【通俗理解】隐变量的变分分布探索——从公式到应用
【通俗理解】隐变量的变分分布探索——从公式到应用
关键词提炼
#隐变量 #变分分布 #概率模型 #公式推导 #期望最大化 #机器学习 #变分贝叶斯 #隐马尔可夫模型
第一节:隐变量的变分分布的类比与核心概念【尽可能通俗】
隐变量的变分分布就像是一场“捉迷藏”游戏,在这场游戏中,我们试图通过观察到的线索(即观测数据)来推测那些隐藏起来的小伙伴(即隐变量)的位置和状态。
而变分分布,就是我们在这场游戏中,根据已有线索和假设,对隐变量可能状态的猜测和描述。
第二节:隐变量的变分分布的核心概念与应用
2.1 核心概念
核心概念 | 定义 | 比喻或解释 |
---|---|---|
隐变量Z | 在概率模型中,无法直接观测到的变量,但影响观测数据X的分布。 | 像是藏在盒子里的神秘礼物,我们看不到它,但能感受到它的存在。 |
变分分布q(Z) | 对隐变量Z的分布进行的一种估计或猜测,用于近似真实的后验分布p(Z|X)。 | 像是我们根据线索,对隐变量位置的一种猜测和描述。 |
期望最大化(EM) | 一种迭代算法,用于在存在隐变量的情况下,估计模型参数。 | 像是我们通过不断调整猜测,来逐渐接近隐变量的真实状态。 |
2.2 优势与劣势
方面 | 描述 |
---|---|
优势 | 能够处理含有隐变量的复杂概率模型,提供对隐变量分布的估计,进而用于模型推断和预测。 |
劣势 | 变分分布的准确性依赖于模型的假设和观测数据的充分性,可能存在估计偏差。 |
2.3 与机器学习的类比
隐变量的变分分布在机器学习中扮演着“侦探”的角色,它通过分析观测数据中的线索,来推测那些隐藏在背后的变量和状态,为模型的推断和预测提供有力支持。
第三节:公式探索与推演运算【重点在推导】
3.1 基本公式
在变分贝叶斯方法中,我们常用KL散度来衡量变分分布q(Z)与真实后验分布p(Z|X)之间的差异,并试图最小化这个差异:
KL ( q ( Z ) ∥ p ( Z ∣ X ) ) = E q ( Z ) [ log q ( Z ) − log p ( Z ∣ X ) ] \text{KL}(q(Z) \| p(Z|X)) = \mathbb{E}_{q(Z)}[\log q(Z) - \log p(Z|X)] KL(q(Z)∥p(Z∣X))=Eq(Z)[logq(Z)−logp(Z∣X)]
由于p(Z|X)难以直接计算,我们通常通过最大化证据下界(ELBO)来间接优化KL散度:
ELBO = E q ( Z ) [ log p ( X , Z ) − log q ( Z ) ] \text{ELBO} = \mathbb{E}_{q(Z)}[\log p(X, Z) - \log q(Z)] ELBO=Eq(Z)[logp(X,Z)−logq(Z)]
3.2 具体实例与推演
考虑一个简单的隐马尔可夫模型,其中隐变量Z表示状态序列,观测数据X表示对应的观测序列。我们可以使用变分贝叶斯方法来估计隐变量的分布。
假设我们有以下公式:
- 观测数据的似然函数: p ( X ∣ Z ) p(X|Z) p(X∣Z)
- 隐变量的先验分布: p ( Z ) p(Z) p(Z)
- 变分分布: q ( Z ) q(Z) q(Z)(通常选择为易于处理的分布,如高斯分布)
我们的目标是最大化ELBO:
ELBO = E q ( Z ) [ log p ( X , Z ) − log q ( Z ) ] \text{ELBO} = \mathbb{E}_{q(Z)}[\log p(X, Z) - \log q(Z)] ELBO=Eq(Z)[logp(X,Z)−logq(Z)]
通过展开和化简,我们可以得到具体的优化目标,并通过梯度上升等算法来求解。
第四节:相似公式比对【重点在差异】
公式/模型 | 共同点 | 不同点 |
---|---|---|
期望最大化(EM) | 都用于处理含有隐变量的模型参数估计。 | EM算法通过迭代求解期望步和最大化步来优化参数,而变分贝叶斯方法则通过优化变分分布来近似后验分布。 |
变分自编码器(VAE) | 都涉及到了变分分布的概念。 | VAE是一种生成模型,用于数据的生成和重构,而变分贝叶斯方法更侧重于模型推断和隐变量分布的估计。 |
第五节:核心代码与可视化【全英文的代码,标签label尤其需要是英文的!】
以下是一个使用变分贝叶斯方法进行隐变量估计的简化示例代码(假设已定义好相关函数和模型):
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.optimize import minimize# Define the log joint probability log p(X, Z)
def log_joint_probability(Z, X, model_params):# ... (implementation details)return log_p_XZ# Define the log variational distribution log q(Z)
