则进行排列, 具有某种顺序. 分为内排序和外排序. 内排序就是: 将数据放在内存中的排序; 外排序是: 数据太多无法在内存中排序的. 1.2 插入排序: 插入排序包含: 直接插入排序和希尔排序. (1) 直接插入…...

WPA Supplicant 技术详解

目录 前言 1. 简介 2. 源码获取 3. 代码架构 3.1 模块结构 3.2. 主要文件和目录 3.3. 顶层模块 3.4 模块之间的关系 4. 工作流程简要描述 启动 加载配置 初始化 认证 数据传输 5. 编译与安装 5.1 编译 5.1.1 libnl库与openssl库准备 5.1.2 修改配置文件 5.…...

Avalonia UI MVVM DataTemplate里绑定Command

Avalonia 模板里面绑定ViewModel跟WPF写法有些不同。需要单独绑定Command. WPF里面可以直接按照下面的方法绑定DataContext. <Button Content"Button" Command"{Binding DataContext.ClickCommand, RelativeSource{RelativeSource AncestorType{x:Type User…...

macOS如何进入 Application Support 目录(cd: string not in pwd: Application)

错误信息 cd: string not in pwd: Application 表示在当前目录下找不到名为 Application Support 的目录。可能的原因如下&#xff1a; 拼写错误或路径错误&#xff1a;确保你输入的目录名称正确。目录名称是区分大小写的&#xff0c;因此请确保使用正确的大小写。正确的目录名…...

【探索 Kali Linux】渗透测试与网络安全的终极操作系统

探索 Kali Linux&#xff1a;渗透测试与网络安全的终极操作系统 在网络安全领域&#xff0c;Kali Linux 无疑是最受欢迎的操作系统之一。无论是专业的渗透测试人员、安全研究人员&#xff0c;还是对网络安全感兴趣的初学者&#xff0c;Kali Linux 都提供了强大的工具和灵活的环…...

《SwinIR:使用Swin-Transformer图像恢复》学习笔记

paper&#xff1a;2108.10257 GitHub&#xff1a;GitHub - JingyunLiang/SwinIR&#xff1a; SwinIR&#xff1a; 使用 Swin Transformer 进行图像修复 &#xff08;官方仓库&#xff09; 目录 摘要 1、Introduction 2、Related Work 2.1 图像修复 2.2 视觉Transformer…...

AR智慧点巡检系统探究和技术方案设计

一、项目背景 随着工业生产规模的不断扩大和设备复杂度的提升&#xff0c;传统的人工点巡检方式效率低下、易出错&#xff0c;难以满足现代化企业对设备运行可靠性和安全性的要求。AR&#xff08;增强现实&#xff09;技术的发展为点巡检工作带来了新的解决方案&#xff0c;通…...

电路研究9.2——合宙Air780EP使用AT指令

这里正式研究AT指令的学习了&#xff0c;之前只是接触的AT指令&#xff0c;这里则是深入分析AT指令了。 软件的开发方式&#xff1a; AT&#xff1a;MCU 做主控&#xff0c;MCU 发 AT 命令给模组的开发方式&#xff0c;模组仅提供标准的 AT 固件&#xff0c; 所有的业务控制逻辑…...

OpenCV相机标定与3D重建(62)根据两个投影矩阵和对应的图像点来计算3D空间中点的坐标函数triangulatePoints()的使用

加粗样式- 操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 这个函数通过使用立体相机对3维点的观测&#xff0c;重建这些点的三维坐标&#xff08;以齐次坐标表示&#xff09;。 cv::triangula…...

基于ollama,langchain,springboot从零搭建知识库四【设计通用rag系统】

需求&#xff1a; 1&#xff1a;可以自定义管理大模型&#xff0c;可自行选择ollama&#xff0c;openai&#xff0c;千问等大模型 2&#xff1a;自定义向量数据库&#xff0c;支持pgvector&#xff0c;elasticsearch&#xff0c;milvus&#xff08;这三个目前比较常用&#xff…...

