当前位置: 首页 > news >正文

JUC--线程池

线程池

  • 七、线程池
    • 7.1线程池的概述
    • 7.2线程池的构建与参数
      • ThreadPoolExecutor 的构造方法
        • 核心参数
        • 线程池的工作原理
      • Executors构造方法
        • newFixedThreadPool
        • newCachedThreadPool
        • newSingleThreadExecutor
        • newScheduledThreadPool(int corePoolSize)
      • 为什么不推荐使用内置线程池?
    • 7.3线程池中线程异常后,销毁还是复用?
    • 7.4如何给线程池命名?

七、线程池

7.1线程池的概述

  1. 定义:线程池是一个容纳多个线程的容器,线程池中的线程可以被重复利用,从而避免了频繁创建和销毁线程带来的性能开销。
  2. 线程池的作用
    • 降低资源消耗:通过线程复用,避免了频繁的线程创建和销毁,提高了资源利用率。
    • 提高响应速度:当任务到达时,如果有空闲线程,则可以立即执行,避免了线程的创建和销毁延迟。
    • 提高线程的可管理性:通过对线程的管理,避免了无限制地创建线程,增强了系统的稳定性和可控性。
  3. 核心思想:线程池的核心思想是 线程复用,即通过重复使用现有线程来处理多个任务。

7.2线程池的构建与参数

ThreadPoolExecutor 的构造方法

public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler)
核心参数
  • corePoolSize:核心线程数,即线程池中可以一直保持活动的线程数。
  • maximumPoolSize:最大线程数,线程池中允许的最大线程数量。
  • keepAliveTime:非核心线程的空闲时间,当线程池中的线程数量超过 corePoolSize 且任务完成时,超过的线程在空闲时会被销毁。
  • workQueue:任务队列,用于存放等待执行的任务。
  • threadFactory:线程工厂,用于创建新线程。
  • handler:拒绝策略,定义了线程池满载时,如何处理新的任务。

拒绝策略(RejectedExecutionHandler):

  • AbortPolicy(默认策略):抛出 RejectedExecutionException 异常。
  • CallerRunsPolicy:将任务回退到调用者的线程来执行。
  • DiscardPolicy:直接丢弃任务,不抛出任何异常。
  • DiscardOldestPolicy:丢弃队列中最早的任务,尝试执行当前任务。
线程池的工作原理

在这里插入图片描述

1.线程池的初始化:线程池创建后不会立刻创建线程,只有在调用 execute() 方法时,线程池才会开始创建线程。

2.任务提交过程

在这里插入图片描述

  • 如果运行线程数小于 corePoolSize,立即创建线程并执行任务。
  • 如果运行线程数大于或等于 corePoolSize,则将任务放入任务队列。
  • 如果队列已满且运行线程数小于 maximumPoolSize,则创建新的非核心线程执行任务。
  • 如果队列满且线程数已经达到 maximumPoolSize,则执行拒绝策略。

3.线程空闲回收:当线程空闲超过 keepAliveTime,且线程池中的线程数大于 corePoolSize,空闲线程会被销毁,线程池会收缩到核心线程数的大小。

Executors构造方法

Executors 提供了四种线程池的创建:newCachedThreadPool、newFixedThreadPool、newSingleThreadExecutor、newScheduledThreadPool

newFixedThreadPool

newFixedThreadPool(int nThreads):创建一个固定大小的线程池,适用于任务量已知且长期运行的场景。所有任务会被放入一个无界队列中,任务执行较慢可能导致内存溢出。

public static ExecutorService newFixedThreadPool(int nThreads) {return new ThreadPoolExecutor(nThreads, nThreads, 0L,TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>());
}

特点:

  1. 核心线程数 == 最大线程数(没有救济线程被创建),因此无需超时时间

  2. LinkedBlockingQueue 是一个单向链表实现的阻塞队列,默认大小为Integer.MAX_VALUE ,也就是无界队列,可以放任意数量的任务,在任务比较多的时候会导致 OOM(内存溢出)

  3. 适用于任务量已知,相对耗时的长期任务

newCachedThreadPool

newCachedThreadPool():创建一个可扩容的线程池,适用于任务量不稳定且每个任务执行时间较短的场景。核心线程数为 0,最大线程数为 Integer.MAX_VALUE,可能会导致大量线程创建和 OOM。

public static ExecutorService newCachedThreadPool() {return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L,TimeUnit.SECONDS,new SynchronousQueue<Runnable>());
}

特点:

  1. 核心线程数是 0, 最大线程数是 29 个 1,全部都是救急线程(60s 后可以回收),可能会创建大量线程,从而导致 OOM
  2. SynchronousQueue 作为阻塞队列,没有容量,没有线程来取是放不进去的(类似一手交钱、一手交货)
  3. 适合任务数比较密集,但每个任务执行时间较短的情况
newSingleThreadExecutor

newSingleThreadExecutor():创建一个只有一个线程的线程池,适用于需要顺序执行任务的场景,保证任务按顺序执行。

public static ExecutorService newSingleThreadExecutor() {return new FinalizableDelegatedExecutorService(new ThreadPoolExecutor(1, 1,0L, TimeUnit.MILLISECONDS,new LinkedBlockingQueue<Runnable>()));
}

使用场景:

  • 保证所有任务按照指定顺序执行,线程数固定为 1,任务数多于 1 时会放入无界队列排队,任务执行完毕,这唯一的线程也不会被释放
newScheduledThreadPool(int corePoolSize)

创建一个可以执行延时任务的线程池,适用于定时任务和延时任务。

区别:

  • 创建一个单线程串行执行任务,如果任务执行失败而终止那么没有任何补救措施,线程池会新建一个线程,保证池的正常工作

  • Executors.newSingleThreadExecutor() 线程个数始终为 1,不能修改。

    FinalizableDelegatedExecutorService 应用的是装饰器模式,只对外暴露了 ExecutorService 接口,因此不能调用 ThreadPoolExecutor 中特有的方法

    原因:父类不能直接调用子类中的方法,需要反射或者创建对象的方式,可以调用子类静态方法

  • Executors.newFixedThreadPool(1) 初始时为 1,可以修改。对外暴露的是 ThreadPoolExecutor对象,可以强转后调用 setCorePoolSize 等方法进行修改
    在这里插入图片描述

为什么不推荐使用内置线程池?

《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险

Executors 返回线程池对象的弊端如下:

  • FixedThreadPoolSingleThreadExecutor:使用的是有界阻塞队列是 LinkedBlockingQueue ,其任务队列的最大长度为 Integer.MAX_VALUE ,可能堆积大量的请求,从而导致 OOM。
  • CachedThreadPool:使用的是同步队列 SynchronousQueue, 允许创建的线程数量为 Integer.MAX_VALUE ,如果任务数量过多且执行速度较慢,可能会创建大量的线程,从而导致 OOM。
  • ScheduledThreadPoolSingleThreadScheduledExecutor :使用的无界的延迟阻塞队列 DelayedWorkQueue ,任务队列最大长度为 Integer.MAX_VALUE ,可能堆积大量的请求,从而导致 OOM。

7.3线程池中线程异常后,销毁还是复用?

execute() 提交任务时的异常处理

  • 如果任务抛出异常,当前线程会终止,线程池会创建新线程来替换。

submit() 提交任务时的异常处理

  • 如果任务抛出异常,异常会被封装在 Future 对象中,继续复用,可以通过 Future.get() 获取异常信息。

7.4如何给线程池命名?