def log_q(Z, variational_params):# ... (implementation details)return log_q_Z# Define the Evidence Lower Bound (ELBO) to maximize
def elbo(variational_params, X, model_params):# Sample from the variational distributionZ_samples = np.random.normal(loc=variational_params['mu'], scale=np.sqrt(variational_params['sigma']), size=(num_samples,))# Calculate the ELBOlog_p_XZ_samples = np.array([log_joint_probability(z, X, model_params) for z in Z_samples])log_q_Z_samples = np.array([log_q(z, variational_params) for z in Z_samples])elbo_value = np.mean(log_p_XZ_samples - log_q_Z_samples)return -elbo_value # We need to minimize the negative ELBO# Initialize variational parameters
variational_params = {'mu': 0.0, 'sigma': 1.0}# Optimize the variational parameters to maximize the ELBO
result = minimize(elbo, variational_params, args=(X, model_params), method='L-BFGS-B')# Extract optimized parameters
optimized_mu = result.x[0]
optimized_sigma = np.exp(result.x[1]) # Ensure sigma is positive# Visualize the results
sns.set_theme(style="whitegrid")
plt.hist(Z_samples, bins=30, density=True, alpha=0.6, color='g', label='Variational Distribution q(Z)')
plt.axvline(optimized_mu, color='r', linestyle='dashed', linewidth=2, label=f'Optimized mu: {optimized_mu:.2f}')
plt.xlabel('Hidden Variable Z')
plt.ylabel('Density')
plt.title('Variational Distribution of Hidden Variable Z')
plt.legend()
plt.show()print(f"Optimized variational parameters: mu = {optimized_mu:.2f}, sigma = {optimized_sigma:.2f}")
输出内容 | 描述 |
---|---|
变分分布的直方图 | 显示了优化后的变分分布q(Z)的形状。 |
优化后的变分参数 | 提供了变分分布q(Z)的均值和标准差。 |
图表标题、x轴标签、y轴标签 | 提供了图表的基本信息和说明。 |
参考文献
- Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859-877. [【影响因子=4.0,统计学领域权威期刊】]内容概述:该论文对变分推断方法进行了全面回顾,介绍了其在统计学中的应用和优势,为理解和使用变分分布提供了理论基础。
- Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. In International Conference on Learning Representations. [【会议论文,机器学习领域重要会议】]内容概述:该论文提出了变分自编码器(VAE)模型,通过变分推断方法来学习数据的生成过程,为变分分布在生成模型中的应用提供了重要思路。
相关文章:
【通俗理解】隐变量的变分分布探索——从公式到应用
【通俗理解】隐变量的变分分布探索——从公式到应用 关键词提炼 #隐变量 #变分分布 #概率模型 #公式推导 #期望最大化 #机器学习 #变分贝叶斯 #隐马尔可夫模型 第一节:隐变量的变分分布的类比与核心概念【尽可能通俗】 隐变量的变分分布就像是一场“捉迷藏”游戏…...
Vivado程序固化到Flash
在上板调试FPGA时,通常使用JTAG接口下载程序到FPGA芯片中,FPGA本身是基于RAM工艺的器件,因此掉电后会丢失芯片内的程序,需要重新烧写程序。但是当程序需要投入使用时不能每一次都使用JTAG接口下载程序,一般FPGA的外围会…...
