2024AAAI SCTNet论文阅读笔记
文章目录
- SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation
- 摘要
- 背景
- 创新点
- 方法
- Conv-Former Block
- 卷积注意力机制
- 前馈网络FFN
- 语义信息对齐模块
- 主干特征对齐
- 共享解码头对齐
- 总体架构
- backbone
- 解码器头
- 对齐损失
- 实验
- SOTA效果对比
- Cityscapes可视化对比
- 结论
- 补充
SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation
论文地址: https://ojs.aaai.org/index.php/AAAI/article/view/28457
代码地址: https://github.com/xzz777/SCTNet
摘要
- 最近的实时语义分割方法通常采用一个额外的语义分支来追求丰富的远程上下文。
- 然而,额外的分支会带来额外的计算开销,并减慢推理速度
- 为了解决这种困境,我们提出了SCTNet——一个用于实时语义分割的具有Transformer语义信息的单分支CNN
- SCTNet具有推理解放语义分支的丰富语义表示,同时保持轻量级单分支CNN的高效率
- 考虑到它的强大的语义能力,SCTNet利用一个transformer作为只用来训练的语义分支
- 借助所提出的transformer类CNN模块CFBlock和语义信息对齐模块,SCTNet可以在训练中从transformer分支中捕获丰富的语义信息。
- 推理阶段,只有单个CNN分支需要部署。
- 对Cityscapes、ADE20K和COCO-Stuff-10K上进行实验,结果表示我们的方法达到了新的SOTA性能。
背景
- 最近的语义分割方法追求丰富的长程上下文信息。Transformer的自注意力机制被证明具有对长程上下文建模的显著能力。尽管这些工作得到了显著改进,但也会导致高昂的计算成本。基于自注意力的工作在图像分辨率方面甚至具有平方计算复杂度,这会显著增加处理高分辨率图像的延迟。
- 最近许多实时工作采用双边架构来快速提取高质量的语义信息。BiSeNet提出了一种双边网络,用于在早期阶段分离详细的空间特征和丰富的上下文信息,并并行处理它们,如下图a所示。BiSeNetV2和STDC做了进一步努力,以增强提取丰富的长程上下文的能力或降低空间分支的计算成本。为了平衡推理速度和精度,DDRNet、RTFormer和SeaFormer采用一种特征共享架构,该架构在深层阶段划分空间和上下文特征,如下图b所示。但是这些方法在两个分支之间引入了密集融合模块,以增强提取特征的语义信息。总之,所以的双边方法都由于额外的分支和多个融合模块而导致推理速度有限和计算成本高。
创新点
- 为了解决上述困境,提出了一个用于实时分割的单分支CNN,其中包含Transformer语义信息。它可以有效地提取语义信息,而不会因为双边网络而繁重的计算。
- SCTNet从仅用于训练的Transformer语义分支学习长程上下文信息到CNN分支。
- 为了减轻Transformer和CNN之间的语义差距,设计了一个类似Transformer的CNN模块,称为CFBklock。在对齐之前使用共享解码头。
- 通过在训练中对齐的语义信息,单分支CNN可以联合编码语义信息和空间细节。
- SCTNet可以保持轻量级单分支CNN架构在推理中的高效的同时,对齐来自Transformer架构的大感受野的语义表示。整体架构如上图c表示。主图如下图所示
方法
Conv-Former Block
CNN和Transformer提取的特征表示存在显著差异。直接对齐CNN和Transformer之间的特征会使学习过程变得困难,导致性能提升有限。为了让CNN分支能够轻松学习到从Transformer分支中提取到的 高质量的语义信息,设计了Conv-Former模块。
Cov-Former模块尽可能的模拟Transformer模块的结构,以便更好地学习Transformer分支的语义信息。同时,Conv-Former仅使用高效地卷积运算来实现注意力函数。
Conv-Former模块的结构类似于典型的Transformer编码器结构,如下图左侧所示。其过程为:
f = N o r m ( x + C o n v A t t e n t i o n ( x ) ) y = N o r m ( f + F F N ( f ) ) \begin{aligned} f&=Norm(x+ConvAttention(x))\\ y&=Norm(f+FFN(f)) \end{aligned} fy=Norm(x+ConvAttention(x))=Norm(f+FFN(f))