初始化线程池的时候需要显示命名(设置线程池名称前缀),有利于定位问题。

默认情况下创建的线程名字类似 pool-1-thread-n 这样的,没有业务含义,不利于我们定位问题。

给线程池里的线程命名通常有下面两种方式:

1、利用 guava 的 ThreadFactoryBuilder

ThreadFactory threadFactory = new ThreadFactoryBuilder().setNameFormat(threadNamePrefix + "-%d").setDaemon(true).build();
ExecutorService threadPool = new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, TimeUnit.MINUTES, workQueue, threadFactory);

2、自己实现 ThreadFactory

import java.util.concurrent.ThreadFactory;
import java.util.concurrent.atomic.AtomicInteger;/*** 线程工厂,它设置线程名称,有利于我们定位问题。*/
public final class NamingThreadFactory implements ThreadFactory {private final AtomicInteger threadNum = new AtomicInteger();private final String name;/*** 创建一个带名字的线程池生产工厂*/public NamingThreadFactory(String name) {this.name = name;}@Overridepublic Thread newThread(Runnable r) {Thread t = new Thread(r);t.setName(name + " [#" + threadNum.incrementAndGet() + "]");return t;}
}

相关文章:

JUC--线程池

线程池 七、线程池7.1线程池的概述7.2线程池的构建与参数ThreadPoolExecutor 的构造方法核心参数线程池的工作原理 Executors构造方法newFixedThreadPoolnewCachedThreadPoolnewSingleThreadExecutornewScheduledThreadPool(int corePoolSize) 为什么不推荐使用内置线程池&…...

以柔资讯-D-Security终端文件保护系统 logFileName 任意文件读取漏洞复现

0x01 产品简介 D-Security终端文件保护系统是一套专注于企业文件管理效率与安全的解决方案,统对文件进行全文加密,而非仅在文件表头或特定部分进行加密,从而大大提高了文件的安全性,降低了被破解的风险。D-Security终端文件保护系统是被政府和国安局等情报单位唯一认定的安…...

【JavaScript】Set,Map,Weakmap

以下来源&#xff1a;九剑科技。 weakmap WeakMap是 ES6 中新增的一种集合类型&#xff0c;叫做“弱映射”&#xff0c;由于他的键引用的对象是弱引用&#xff0c;键所指向的对象可以被垃圾回收&#xff0c;可以防止内存泄露。 map ①Map是键值对的集合&#xff0c;键值不限…...

idea小操作

idea 所边定位到你目前阅读的代码 AltF1 或者 选择定位图标...

[tesseract]Deserialize header failed: FIRC.lstmf

tesseract5.0训练时候会提示 [INFO]cd /d D:\program\tesseract-ocr-lstm-train\data [INFO]D:\program\tesseract-ocr-lstm-train\Tesseract-OCR\tesseract.exe xiangjiao.tif xiangjiao -l eng --psm 7 lstm.train [INFO]Page 1 [INFO]Page 2 [INFO]Deserialize header fail…...

深度学习知识点:RNN

文章目录 1.简单介绍2.网络结构3.应对梯度消失 1.简单介绍 循环神经网络&#xff08;RNN&#xff0c;Recurrent Neural Network&#xff09;是一类用于处理序列数据的神经网络。与传统网络相比&#xff0c;变化不是特别大&#xff0c;不如CNN的变化那么大。 为什么要有循环神经…...

【数据可视化-11】全国大学数据可视化分析

&#x1f9d1; 博主简介&#xff1a;曾任某智慧城市类企业算法总监&#xff0c;目前在美国市场的物流公司从事高级算法工程师一职&#xff0c;深耕人工智能领域&#xff0c;精通python数据挖掘、可视化、机器学习等&#xff0c;发表过AI相关的专利并多次在AI类比赛中获奖。CSDN…...

CSS:背景样式、盒子模型与文本样式

背景样式 背景样式用于设置网页元素的背景&#xff0c;包括颜色、图片等。 背景颜色 使用 background-color 属性设置背景颜色&#xff0c;支持多种格式&#xff08;颜色英文、十六进制、RGB等&#xff09;。 div {background-color: lightblue; }格式示例十六进制#ff5733R…...

学英语学压测:02jmeter组件-测试计划和线程组ramp-up参数的作用

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#xff1a;先看关键单词&#xff0c;再看英文&#xff0c;最后看中文总结&#xff0c;再回头看一遍英文原文&#xff0c;效果更佳&#xff01;&#xff01; 关键词 Functional Testing功能测试[ˈfʌŋkʃənəl ˈtɛstɪŋ]Sample样…...