铲屎官进,2024年宠物空气净化器十大排行,看看哪款吸毛最佳?
不知道最近换毛季,铲屎官们还承受的住吗?我家猫咪每天都在表演“天女散花”,家里没有一块干净的地方,空气中也都是堆积的浮毛,幸好有宠物空气净化器这种清理好物。宠物空气净化器针对宠物浮毛设计,可以有效…...
SpringBoot 项目中使用 spring-boot-starter-amqp 依赖实现 RabbitMQ
文章目录 前言1、application.yml2、RabbitMqConfig3、MqMessage4、MqMessageItem5、DirectMode6、StateConsumer:消费者7、InfoConsumer:消费者 前言 本文是工作之余的随手记,记录在工作期间使用 RabbitMQ 的笔记。 1、application.yml 使…...
嵌入式硬件实战提升篇(二)PCB高速板设计 FPGA核心板带DDR3 PCB设计DDR全面解析
引言:设计一款高速板,供读者学习,FPGA核心板,带一颗DDR3内存,FPGA型号:XC6SLX16-2FTG256C。 随着嵌入式硬件技术的快速发展,高速板设计逐渐成为嵌入式系统设计中的核心技术之一。高速板的设计要…...
2044:【例5.12】回文字串
【题目描述】 输入一串字符,字符个数不超过100,且以“.”结束。 判断它们是否构成回文。 【输入】 一行字符串。 【输出】 是否为回文串。是输出“Yes”,否输出“No。” 【输入样例】 abccb 【输出样例】 No 代码实现 #include <stdio.h> /*2044&#x…...
Sui 链游戏开发实战:用 Move 写一个链上剪刀石头布游戏!
系列文章目录 Task1:hello move🚪 Task2:move coin🚪 Task3:move nft🚪 Task4:move game🚪 更多精彩内容,敬请期待!✌️ 文章目录 系列文章目录前言什么是 …...
Prometheus告警带图完美解决方案
需求背景 告警分析处理流程 通常我们收到 Prometheus 告警事件通知后,往往都需要登录 Alertmanager 页面查看当前激活的告警,如果需要分析告警历史数据信息,还需要登录 Prometheus 页面的在 Alerts 中查询告警 promQL 表达式,然…...
深度学习模型:循环神经网络(RNN)
一、引言 在深度学习的浩瀚海洋里,循环神经网络(RNN)宛如一颗独特的明珠,专门用于剖析序列数据,如文本、语音、时间序列等。无论是预测股票走势,还是理解自然语言,RNN 都发挥着举足轻重的作用。…...
分布式在线评测系统
OnlineJudge 前言所用技术开发环境 1. 需求分析2. 项目宏观结构3. compile_server服务设计3.1 compiler服务设计3.2 runner服务设计3.3 compile_run3.4 compile_server.cpp 4. oj_server服务设计4.1 model设计4.2 view设计4.3 control设计4.3.1 获取题目列表功能4.3.2 获取单个…...
Unity中动态生成贴图并保存成png图片实现
实现原理: 要生成长x宽y的贴图,就是生成x*y个像素填充到贴图中,如下图: 如果要改变局部颜色,就是从x1到x2(x1<x2),y1到y2(y1<y2)这个范围做处理, 或者要想做圆形就是计算距某个点(x1,y1&…...
鸿蒙多线程开发——sendable共享容器
1、异步锁机制 在介绍共享容器之前,先介绍异步锁机制。 为了解决多线程并发任务间的数据竞争问题,ArkTS引入了异步锁能力。异步锁可能会被类对象持有,因此为了更方便地在并发实例间获取同一个异步锁对象,AsyncLock对象支持跨线程…...
五天SpringCloud计划——DAY1之mybatis-plus的使用
一、引言 咱也不知道为啥SpringCloud课程会先教mybatis-plus的使用,但是教都教了,就学了吧,学完之后觉得mybatis-plus中的一些方法还是很好用了,本文作为我学习mybatis-plus的总结提升,希望大家看完之后也可以熟悉myba…...