【Go面试】工作经验篇 (持续整合)

这里写目录标题 什么是逃逸分析服务端怎么接受客户端上传的文件说一下对gin框架的理解gin有哪些常用中间件gin怎么用swagger写接口文档nginx一般是用来做什么如果调用方法经常超时怎么办gin中怎么和mysql通信从mysql调数据到redis,如何同步延时双删redis ,mysql都不存在用户请求…...

“腾讯、钉钉、飞书” 会议开源平替,免费功能强大

在数字化时代&#xff0c;远程办公和线上协作越来越火。然而&#xff0c;市面上的视频会议工具要么贵得离谱&#xff0c;要么功能受限&#xff0c;甚至还有些在数据安全和隐私保护上让人不放心。 今天开源君给大家安利一个超棒的开源项目 - Jitsi Meet&#xff0c;这可是我在网…...

怎样使用树莓派自己搭建一套ADS-B信号接收系统

0 我们知道&#xff0c;ADS-B全称广播式自动相关监视系统&#xff0c;其实就是飞机发出的广播信号&#xff0c;用明码来对外发送自己的位置、高度、速度、航向等信息&#xff0c;是公开信息。连续接收到一架飞机发出的ADS-B信息后&#xff0c;可以通过其坐标点来描绘出飞机的航…...

终极的复杂,是简单

软件仿真拥有最佳的信号可见性和调试灵活性,能够高效捕获很多显而易见的常见错误,被大多数工程师熟练使用。 空间领域应用的一套数据处理系统(Data Handling System),采用抗辐FPGA作为主处理器,片上资源只包含10752个寄存器,软仿也是个挺花时间的事。 Few ms might take …...

粒子群算法 笔记 数学建模

引入: 如何找到全局最大值&#xff1a;如果只是贪心的话&#xff0c;容易被局部最大解锁定 方法有&#xff1a;盲目搜索&#xff0c;启发式搜索 盲目搜索&#xff1a;枚举法和蒙特卡洛模拟&#xff0c;但是样例太多花费巨量时间 所以启发式算法就来了&#xff0c;通过经验和规…...

Vue.js 嵌套路由和动态路由

Vue.js 嵌套路由和动态路由 在 Vue.js 开发中&#xff0c;Vue Router 是官方提供的路由管理器&#xff0c;用于构建单页应用&#xff08;SPA&#xff09;。它支持嵌套路由和动态路由&#xff0c;帮助开发者构建复杂的应用结构。 嵌套路由 嵌套路由允许在路由配置中定义子路由…...

Docker导入镜像

使用命令行进行处理&#xff1a; docker load < onething1_wxedge.tar如下图所示 查看状态 docker images...

C# OpenCV机器视觉:红外体温检测

在一个骄阳似火的夏日&#xff0c;全球却被一场突如其来的疫情阴霾笼罩。阿强所在的小镇&#xff0c;平日里熙熙攘攘的街道变得冷冷清清&#xff0c;人们戴着口罩&#xff0c;行色匆匆&#xff0c;眼神中满是对病毒的恐惧。阿强作为镇上小有名气的科技达人&#xff0c;看着这一…...

STM32项目分享:智能厨房安全检测系统

目录 一、前言 二、项目简介 1.功能详解 2.主要器件 三、原理图设计 四、PCB硬件设计 PCB图 五、程序设计 六、实验效果 七、资料内容 项目分享 一、前言 项目成品图片&#xff1a; 哔哩哔哩视频链接&#xff1a; STM32智能厨房安全检测系统 &#xff08;资料分…...

docker 安装 redis 详解

在平常的开发工作中&#xff0c;我们经常会用到 redis&#xff0c;那么 docker 下应该如何安装 redis 呢&#xff1f;简单来说&#xff1a;第一步&#xff1a;拉取redis镜像&#xff1b;第二步&#xff1a;设置 redis.conf 配置文件&#xff1b;第三步&#xff1a;编写 docker-…...