其中 N o r m Norm Norm表示batch Normalization。
卷积注意力机制
用于实时分割的注意力机制应具有低延迟和强大的语义提取能力。GFA是一个潜在的候选方案,提出的卷积注意力机制源于GFA。
GFA和提出的卷积注意力机制主要有两个区别:
- 将GFA的矩阵乘法替换为像素级卷积运算。点卷积等于像素到像素的乘法,但不涉及特征扁平化和重塑操作。这些操作不利于保持固有的空间结构,并会增加额外的推理延迟。此外,卷积提高了一种更灵活的方式来扩展外部参数。
- 由于Transformer和CNN之间的语义差距,仅仅计算几个可学习向量与每个像素之间的相似性,然后根据相似图和可学习向量增强像素,不足以捕捉丰富的上下文信息。为了更好地对齐Transformer的语义信息,将可学习向量扩展为可学习核。一方面,这将像素与可学习向量之间的相似度计算转换为像素块与可学习核之间的相似性计算;另一方面,使用可学习核的卷积操作在某种程度上保留了更多局部空间信息。
卷积注意力的操作可以总结如下:
X = θ ( X ⊗ K ) ⊗ K T , X=\theta(X\otimes K)\otimes K^T, X=θ(X⊗K)⊗KT,
其中 X ∈ R C × H × W X\in\mathbb{R}^{C\times H\times W} X∈RC×H×W, K ∈ R C × N × k × k K\in\mathbb{R}^{C\times N\times k\times k} K∈RC×N×k×k, K T ∈ R N × C × k × k K^T\in\mathbb{R}^{N\times C\times k\times k} KT∈RN×C×k×k分别表示输入图像和可学习的query和key。 N N N表示可学习参数的数量, k k k表示可学习参数的核大小。 θ \theta θ表示分组双重归一化,它在 H × W H\times W H×W维度上应用softmax, 并在 N N N维度上应用分组 L 2 L_2 L2归一化, ⊗ \otimes ⊗表示卷积操作。
考虑到效率, 使用条带卷积而不是标准卷积来实现卷积注意力。具体来说,利用一个 1 × k 1\times k 1×k卷积核一个 k × 1 k\times1 k×1卷积来近似一个 k × k k\times k k×k卷积层。上图右侧为卷积注意力的实现细节。
前馈网络FFN
经典的FFN在提供位置编码和嵌入通道方面起着至关重要的作用。最近的Transformer模型中的FFN由扩展点卷积、深度方向 3 × 3 3\times 3 3×3卷积核压缩点卷积组成。与经典的FFN不同,本文的FFN由两个标准 3 × 3 3\times 3 3×3卷积层组成。这样可以更高效,并提供更大的感受野。
语义信息对齐模块
提出了一个简单而有效地对齐模块来进行训练过程中的特征学习。它可以分为主干特征对齐和共享解码器头对齐。
主干特征对齐
由于Conv-Former模块类似Transformer的架构,对齐损失可以轻松地将Conv-Former模块的特征与Transformer的特征对齐。简而言之,主干特征对齐首先对来自Transformer和CNN分支的特征进行下采样或上采样以进行对齐。然后将CNN的特征投影到Transformer的维度。需要统一通道数量以及避免直接对齐。直接对齐会在训练过程中破坏CNN的真实标签监督。最后,将语义对齐损失应用于投影后的特征以对齐语义表示。
共享解码头对齐
Transformer解码器通常使用多个阶段的特征进行复杂解码,而SCTNet解码器仅选择stage2和stage4的特征。考虑到两者之间解码空间的显著差异,直接对齐解码头特征和输出logits只能获得有限的改进。因此,提出共享解码头对齐。具体来说,将单分支CNN的concatenation stage2和stage4特征输入到点卷积中以扩展维度。然后将高维特征通过Transformer解码器。Transformer解码器的新输出特征和logits用于计算与Transformer解码器原始输出的对齐损失。
总体架构
为了获得丰富的语义信息的同时降低计算成本,将流行的两分支架构简化为一个用于推理的快速CNN分支和一个只用于训练的语义对齐的Transformer分支。
backbone