Vue.js基础——贼简单易懂!!(响应式 ref 和 reactive、v-on、v-show 和 v-if、v-for、v-bind)
Vue.js是一个渐进式JavaScript框架,用于构建用户界面。它专门设计用于Web应用程序,并专注于视图层。Vue允许开发人员创建可重用的组件,并轻松管理状态和数据绑定。它还提供了一个虚拟DOM系统,用于高效地渲染和重新渲染组件。Vue以…...
警钟长鸣,防微杜渐,遨游防爆手机如何护航安全生产?
近年来,携非防爆手机进入危险作业区引发爆炸的新闻屡见报端。2019年山西某化工公司火灾,2018年延安某煤业瓦斯爆炸,均因工人未用防爆手机产生静电打火引发。涉爆行业领域企业量大面广,相当一部分企业作业场所人员密集,…...
中国科学院大学研究生学术英语读写教程 Unit7 Materials Science TextA 原文和翻译
中国科学院大学研究生学术英语读写教程 Unit7 Materials Science TextA 原文和翻译 Why Is the Story of Materials Really the Story of Civilisation? 为什么材料的故事实际上就是文明的故事? Mark Miodownik 1 Everything is made of something. Take away co…...
win10中使用ffmpeg和MediaMTX 推流rtsp视频
在win10上测试下ffmpeg推流rtsp视频,需要同时用到流媒体服务器MediaMTX 。ffmpeg推流到流媒体服务器MediaMTX ,其他客户端从流媒体服务器拉流。 步骤如下: 1 下载MediaMTX github: Release v1.9.3 bluenviron/mediamtx GitHub…...
代码美学2:MATLAB制作渐变色
效果: %代码美学:MATLAB制作渐变色 % 创建一个10x10的矩阵来表示热力图的数据 data reshape(1:100, [10, 10]);% 创建热力图 figure; imagesc(data);% 设置颜色映射为“cool” colormap(cool);% 在热力图上添加边框 axis on; grid on;% 设置热力图的颜色…...
gitlab:使用脚本批量下载项目,实现全项目检索
目的 当需要知道gitlab中所有项目是否存在某段代码时,gitlab免费版只提供了当个项目内的检索,当项目过多时一个个查太过繁琐。下面通过 GitLab API 将指定 Group 下的所有项目克隆到本地。此脚本会自动获取项目列表并逐一克隆它们,再在本地进…...
大型语言模型LLM - Finetuning vs Prompting
资料来自台湾大学李宏毅教授机器学课程ML 2023 Spring,如有侵权请通知下架 台大机器学课程ML 2023 Springhttps://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.php2023/3/10 课程 機器如何生成文句 内容概要 主要探讨了大型语言模型的两种不同期待及其导致的两类…...
【Python中while循环】
一、深拷贝、浅拷贝 1、需求 1)拷贝原列表产生一个新列表 2)想让两个列表完全独立开(针对改操作,读的操作不改变) 要满足上述的条件,只能使用深拷贝 2、如何拷贝列表 1)直接赋值 # 定义一个…...
Selenium 包介绍
诸神缄默不语-个人CSDN博文目录 Selenium 是一个强大的工具,主要用于自动化 Web 浏览器的操作。它支持多种编程语言(如 Python、Java、C# 等)和主流浏览器(如 Chrome、Firefox、Safari、Edge 等),广泛应用…...
量化交易系统开发-实时行情自动化交易-4.4.做市策略
19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。 接下来继续说说做市策略原理。 做市策…...
C++设计模式(单例模式)
一、介绍 1.动机 在软件系统中,经常有这样一些特殊的类,必须保证它们在系统中只存在一个实例,才能确保它们的逻辑正确性、以及良好的效率。 如何绕过常规的构造器,提供一种机制来保证一个类只有一个实例? 这应该是类设计者的…...
图的深度优先搜索算法DFS
深度优先搜索(DFS)就是一种寻找图中各个顶点的方法。想象一下,如果你在一个迷宫里探险,你会怎么做呢?你可能会选择一直走到尽头,直到找不到路为止,然后再回过头来试试其他的路,这就是…...
自动泊车“哐哐撞大墙”,小米SU7智驾功能bug缠身?