环动科技平均售价波动下滑:大客户依赖明显,应收账款周转率骤降

《港湾商业观察》施子夫 2024年12月18日&#xff0c;浙江环动机器人关节科技股份有限公司&#xff08;以下简称&#xff0c;环动科技&#xff09;的上市审核状态变更为“已问询”&#xff0c;公司在11月25日科创板IPO获上交所受理&#xff0c;独家保荐机构为广发证券。 此次环…...

数据结构:LinkedList与链表—无头双向链表(二)

目录 一、什么是LinkedList&#xff1f; 二、LinkedList的模拟实现 1、display()方法 2、addFirst(int data)方法 3、addLast(int data)方法 4、addIndex(int index,int data)方法 5、contains(int key)方法 6、remove(int key)方法 7、removeAllKey(int key)方法 8、…...

『SQLite』解释执行(Explain)

摘要&#xff1a;本节主要讲解SQL的解释执行&#xff1a;Explain。 在 sqlite 语句之前&#xff0c;可以使用 “EXPLAIN” 关键字或 “EXPLAIN QUERY PLAN” 短语&#xff0c;用于描述表查询的细节。 基本语法 EXPLAIN 语法&#xff1a; EXPLAIN [SQLite Query]EXPLAIN QUER…...

计算机网络之---物理层的基本概念

物理层简介 物理层&#xff08;Physical Layer&#xff09; 是 OSI&#xff08;开放系统互联&#xff09;模型 中的第 1 层&#xff0c;它主要负责数据在物理媒介上的传输&#xff0c;确保原始比特&#xff08;0 和 1&#xff09;的传输不受干扰地从一个设备传送到另一个设备。…...

Elasticsearch:优化的标量量化 - 更好的二进制量化

作者&#xff1a;来自 Elastic Benjamin Trent 在这里&#xff0c;我们解释了 Elasticsearch 中的优化标量量化以及如何使用它来改进更好的二进制量化 (Better Binary Quantization - BBQ)。 我们的全新改进版二进制量化 (Better Binary Quantization - BBQ) 索引现在变得更强大…...

KBQA前沿技术

文章目录 KBQA面临的挑战基于模板的方法基于语义解析的方法基于深度学习的传统问答基于深度学习的端到端问答模型KBQA面临的挑战 目前还存在两个很大的困难阻碍着KBQA系统被广泛应用。一个困难是现有的自然语言理解技术在处理自然语言的歧义性和复杂性方面还显得比较薄弱。例如…...

patchwork++地面分割学习笔记

参考资料&#xff1a;古月居 - ROS机器人知识分享社区 https://zhuanlan.zhihu.com/p/644297447 patchwork算法一共包含四部分内容&#xff1a;提出了以下四个部分&#xff1a;RNR、RVPF、A-GLE 和 TGR。 1&#xff09;基于 3D LiDAR 反射模型的反射噪声消除 (RNR)&#xff…...

OSPF浅析

一、预习&#xff1a; 1、介绍&#xff1a; 是一种基于接口的典型的链路状态路由协议&#xff0c;协议号89&#xff0c;把大型网络分隔为多个较小、可管理的单元&#xff1a;Area&#xff0c;管理距离110&#xff1b;OSPF基于IP&#xff0c;使用了LSAck包来保证包数据的可靠性&…...

批量写入数据到数据库,卡顿怎么解决

在批量写入数据到数据库时,遇到卡顿或性能瓶颈是比较常见的问题。以下是一些可能的解决方案和优化策略,帮助你提高批量写入的性能: ### 1. **批量大小优化** - **调整批量大小**:尝试调整批量写入的数据量,找到一个平衡点。过大或过小的批量大小都可能影响性能。通常,批…...

Residency 与 Internship 的区别及用法解析

Residency 与 Internship 的区别及用法解析 在英文中&#xff0c;“residency” 和 “internship” 都与职业培训相关&#xff0c;但它们的使用场景和具体含义存在显著差异。本文将详细解析这两个词的区别&#xff0c;以及它们在不同语境下的应用。 Residency 的定义及使用场景…...