为了提高推理速度,SCTNet采用典型的CNN主干网络。SCTNet起始于一个由两个连续的 3 × 3 3\times3 3×3卷积层组成的stem块。前两个阶段由堆叠的残差块组成,后两个阶段包含提出的类似Transformer的块,称为Conv-Former块(CFBlock)。CFBlock采用多个精心设计的卷积操作来执行与Transformer块类似的远程上下文捕获功能。在2-4阶段的开始应用一个由bacth normal和ReLU激活的步幅卷积组成的convdown层进行下采样。
解码器头
解码头由一个DAPPM和一个分割头组成。为了进一步丰富上下文信息,在第4阶段的输出之后添加了一个DAPPM。然后将输出与阶段2的特征图连接起来。最后,这个输出特征被传递到一个分割头。精确地说,分割头由一个 3 × 3 3\times3 3×3的Conv-BN-ReLU算子后跟一个 1 × 1 1\times1 1×1卷积分类器组成。
对齐损失
为了更好地对齐语义信息, 需要一种关注语义而不是空间信息的对齐损失。在实现中,使用CWD损失作为对齐损失, 它显示出比其他损失函数更好地结果。CWD损失如下:
ϕ ( x c ) = e x p ( x c , i τ ) ∑ i = 1 W ⋅ H e x p ( x c , i τ ) , L c w d = τ 2 C ∑ c = 1 C ∑ i = 1 H ⋅ W ϕ ( x T c , i ) ⋅ log [ ϕ ( x T c , i ) ϕ ( x T c , i ) ] , \begin{aligned} \phi(x_c)&=\frac{exp(\frac{x_{c,i}}{\tau})}{\sum^{W\cdot H}_{i=1}exp(\frac{x_{c,i}}{\tau})},\\ L_{cwd}&=\frac{\tau^2}{C}\sum^C_{c=1}\sum^{H\cdot W}_{i=1}\phi(x^{c,i}_T)\cdot \log\left [\frac{\phi(x^{c,i}_T)}{\phi(x^{c,i}_T)}\right ], \end{aligned} ϕ(xc)Lcwd=∑i=1W⋅Hexp(τxc,i)exp(τxc,i),=Cτ2c=1∑Ci=1∑H⋅Wϕ(xTc,i)⋅log[ϕ(xTc,i)ϕ(xTc,i)],
其中 c = 1 , 2 , … , C c=1,2,\dots,C c=1,2,…,C表示通道索引, i = 1 , 2 , … , H ⋅ W i=1,2,\dots,H\cdot W i=1,2,…,H⋅W表示空间位置, x T x^T xT和 x S x^S xS分别表示Transformer分支和CNN分支的特征图。 ϕ \phi ϕ将特征激活转换为逐通道概率分布,消除了Transformer和CNN紧凑CNN之间的尺度影响。为了最小化 L c w d L_{cwd} Lcwd, 当 ϕ ( x T c , i ) \phi(x^{c,i}_T) ϕ(xTc,i)很大时, ϕ ( x S c , i ) \phi(x^{c,i}_S) ϕ(xSc,i)应该很大。但当 ϕ ( x T c , i ) \phi(x^{c,i}_T) ϕ(xTc,i)很小时, ϕ ( x S c , i ) \phi(x^{c,i}_S) ϕ(xSc,i)的值无关紧要。这迫使CNN学习前景显著性的分布,其中包含语义信息。 τ \tau τ是一个超参数,值越大,概率分布就越平滑。
实验
SOTA效果对比
Cityscapes:
ADE20K:
COCO-Stuff-10k:
Cityscapes可视化对比
结论
在本文中,我们提出了SCTNet,这是一种新颖的单分支架构,它可以在不增加额外推理计算成本的情况下提取高质量的远程上下文。 广泛的实验表明,SCTNet取得了新的最先进的结果。 此外,通过证明SCTNet的效率,我们为双边分支网络中的语义分支提供了一种新的见解,并提供了一种新的方法来提升实时分割社区,这不仅采用了Transformer的结构,而且还利用了它的知识。
补充
- 在ImageNet-1K上进行预训练。遵循swin-transformer在ImageNet-1K上的预训练设置。
相关文章:
2024AAAI SCTNet论文阅读笔记
文章目录 SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation摘要背景创新点方法Conv-Former Block卷积注意力机制前馈网络FFN 语义信息对齐模块主干特征对齐共享解码头对齐 总体架构backbone解码器头 对齐损失 实验SOTA效果对比Cit…...