文/王俣祺 导语:小米SU7,自带热度与科技光环的“流量神车”,近日却以一种极为“狼狈”的方式闯入大众视野。多达70余辆小米SU7陷入“泊车魔咒”,瞬间在网络上炸开了锅。从“科技控”到“惹祸精”的背后,究竟藏着怎样的…...
Linux宝塔部署wordpress网站更换服务器IP后无法访问管理后台和打开网站页面显示错乱
一、背景: wordpress网站搬家,更换服务器IP后,如果没有域名时,使用服务器IP地址无法访问管理后台和打开网站页面显示错乱。 二、解决方法如下: 1.wordpress搬家后,在新服务器上,新建站点时&am…...
Http文件上传
方式一:HttpClient public static String uploadFile(String url, Map<String, FileWrapper> fileParam, Map<String,String> otherParam){long start System.currentTimeMillis();log.info("uploadFile url: {}.",url);HttpClient client …...
哈希C++
文章目录 一.哈希的概念1.直接定址法2.负载因子 二.哈希函数1.除法散列法 / 除留余数法2.乘法散列法3.全域散列法(了解) 三.处理哈希冲突哈希冲突:1.开放定址法(1)线性探测:(2)二次探…...
C++11(中)
C11(中) 1.可变参数模板1.1.使用场景 2.lambda表达式(重要)2.1.使用说明2.2.函数对象与lambda表达式 3.线程库3.1.thread3.2.atomic原子库操作3.3.mutex3.3.1.mutex的种类3.3.2.lock_guard3.3.3.unique_lock 🌟&#x…...
vim 如何高亮/取消高亮
高亮 :在ESC模式下使用 shift # 取消高亮:在ESC模式下输入英文输入 :nohl (no highlight)...
C#中面试的常见问题008
1.内存泄露 内存泄露的原因: 未释放动态分配的内存:在使用malloc、new等动态内存分配函数后,未能正确释放内存。引用计数错误:在引用计数管理内存的语言中,增加引用计数但未相应减少,导致内存无法释放。循…...
【系统架构设计师】真题论文: 论数据访问层设计技术及其应用(包括解题思路和素材)
更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 真题题目(2016年 试题3)解题思路论文素材参考(1)数据访问层设计 JDBC 技术(2)ORM 框架技术 - Hibernate(3)ORM 框架技术 - MyBatis(4)数据访问层设计模式 - DAO 模式(5)数据访问层设计模式 - Repositor…...
力扣整理版九:贪心算法(待整理)
局部最优 全局最优 局部最优可以推出全局最优 并且想不出反例 ----------------------------- (1) 455 分发饼干 (2) 1005 k次取反后最大化的数组和 (3) 860 柠檬水找零 (2) 376 摆动序列 (3) 122 买卖股票的最佳时机2 (4) 135 分发糖果 (4) 55 跳跃游戏 (5) 45 跳…...
香橙派--安装RKMPP、x264、libdrm、FFmpeg(支持rkmpp)以及opencv(支持带rkmpp的ffmpeg)(适用于RK3588平台)
1. 安装RKMPP git clone https://github.com/rockchip-linux/mppcd mpp/build/linux/aarch64./make-Makefiles.bashmake -j8sudo make installRKMPP:用于编解码测试,支持RK3588平台。 2. 安装x264 git clone https://code.videolan.org/videolan/x264…...
计算机毕业设计Python+大模型美食推荐系统 美食可视化 美食数据分析大屏 美食爬虫 美团爬虫 机器学习 大数据毕业设计 Django Vue.js
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
1138:将字符串中的小写字母转换成大写字母
【题目描述】 给定一个字符串,将其中所有的小写字母转换成大写字母。 【输入】 输入一行,包含一个字符串(长度不超过100,可能包含空格)。 【输出】 输出转换后的字符串。 【输入样例】 helloworld123Ha 【输出样例】…...
Wireshark抓取HTTPS流量技巧
一、工具准备 首先安装wireshark工具,官方链接:Wireshark Go Deep 二、环境变量配置 TLS 加密的核心是会话密钥。这些密钥由客户端和服务器协商生成,用于对通信流量进行对称加密。如果能通过 SSL/TLS 日志文件(例如包含密钥的…...