【数据结构-堆】力扣2530. 执行 K 次操作后的最大分数

给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。你的 起始分数 为 0 。 在一步 操作 中&#xff1a; 选出一个满足 0 < i < nums.length 的下标 i &#xff0c; 将你的 分数 增加 nums[i] &#xff0c;并且 将 nums[i] 替换为 ceil(nums[i] / 3) 。 返回在 恰好…...

基于生成式对抗网络(GAN)的前沿研究与应用

引言 人工智能&#xff08;AI&#xff09;领域在过去几年中经历了快速的发展&#xff0c;尤其是深度学习的兴起带来了许多变革。其中&#xff0c;生成式对抗网络&#xff08;Generative Adversarial Network, GAN&#xff09;因其强大的生成能力成为了研究热点。自2014年Ian G…...

stm32 移植RTL8201F(正点原子例程为例)

最近在工作中需要使用RTL8201F&#xff0c;在网上找了很多帖子&#xff0c;没有找到合适的&#xff0c;自己翻资料移植了一个。 模板工程使用的是正点原子的f407探索版的例程&#xff0c;原子使用的是LAN8720,需要把他的驱动修改成为我们自己用的RTL8201F。 1.将PHY_TYPE改成我…...

QT-TCP-server

为了实现高性能的TCP通讯&#xff0c;以下是一个基于Qt的示例&#xff0c;展示如何利用多个线程、非阻塞I/O、数据分块和自定义协议进行优化。该示例以TCP服务器和客户端的形式展示&#xff0c;能够承受高负载并实现快速数据传输。 高性能TCP Server示例 #include <QTcpSe…...

第 24 章 网络请求与远程资源

第 24 章 网络请求与远程资源 24.1 XMLHttpRequest 对象 所有现代浏览器都通过 XMLHttpRequest 构造函数原生支持 XHR 对象&#xff1a; let xhr new XMLHttpRequest()24.1.1 使用 XHR 使用 XHR 对象首先要调用 open()方法&#xff0c;这个方法接收 3 个参数&#xff1a;请…...

k8s dashboard离线部署步骤

确定k8s版本&#xff0c;以1.23为例。 部署metrics-server服务&#xff0c;最好用v0.5.2。 用v0.6.0&#xff0c;可能会报以下错误&#xff1a; nodekubemaster:~/Desktop/metric$ kubectl top nodes Error from server (ServiceUnavailable): the server is currently unabl…...

热备份路由HSRP及配置案例

✍作者&#xff1a;柒烨带你飞 &#x1f4aa;格言&#xff1a;生活的情况越艰难&#xff0c;我越感到自己更坚强&#xff1b;我这个人走得很慢&#xff0c;但我从不后退。 &#x1f4dc;系列专栏&#xff1a;网路安全入门系列 目录 一&#xff0c;HSRP的相关概念二&#xff0c;…...

【文本分类】bert二分类

import os import torch from torch.utils.data import DataLoader, Dataset from transformers import BertTokenizer, BertForSequenceClassification, AdamW from sklearn.metrics import accuracy_score, classification_report from tqdm import tqdm# 自定义数据集 class…...

计算机网络 (30)多协议标签交换MPLS

前言 多协议标签交换&#xff08;Multi-Protocol Label Switching&#xff0c;MPLS&#xff09;是一种在开放的通信网上利用标签引导数据高速、高效传输的新技术。 一、基本概念 MPLS是一种第三代网络架构技术&#xff0c;旨在提供高速、可靠的IP骨干网络交换。它通过将IP地址映…...

【Springer斯普林格出版,Ei稳定,往届快速见刊检索】第四届电子信息工程、大数据与计算机技术国际学术会议(EIBDCT 2025)

第四届电子信息工程、大数据与计算机技术国际学术会议&#xff08;EIBDCT 2025&#xff09;将于2025年2月21-23日在中国青岛举行。该会议主要围绕电子信息工程、大数据、计算机技术等研究领域展开讨论。会议旨在为从事相关科研领域的专家学者、工程技术人员、技术研发人员提供一…...