【Java从入门到放弃 之 final 关键字】
final 关键字 final 关键字final 字段final 函数列表中的参数final 方法final 类 final 关键字 Java中里面有final这个关键字,这个关键字总体上是用来表达” 不能被改变“ 这个意思的。我们使用这个关键字表达不能被改变,有两种使用场景,有三…...
【U8+】用友U8软件中,出入库流水输出excel的时候提示报表输出引擎错误。
【问题现象】 通过天联高级版客户端登录拥有U8后, 将出入库流水输出excel的时候,提示报表输出引擎错误。 进行报表输出时出现错误,错误信息:找不到“fd6eea8b-fb40-4ce4-8ab4-cddbd9462981.htm”。 如果您正试图从最近使用的文件列…...
文本区域提取和分析——Python版本
目录 1. 图像预处理 2. 文本区域提取 3. 文本行分割 4. 文本区域分析 5. 应用举例 总结 文本区域提取和分析是计算机视觉中的重要任务,尤其在光学字符识别(OCR)系统、文档分析、自动化数据录入等应用中有广泛的应用。其目标是从图像中提…...
数据库介绍(不同数据库比较)
文章目录 **一、关系型数据库(RDBMS)****1. MySQL****优点**:**缺点**:**适用场景**: **2. PostgreSQL****优点**:**缺点**:**适用场景**: **3. Oracle Database****优点**ÿ…...
注意力的简单理解,有哪些注意力(Attention)
注意力(Attention) 目录 注意力(Attention)掩码注意力机制自注意力、交叉注意力、掩码注意力的不同点适应场景及举例多头注意分层注意力(Hierarchical Attention)协同注意力(Co - Attention)自注意力(Self - Attention) 简单理解:自注意力就像是一个句子(或序列)内…...
基于Python的投资组合收益率与波动率的数据分析
基于Python的投资组合收益率与波动率的数据分析 摘要:該文通过研究马科维茨的投资组合模型,并将投资组合模型应用到包含6只金融股票的金融行业基金中。首先通过开源的财经接口Tushare获取股票原始数据,接着利用数据分析的黄金组合库…...
《Opencv》图像的旋转
一、使用numpy库实现 np.rot90(img,-1) 后面的参数为-1时事顺时针旋转,为1时是逆时针旋转。 import cv2 import numpy as np img cv2.imread(./images/kele.png) """方法一""" # 顺时针90度 rot_1 np.rot90(img,-1) # 逆时针90度…...
Python 22:注释
1. 定义: 用熟悉的语言对代码进行解释说明。注释不会被执行。 2. 注释分类 单行注释:只能对一行代码进行注释。放在要注释的代码后面,用#进行分隔,中间至少空2个空格,保证代码规范。 print("hello world10"…...
python:利用神经网络技术确定大量离散点中纵坐标可信度的最高集中区间
当我们有许多离散点并想要确定纵坐标在某个区间内的可信度时,我们可以使用神经网络模型来解决这个问题。下面是一个使用Python编写的示例代码,展示了如何使用神经网络来确定大量离散点中纵坐标可信度的最高集中区间。 import numpy as np from sklearn.…...
计算机软件保护条例
(2001年12月20日中华人民共和国国务院令第339号公布 根据2011年1月8日《国务院关于废止和修改部分行政法规的决定》第一次修订 根据2013年1月30日《国务院关于修改〈计算机软件保护条例〉的决定》第二次修订) 第一章 总则 第一条 为了保护计算机软件著作权人的权益&#…...
CM3/4启动流程
CM3/4启动流程 1. 启动模式2. 启动流程 1. 启动模式 复位方式有三种:上电复位,硬件复位和软件复位。 当产生复位,并且离开复位状态后,CM3/4 内核做的第一件事就是读取下列两个 32 位整数的值: 从地址 0x0000 0000 处取…...
gaussdb中怎么查询一个表有多少GB
在 GaussDB 中,你可以通过多种方法查询一个表的大小,包括使用系统视图和内置函数。以下是几种常见的方法: 1. 使用 pg_total_relation_size 函数 pg_total_relation_size 函数返回一个表及其所有索引和 TOAST 数据的总大小。 示例查询 SE…...