Unity UGUI原理剖析
UI最重要的两部分 UI是如何渲染出来的点击事件如何触发何时发生UI重绘 1:UI如何渲染出来的 UI渲染一定是有顶点的,没有顶点就没法确定贴图的采样,UGUI的顶点在一张Mesh上创建,经过渲染管线UI就渲染到屏幕上了,UI的渲染…...
实现Excel文件和其他文件导出为压缩包,并导入
导出 后端: PostMapping("/exportExcelData")public void exportExcelData(HttpServletRequest request, HttpServletResponse response, RequestBody ResData resData) throws IOException {List<Long> menuIds resData.getMenuIds();List<Co…...
Linux:基础开发工具
目录 软件包管理器yum 什么是软件包? 查看软件包 安装软件 卸载软件 vim vim的基本操作 gcc/g使用 预处理 编译 汇编 连接 make/Makefile .PHONY伪目标 定义使用变量 版本控制器Git 安装git git的使用 git add git commit git push git pull …...
【mac】终端左边太长处理,自定义显示名称(terminal路径显示特别长)
1、打开终端 2、步骤 (1)修改~/.zshrc文件 nano ~/.zshrc(2)添加或修改PS1,我是自定义了名字为“macminiPro” export PS1"macminiPro$ "(3)使用 nano: Ctrl o (字母…...
嵌入式硬件设计:从概念到实现的全流程
嵌入式硬件设计是现代电子技术中一个至关重要的领域,涉及从硬件架构设计到硬件调试的各个方面。它为我们日常生活中的各类智能设备、家电、工业控制系统等提供了强大的支持。本文将介绍嵌入式硬件设计的基本流程、关键技术、常用工具以及常见的挑战和解决方案&#…...
【Nginx】核心概念与安装配置解释
文章目录 1. 概述2. 核心概念2.1.Http服务器2.2.反向代理2.3. 负载均衡 3. 安装与配置3.1.安装3.2.配置文件解释3.2.1.全局配置块3.2.2.HTTP 配置块3.2.3.Server 块3.2.4.Location 块3.2.5.upstream3.2.6. mine.type文件 3.3.多虚拟主机配置 4. 总结 1. 概述 Nginx是我们常用的…...
数据库-MySQL-MybatisPlus实战
文章目录 前言一、整合mybatis-plus二、CRUD操作1、insert操作2、update操作3、delete操作 三、条件构造器(Wrapper)QueryWrapperUpdateWrapperLambdaQueryWrapperLambdaUpdateWrapper 四、分页查询五、自定义主键生成器六、总结 前言 mybatis相信都不陌生,目前互联…...
Vue2学习记录
前言 这篇笔记,是根据B站尚硅谷的Vue2网课学习整理的,用来学习的 如果有错误,还请大佬指正 Vue核心 Vue简介 Vue (发音为 /vjuː/,类似 view) 是一款用于构建用户界面的 JavaScript 框架。 它基于标准 HTML、CSS 和 JavaScr…...
thinkphp中对请求封装
请求的封装 //调用 $res Http::post($this->baseUrl . $url,$params,[CURLOPT_HTTPHEADER > [Content-Type: application/json,Content-Length: . strlen($params),],]);<?php namespace fast; /*** 字符串类*/ class Http {/*** 发送一个POST请求*/public static …...
网络安全中的数据科学如何重新定义安全实践?
组织每天处理大量数据,这些数据由各个团队和部门管理。这使得全面了解潜在威胁变得非常困难,常常导致疏忽。以前,公司依靠 FUD 方法(恐惧、不确定性和怀疑)来识别潜在攻击。然而,将数据科学集成到网络安全中…...
通过指令导入/导出vscode扩展插件
导出扩展: 打开VSCode终端: 在VSCode中,你可以通过菜单栏的“终端”选项打开终端,或者使用快捷键Ctrl (反引号,通常在键盘左上角)。运行导出命令: 在终端中,输入以下命…...
vscode添加环境变量(mujoco)
文章目录 前言一、创建.env文件二、编写setting.jason 前言 之前一直用pycharm,最近改用cursor了,在pycharm中设置环境变量修改运行配置就行了,vscode要麻烦一些,记录一下。 一、创建.env文件 以mujoco环境变量为例,…...