C# 修改项目类型 应用程序程序改类库

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github&#xff1a;codetoys&#xff0c;所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的&#xff0c;可以在任何平台上使用。 源码指引&#xff1a;github源…...

[开源]自动化定位建图系统

系统状态机&#xff1a; 效果展示&#xff1a; 1、 机器人建图定位系统-基础重定位&#xff0c;定位功能演示 2、 机器人建图定位系统-增量地图构建&#xff0c;手动回环检测演示 3、… 开源链接&#xff1a; https://gitee.com/li-wenhao-lwh/lifelong-backend Qt人机交互…...

OSPF使能配置

OSPF路由协议是用于网际协议&#xff08;ip&#xff09;网络的链路状态的路由协议。该协议使用链路状态路由算法的内部网关协议&#xff08;IGP&#xff09;&#xff0c;在单一自治系统&#xff08;AS&#xff09;内部工作。适用于IPV4的OSPFv2协议定义于RFC 2328&#xff0c;R…...

ES_如何设置ElasticSearch 8.0版本的匿名访问以及https_http模式的互相切换

总结&#xff1a; 设置匿名访问&#xff0c;只需要设置xpack.security.authc.anonymous.username和xpack.security.authc.anonymous.roles参数就行&#xff0c;设置好后&#xff0c;可以匿名访问也可以非匿名访问&#xff0c;但是非匿名访问的情况下必须保证用户名和密码正确 取…...

web移动端UI框架

文章目录 Vant简介主要特点和功能适用场景和用户评价 Mint UI简介主要特点和功能 cube-ui简介特性 iView Weapp简介 uni-app简介 Vant 使用vue3版本官网&#xff1a;https://vant-ui.github.io/vant/#/zh-CN/ 适用vue2版本官网&#xff1a;https://vant-ui.github.io/vant/v2/…...

数据库高安全—角色权限:权限管理权限检查

目录 3.3 权限管理 3.4 权限检查 书接上文数据库高安全—角色权限&#xff1a;角色创建角色管理&#xff0c;从角色创建和角色管理两方面对高斯数据库的角色权限进行了介绍&#xff0c;本篇将从权限管理和权限检查方面继续解读高斯数据库的角色权限。 3.3 权限管理 &#x…...

spring boot controller放到那一层

在 Spring Boot 应用程序中&#xff0c;Controller 层通常被放置在应用程序的 表示层&#xff08;Presentation Layer&#xff09; 或 用户界面层&#xff08;UI Layer&#xff09; 中。Controller 层的主要职责是处理用户的 HTTP 请求&#xff0c;并将请求转发给服务层进行业务…...

报错 - cannot import name ‘ExportOptions‘ from ‘torch.onnx._internal.exporter‘

调用库时出现错误&#xff1a; ImportError: cannot import name ‘ExportOptions’ from ‘torch.onnx._internal.exporter’ 尝试更新 onnx&#xff0c; onnxscript&#xff0c;diffusers 均没有解决问题 将 torch 升级&#xff08;从 2.1.0 到 2.5.1&#xff09;后解决了 具…...

恒压恒流原边反馈控制芯片 CRE6289F

CRE6289F 系列产品是一款内置高压 MOS 功率开关管的高性能多模式原边控制的开关电源芯片。较少的外围元器件、较低的系统成本设计出高性能的交直流转换开关电源。CRE6289F 系列产品提供了极为全面和性能优异的智能化保护功能&#xff0c;包括逐周期过流保护、软启动、芯片过温保…...

ffmpeg视频抽帧和合成

FFMPEG 抽取视频场景转换帧 ffmpeg -i input.mp4 -vf "selectgt(scene,0.4),showinfo" -vsync vfr output_%04d.jpg ffmpeg -i input.mp4 -vf "selectgt(scene,0.4),scale1280:720" -vsync vfr output_%03d.jpg # -vsync 已经弃用&#xff0c;最新版本不…...