2025-01-06 Unity 使用 Tip2 —— Windows、Android、WebGL 打包记录
文章目录 1 Windows2 Android2.1 横版 / 竖版游戏2.2 API 最低版本2.3 目标帧率2.3.1 targetFrameRate2.3.2 vSyncCount2.3.3 Unity 默认设置以及推荐设置2.3.4 Unity 帧率托管 3 WebGL3.1 平台限制3.2 打包报错记录 13.3 打包报错记录 2 最近尝试将写的小游戏打包ÿ…...
OP-TEE环境飞腾密码引擎编程指南
【写在前面】 飞腾开发者平台是基于飞腾自身强大的技术基础和开放能力,聚合行业内优秀资源而打造的。该平台覆盖了操作系统、算法、数据库、安全、平台工具、虚拟化、存储、网络、固件等多个前沿技术领域,包含了应用使能套件、软件仓库、软件支持、软件适…...
解密Navicat密码(Java)
最近从Navicat换到了DBeaver,导出配置文件发现配置文件里的密码都是加密的,看网上的都是给的PHP代码,因为环境问题,就算是在线上运行的PHP代码也会报错,所以就把这段代码改成Java了。 package com.unicdata.system.con…...
apex安装
安装过程复杂曲折,网上说的很多办法,貌似成功了,实际还是没起作用。 先说成功过程,执行下面命令,安装成功(当然,前提是你要先配置好编译环境): (我的环境&a…...
常见的开源网络操作系统
常见的开源网络操作系统有很多,它们通常用于路由器、交换机、网络设备和服务器等场景,具有灵活、可定制、易于扩展的特点。以下是一些常见的开源网络操作系统: OpenWRT 用途:主要用于路由器、无线接入点和网络设备。提供了广泛的定制选项和高级功能,如防火墙配置、VPN 支持…...
2024年6月英语六级CET6听力原文与解析
目录 0 序言 1.Long Conversation(长对话) 1.1 Blender 搅拌机 1.2 村庄的改造变化 2.Passage 2.1 micro robots 微型机器人 2.2 elite sleeper 睡眠精英 3.Lecture 3.1 对自身观念变化的低察觉度及相关研究发现 3.2 美国母亲群体数量变化及母亲节消费趋势分析 3.3 …...
力扣2-回文数
一.题目 给你一个整数 x ,如果 x 是一个回文整数,返回 true ;否则,返回 false 。 回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。 例如,121 是回文&…...
基于springboot的网上商城购物系统
作者:学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等 文末获取“源码数据库万字文档PPT”,支持远程部署调试、运行安装。 目录 项目包含: 开发说明: 系统功能: 项目截图…...
业务日志设计
当一个项目足够大的时候,我们需要将统计系统完全独立出去,那么就无法避免数据采集的问题,我们可以在业务触发处增加log日志来记录当前变化的原始数据,提供统计系统进行采集 设计一个统计系统的日志记录机制时,主要需要…...
梯度下降方法
2.5 梯度下降方法介绍 学习目标 掌握梯度下降法的推导过程知道全梯度下降算法的原理知道随机梯度下降算法的原理知道随机平均梯度下降算法的原理知道小批量梯度下降算法的原理 上一节中给大家介绍了最基本的梯度下降法实现流程,本节我们将进一步介绍梯度下降法的详细…...
javascript
引入方式 JavaScript 程序不能独立运行,它需要被嵌入 HTML 中,然后浏览器才能执行 JavaScript 代码。通过 script 标签将 JavaScript 代码引入到 HTML 中,有两种方式: 内部方式 通过 script 标签包裹 JavaScript 代码 <!DO…...
大语言模型训练所需的最低显存,联邦大语言模型训练的传输优化技术
联邦大语言模型训练的传输优化技术 目录 联邦大语言模型训练的传输优化技术大语言模型训练所需的最低显存大语言模型训练所需的最低显存 基于模型微调、压缩和分布式并行处理的方法,介绍了相关开源模型及技术应用 核心创新点 多维度优化策略:综合运用基于模型微调、模型压缩和…...