《探秘鸿蒙Next:人工智能助力元宇宙高效渲染新征程》

在元宇宙的宏大愿景中&#xff0c;高效的渲染技术是构建沉浸式虚拟世界的关键。鸿蒙Next凭借与人工智能的深度融合&#xff0c;为元宇宙的渲染带来了全新的解决方案和无限可能。 智能场景分析与优化 人工智能能够对元宇宙场景进行智能分析。鸿蒙Next可以利用AI技术对场景中的…...

nginx分发请求超时切换服务

nginx的upstream模块实现超时自动切换服务 upstream testfail {server 192.168.1.218 max_fails1 fail_timeout10s;server 192.168.1.129 max_fails1 fail_timeout10s;} max_fails代表失败尝试次数&#xff0c;达到设置的次数则视为该服务不可用&#xff0c; fail_timeout代…...

vulfocus/fastjson-cnvd_2017_02833复现

漏洞概述 Fastjson 是阿里巴巴开发的一个高性能的 Java 库&#xff0c;用于将 Java 对象转换成 JSON 格式&#xff08;序列化&#xff09;&#xff0c;以及将 JSON 字符串转换回 Java 对象&#xff08;反序列化&#xff09;。 fastjson在解析json的过程中,支持使用type字段来指…...

.Net Core微服务入门全纪录(五)——Ocelot-API网关(下)

系列文章目录 1、.Net Core微服务入门系列&#xff08;一&#xff09;——项目搭建 2、.Net Core微服务入门全纪录&#xff08;二&#xff09;——Consul-服务注册与发现&#xff08;上&#xff09; 3、.Net Core微服务入门全纪录&#xff08;三&#xff09;——Consul-服务注…...

OpenCV imread函数读取图像__实例详解

OpenCV imread函数读取图像__实例详解 本文目录&#xff1a; 零、时光宝盒 一、imread函数定义 二、imread函数支持的文件格式 三、imread函数flags参数详解 &#xff08;3.1&#xff09;、Flags-1时&#xff0c;样返回加载的图像&#xff08;使用alpha通道&#xff0c;否…...

GPSd定时检测保活TCP GPS源

为了在 TCP GPS 源丢失连接时自动重新连接&#xff0c;可以编写一个监控脚本&#xff0c;定期检查 gpspipe 输出中的 TCP 源数据是否存在。如果检测到丢失&#xff0c;则使用 gpsdctl 或直接命令重新添加 TCP 源。 1、工具 检查并安装必要工具&#xff0c;本例需要使用 gpspi…...

得物App亮相第七届进博会,科技赋能打造消费新热点

在2024年11月5日至11月10日举办的第七届进博会舞台上&#xff0c;上海交易团虹口分团表现亮眼&#xff0c;其中得物作为来自虹口品质电商的践行者&#xff0c;备受众多参观者关注。 上海得物信息集团有限公司自2015年于上海虹口创立以来&#xff0c;始终坚守“满足年轻人对美好…...

单片机内存管理剖析

一、概述 在单片机系统中&#xff0c;内存资源通常是有限的&#xff0c;因此高效的内存管理至关重要。合理地分配和使用内存可以提高系统的性能和稳定性&#xff0c;避免内存泄漏和碎片化问题。单片机的内存主要包括程序存储器&#xff08;如 Flash&#xff09;和数据存储器&a…...

用Python绘制一只懒羊羊

目录 一、准备工作 二、Turtle库简介 三、绘制懒羊羊的步骤 1. 导入Turtle库并设置画布 2. 绘制头部 3. 绘制眼睛 4. 绘制嘴巴 5. 绘制身体 6. 绘制四肢 7. 完成绘制 五、运行代码与结果展示 六、总结 在这个趣味盎然的技术实践中,我们将使用Python和Turtle图形…...

Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型

大语言模型是一种由包含数百亿甚至更多参数的深度神经网络构建的语言模型&#xff0c;通常使用自监督学习方法通过大量无标签文本进行训练&#xff0c;是深度学习之后的又一大人工智能技术革命。 大语言模型的发展主要经历了基础模型阶段(2018 年到2021年)、能力探索阶段(2019年…...