七、Hadoop环境搭建之安装JDK

文章目录 一、卸载自带JDK二、传输jdk到服务器中三、解压四、配置JDK环境变量 一、卸载自带JDK 注意&#xff1a;安装JDK前&#xff0c;一定确保提前删除了虚拟机自带的JDK。 以下操作&#xff0c;请切换至root权限进行操作 输入&#xff1a;rpm -qa | grep jdk 会查询出系统…...

RocketMQ消息积压问题如何解决?

大家好&#xff0c;我是锋哥。今天分享关于【RocketMQ消息积压问题如何解决?】面试题。希望对大家有帮助&#xff1b; RocketMQ消息积压问题如何解决? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 RocketMQ 消息积压问题通常是指消息队列中的消息堆积过多&…...

【Java基础】进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化

1. 进程和线程 1.1 进程 几乎所有的操作系统都支持进程的概念&#xff0c;所有运行中的任务通常对应一个进程&#xff08;Process&#xff09;。 当一个程序进入内存运行时&#xff0c;即变成一个进程。 进程是处于运行过程中的程序&#xff0c;并且具有一定的独立功能&…...

CDN防御如何保护我们的网络安全?

在当今数字化时代&#xff0c;网络安全成为了一个至关重要的议题。随着网络攻击的日益频繁和复杂化&#xff0c;企业和个人都面临着前所未有的安全威胁。内容分发网络&#xff08;CDN&#xff09;作为一种分布式网络架构&#xff0c;不仅能够提高网站的访问速度和用户体验&…...

深度学习驱动的蛋白质设计技术与实践

通过设计特定的蛋白质结构&#xff0c;可以实现预期的生物功能&#xff0c;如催化特定化学反应、识别和结合特定分子、调控生物信号传导等&#xff0c;为生物医学、药物研发、生物技术等领域提供重要工具和解决方案。传统的蛋白质设计方法主要依赖于已知蛋白质结构的同源建模、…...

Centos7使用yum工具出现 Could not resolve host: mirrorlist.centos.org

在 CentOS 7 中使用 yum 工具时&#xff0c;出现 "Could not resolve host: mirrorlist.centos.org" 的错误&#xff0c;一般情况是因为默认的镜像源无法访问。 以下是一些常用的解决方法&#xff1a; 检查网络连接&#xff1a;首先使用 ping 命令测试网络连接是否…...

iOS - 原子操作

在 Objective-C 运行时中&#xff0c;原子操作主要通过以下几种方式实现&#xff1a; 1. 基本原子操作 // 原子操作的基本实现 #if __has_feature(c_atomic)#define OSAtomicIncrement32(p) __c11_atomic_add((_Atomic(int32_t) *)(p), 1, __ATOMIC_RELAXED) #define …...

PHP二维数组去除重复值

Date: 2025.01.07 20:45:01 author: lijianzhan PHP二维数组内根据ID或者名称去除重复值 代码示例如下&#xff1a; // 假设 data数组如下 $data [[id > 1, name > Type A],[id > 2, name > Type B],[id > 1, name > Type A] // 重复项 ];// 去重方法 $dat…...

【Flink部署】-- 部署 flink 1.19.1 standalone 集群

目录 1、环境准备 2、部署步骤 2.1、下载 flink 二进制包 2.2、配置全局环境变量 2.3、验证 flink 版本 2.4、配置 config.yaml 2.5、启动和停止本地 standalone 集群 2.6、提交测试作业 2.7、查询作业 3、参考 1、环境准备 jdk 11apache flink 1.19.1 安装包2、部署…...

关于物联网的基础知识(二)——物联网体系结构分层

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///计算机爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于物联网的基础知识&#xff08;二&a…...

使用Paddledetection进行模型训练【Part2:数据准备+模型训练】

目录 写在前面 数据准备 模型优化 1. 使用自定义数据 2. 加载预训练模型 3. 启动训练 写在前面 在目标检测算法产业落地过程中&#xff0c;常常会出现需要额外训练以满足实际使用的要求&#xff0c;项目迭代过程中也会出先需要修改类别的情况。本文档详细介绍如何使用Pa…...