二叉树的二叉链表和三叉链表
在二叉树的数据结构中,通常有两种链表存储方式:二叉链表和三叉链表。这里,我们先澄清一下概念,通常我们讨论的是二叉链表,它用于存储二叉树的节点。而“三叉链表”这个术语在二叉树的上下文中不常见,可能是…...
api开发如何在代码中使用京东商品详情接口的参数?
选择编程语言和相关工具 以 Python 为例,你可以使用requests库来发送 HTTP 请求获取接口数据。如果是 Java,可以使用OkHttp等库。 Python 示例 假设你已经安装了requests库,以下是一个简单的代码示例来获取和使用京东商品详情接口参数&#…...
Quartz如何实现分布式调度
系列文章目录 任务调度管理——Quartz入门 Quartz如何实现分布式控制 系列文章目录一、持久化二、分布式调度1. 表信息2. 调度器的竞争3. 触发器的分配 三、 总结 我们都说Quartz是个分布式调度框架,那么在分布式环境上,如何使得各个服务器上的定时任务…...
JUC--线程池
线程池 七、线程池7.1线程池的概述7.2线程池的构建与参数ThreadPoolExecutor 的构造方法核心参数线程池的工作原理 Executors构造方法newFixedThreadPoolnewCachedThreadPoolnewSingleThreadExecutornewScheduledThreadPool(int corePoolSize) 为什么不推荐使用内置线程池&…...
以柔资讯-D-Security终端文件保护系统 logFileName 任意文件读取漏洞复现
0x01 产品简介 D-Security终端文件保护系统是一套专注于企业文件管理效率与安全的解决方案,统对文件进行全文加密,而非仅在文件表头或特定部分进行加密,从而大大提高了文件的安全性,降低了被破解的风险。D-Security终端文件保护系统是被政府和国安局等情报单位唯一认定的安…...
【JavaScript】Set,Map,Weakmap
以下来源:九剑科技。 weakmap WeakMap是 ES6 中新增的一种集合类型,叫做“弱映射”,由于他的键引用的对象是弱引用,键所指向的对象可以被垃圾回收,可以防止内存泄露。 map ①Map是键值对的集合,键值不限…...
idea小操作
idea 所边定位到你目前阅读的代码 AltF1 或者 选择定位图标...
[tesseract]Deserialize header failed: FIRC.lstmf
tesseract5.0训练时候会提示 [INFO]cd /d D:\program\tesseract-ocr-lstm-train\data [INFO]D:\program\tesseract-ocr-lstm-train\Tesseract-OCR\tesseract.exe xiangjiao.tif xiangjiao -l eng --psm 7 lstm.train [INFO]Page 1 [INFO]Page 2 [INFO]Deserialize header fail…...
深度学习知识点:RNN
文章目录 1.简单介绍2.网络结构3.应对梯度消失 1.简单介绍 循环神经网络(RNN,Recurrent Neural Network)是一类用于处理序列数据的神经网络。与传统网络相比,变化不是特别大,不如CNN的变化那么大。 为什么要有循环神经…...
【数据可视化-11】全国大学数据可视化分析
🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN…...
CSS:背景样式、盒子模型与文本样式
背景样式 背景样式用于设置网页元素的背景,包括颜色、图片等。 背景颜色 使用 background-color 属性设置背景颜色,支持多种格式(颜色英文、十六进制、RGB等)。 div {background-color: lightblue; }格式示例十六进制#ff5733R…...
学英语学压测:02jmeter组件-测试计划和线程组ramp-up参数的作用
📢📢📢:先看关键单词,再看英文,最后看中文总结,再回头看一遍英文原文,效果更佳!! 关键词 Functional Testing功能测试[ˈfʌŋkʃənəl ˈtɛstɪŋ]Sample样…...
环动科技平均售价波动下滑:大客户依赖明显,应收账款周转率骤降
《港湾商业观察》施子夫 2024年12月18日,浙江环动机器人关节科技股份有限公司(以下简称,环动科技)的上市审核状态变更为“已问询”,公司在11月25日科创板IPO获上交所受理,独家保荐机构为广发证券。 此次环…...