神经网络梯度爆炸的原因及解决方案

在深度学习中&#xff0c;梯度爆炸&#xff08;gradient exploding&#xff09;是一种常见的训练问题&#xff0c;尤其是在深层神经网络中。梯度爆炸指的是在反向传播过程中&#xff0c;梯度值呈指数级增长&#xff0c;导致网络权重的大幅更新&#xff0c;从而使得网络变得不稳…...

WPS不登录无法使用基本功能的解决方案

前言 WPS不登录无法使用基本功能的原因通常是为了同步数据、提供更多高级功能或满足软件授权要求。‌然而&#xff0c;一些用户可能出于隐私或便捷性的考虑&#xff0c;不愿意登录账号。在这种情况下&#xff0c;WPS可能会限制未登录用户的使用权限&#xff0c;导致工具栏变灰…...

蓝桥杯lesson3---string的使用

&#x1f308;个人主页&#xff1a;羽晨同学 &#x1f4ab;个人格言:“成为自己未来的主人~” string的概念 string字符串是一种更加高级的封装&#xff0c;string字符串中包含了大量的方法&#xff0c;这些方法使得字符串的操作变得更加简单&#xff0c;string的使用&…...

Java设计模式 三 工厂方法模式 (Factory Method Pattern)

工厂方法模式 (Factory Method Pattern) 是一种常见的创建型设计模式&#xff0c;旨在通过定义一个接口来创建对象&#xff0c;而将实例化对象的具体类延迟到子类中。工厂方法模式允许客户端通过工厂方法来创建对象&#xff0c;而不需要直接调用构造函数&#xff0c;这样可以减…...

日志收集Day005

1.filebeat的input类型之filestream实战案例: 在7.16版本中已经弃用log类型,之后需要使用filebeat,与log不同&#xff0c;filebeat的message无需设置就是顶级字段 1.1简单使用&#xff1a; filebeat.inputs: - type: filestreamenabled: truepaths:- /tmp/myfilestream01.lo…...

java开发,IDEA转战VSCODE配置(mac)

一、基本java开发环境配置 前提&#xff1a;已经安装了jdk、maven、vscode&#xff0c;且配置了环境变量 1、安装java相关的插件 2、安装spring相关的插件 3、vscode配置maven环境 打开 VsCode -> 首选项 -> 设置&#xff0c;也可以在setting.json文件中直接编辑&…...

Effective C++读书笔记——item23(用非成员,非友元函数取代成员函数)

一、主要观点&#xff1a; 在某些情况下&#xff0c;使用 non-member、non-friend 函数来替换 member 函数可以增强封装性和可扩展性&#xff0c;提供更好的软件设计。 二、详细解释&#xff1a; 封装性&#xff1a; 类成员函数的封装性考量&#xff1a;成员函数可以访问类的…...

(3)STM32 USB设备开发-USB存储设备

例程&#xff1a;STM32USBdevice: 基于STM32的USB设备例子程序 - Gitee.com 本篇为使用芯片内部flash作为USB存储设备的例程&#xff0c;没有知识&#xff0c;全是实操&#xff0c;按照步骤就能获得一个STM32的U盘。本例子是在野火F103MINI开发板上验证的&#xff0c;如果代码…...

考研408笔记之数据结构(五)——图

数据结构&#xff08;五&#xff09;——图 1. 图的基本概念 1.1 图的定义 1.2 有向图和无向图 在有向图中&#xff0c;使用圆括号表示一条边&#xff0c;圆括号里元素位置互换没有影响。 在无向图中&#xff0c;使用尖括号表示一条边&#xff0c;尖括号里元素位置互换则表示…...

【博客之星】年度总结:在云影与墨香中探寻成长的足迹

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、年度回顾 1、创作历程 2、个人成长 3、个人生活与博客事业 二、技术总结 1、赛道选择 2、技术工具 3、实战项目 三、前景与展望 1、云原生未来…...

springboot 调用 c++生成的so库文件

一、创建c文件 SoTest.h #pragma once class SoTest {int Add(int a,int b); };SoTest.cpp #include "SoTest.h"int SoTest::Add(int a, int b) {return a b; }二、创建so文件 /home/ubuntu/projects/SoTest/bin/x64/Debug/libSoTest.so 三、java代码 Maven依…...