数据结构:LinkedList与链表—无头双向链表(二)
目录 一、什么是LinkedList? 二、LinkedList的模拟实现 1、display()方法 2、addFirst(int data)方法 3、addLast(int data)方法 4、addIndex(int index,int data)方法 5、contains(int key)方法 6、remove(int key)方法 7、removeAllKey(int key)方法 8、…...
『SQLite』解释执行(Explain)
摘要:本节主要讲解SQL的解释执行:Explain。 在 sqlite 语句之前,可以使用 “EXPLAIN” 关键字或 “EXPLAIN QUERY PLAN” 短语,用于描述表查询的细节。 基本语法 EXPLAIN 语法: EXPLAIN [SQLite Query]EXPLAIN QUER…...
计算机网络之---物理层的基本概念
物理层简介 物理层(Physical Layer) 是 OSI(开放系统互联)模型 中的第 1 层,它主要负责数据在物理媒介上的传输,确保原始比特(0 和 1)的传输不受干扰地从一个设备传送到另一个设备。…...
Elasticsearch:优化的标量量化 - 更好的二进制量化
作者:来自 Elastic Benjamin Trent 在这里,我们解释了 Elasticsearch 中的优化标量量化以及如何使用它来改进更好的二进制量化 (Better Binary Quantization - BBQ)。 我们的全新改进版二进制量化 (Better Binary Quantization - BBQ) 索引现在变得更强大…...
KBQA前沿技术
文章目录 KBQA面临的挑战基于模板的方法基于语义解析的方法基于深度学习的传统问答基于深度学习的端到端问答模型KBQA面临的挑战 目前还存在两个很大的困难阻碍着KBQA系统被广泛应用。一个困难是现有的自然语言理解技术在处理自然语言的歧义性和复杂性方面还显得比较薄弱。例如…...
patchwork++地面分割学习笔记
参考资料:古月居 - ROS机器人知识分享社区 https://zhuanlan.zhihu.com/p/644297447 patchwork算法一共包含四部分内容:提出了以下四个部分:RNR、RVPF、A-GLE 和 TGR。 1)基于 3D LiDAR 反射模型的反射噪声消除 (RNR)ÿ…...
OSPF浅析
一、预习: 1、介绍: 是一种基于接口的典型的链路状态路由协议,协议号89,把大型网络分隔为多个较小、可管理的单元:Area,管理距离110;OSPF基于IP,使用了LSAck包来保证包数据的可靠性&…...
批量写入数据到数据库,卡顿怎么解决
在批量写入数据到数据库时,遇到卡顿或性能瓶颈是比较常见的问题。以下是一些可能的解决方案和优化策略,帮助你提高批量写入的性能: ### 1. **批量大小优化** - **调整批量大小**:尝试调整批量写入的数据量,找到一个平衡点。过大或过小的批量大小都可能影响性能。通常,批…...
Residency 与 Internship 的区别及用法解析
Residency 与 Internship 的区别及用法解析 在英文中,“residency” 和 “internship” 都与职业培训相关,但它们的使用场景和具体含义存在显著差异。本文将详细解析这两个词的区别,以及它们在不同语境下的应用。 Residency 的定义及使用场景…...
【数据结构-堆】力扣2530. 执行 K 次操作后的最大分数
给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。你的 起始分数 为 0 。 在一步 操作 中: 选出一个满足 0 < i < nums.length 的下标 i , 将你的 分数 增加 nums[i] ,并且 将 nums[i] 替换为 ceil(nums[i] / 3) 。 返回在 恰好…...
基于生成式对抗网络(GAN)的前沿研究与应用
引言 人工智能(AI)领域在过去几年中经历了快速的发展,尤其是深度学习的兴起带来了许多变革。其中,生成式对抗网络(Generative Adversarial Network, GAN)因其强大的生成能力成为了研究热点。自2014年Ian G…...
stm32 移植RTL8201F(正点原子例程为例)
最近在工作中需要使用RTL8201F,在网上找了很多帖子,没有找到合适的,自己翻资料移植了一个。 模板工程使用的是正点原子的f407探索版的例程,原子使用的是LAN8720,需要把他的驱动修改成为我们自己用的RTL8201F。 1.将PHY_TYPE改成我…...