当前位置: 首页 > news >正文

人工智能的发展领域之GPU加速计算的应用概述、架构介绍与教学过程

文章目录

  • 一、架构介绍
    • GPU算力平台概述
    • 优势与特点
  • 二、注册与登录
    • 账号注册流程
    • GPU服务器类型
    • 配置选择指南
      • 内存和存储容量
      • 网络带宽
      • CPU配置
  • 三、创建实例
    • 实例创建步骤
    • 镜像选择与设置
  • 四、连接实例
    • SSH连接方法
    • 远程桌面配置

一、架构介绍

GPU算力平台概述

一个专注于GPU加速计算的专业云服务平台,隶属于软件和信息技术服务业。主要面向高校、科研机构和企业用户。该平台提供多种NVIDIA GPU选择,适用于机器学习、人工智能、视觉特效渲染等领域。
在这里插入图片描述

优势与特点

GPU选择
支持多种NVIDIA GPU型号,如RTX 4000、RTX 5000、A5000和A40等,满足不同场景的需求。
灵活性
基于Kubernetes设计,用户可以根据需求灵活配置GPU类型、数量及内存等资源。
计费模式
采用按需付费模式,用户仅需为其实际使用的资源付费。
技术支持
提供全面的技术支持,涵盖基础架构建设、云计算和售后服务。
安全性
具备完善的安全机制,确保数据和隐私的安全。
应用场景
适用于机器学习、人工智能、视觉特效渲染、自动驾驶、工业设计等多个领域。

二、注册与登录

账号注册流程

在开始使用GPU算力平台之前,用户需要完成账号注册流程。这个过程虽然简单,但对于初次接触此类平台的新手来说,仍可能存在一些疑问。让我们详细了解一下注册过程中的关键步骤和注意事项:
在这里插入图片描述

我们通过注册后,即可进入主页面:
在这里插入图片描述

GPU服务器类型

在选择适合的GPU服务器时,了解不同的GPU类型及其特性至关重要。蓝耘GPU算力平台提供了多种高性能GPU服务器选项,以满足不同用户群体的需求。这些GPU服务器类型各具特色,能够满足不同层次的计算需求:
在这里插入图片描述
GPU算力平台通过提供如此多样化的GPU选择,确保每位用户都能找到最适合自己的计算解决方案。无论您的项目规模如何,平台都有相应的GPU配置可供选择,让您能够充分发挥计算潜力,推动创新和发展。

配置选择指南

在选择GPU服务器配置时,用户需要权衡多个因素,以确保获得最佳的性能和价值。蓝耘GPU算力平台提供了多样化的配置选项,以满足不同用户群体的需求。以下是各项配置的选择指南:

内存和存储容量

  • 内存 :应根据GPU型号和应用场景选择适当大小。例如,NVIDIA A100配备80GB 显存,适合处理大规模数据集。
  • 存储 :蓝耘平台支持灵活调整存储容量,可根据项目需求选择合适的空间。对于需要频繁访问大数据集的任务,推荐选择更大的存储空间。

网络带宽

  • 对于需要进行大规模数据传输或分布式训练的任务,选择更高的网络带宽尤为重要。蓝耘平台提供了不同级别的网络配置,用户可根据需求选择适当的带宽。

CPU配置

  • 尽管GPU是主要计算单元,但CPU的选择也不容忽视。对于需要大量预处理或后处理的工作负载,选择更高性能的CPU可以显著提高整体效率。

三、创建实例

实例创建步骤

在GPU算力平台上创建实例是一项关键操作,直接影响后续的计算任务执行效率。以下是详细的创建步骤,旨在帮助用户快速启动并充分利用平台资源:

  1. 登录平台 :首先,用户需要访问蓝耘GPU算力平台官网并登录账户。

  2. 进入实例管理界面 :在主界面上方菜单栏中选择“实例管理”,然后点击“创建实例”。
    在这里插入图片描述

  3. 选择GPU类型 :根据需求选择合适的GPU型号,如NVIDIA RTX 4090、A100或A800等。

  4. 配置实例规格 :设置实例的各项参数,包括:

    • GPU数量 :根据计算需求选择4-8块GPU
    • 内存大小 :从256GB到1TB不等
    • 存储容量 :SSD硬盘,范围从50GB到2TB
    • 网络带宽 :最高可达10Gbps
  5. 选择操作系统 :从Ubuntu、CentOS等Linux发行版中选择合适的系统版本。

  6. 添加自定义脚本 (可选):可在实例启动时自动执行特定任务,如安装特定软件包或配置环境变量。

  7. 确认配置并提交 :仔细审查选定的配置,确认无误后点击“立即创建”。

  8. 等待实例准备就绪 :系统将自动分配资源并部署实例,此过程通常需要几分钟。

  9. 查看实例状态 :返回实例管理界面,可看到新建实例的状态变化。当状态变为“运行中”时,实例即准备完毕,可投入使用。

  10. 连接实例 :通过SSH或其他远程桌面工具连接到新创建的实例,开始使用GPU算力资源。

在选择实例配置时,用户应根据具体计算任务的需求进行权衡。例如:

  • 大规模矩阵运算 :可能需要选择多块GPU和较高的内存配置
  • 轻量级数据处理 :则可以选择较低配置以节省成本

通过这种灵活的资源配置方式,蓝耘GPU算力平台能够满足不同用户群体的需求,从科研人员到企业开发者,都能找到适合自己项目的计算环境。

镜像选择与设置

在创建GPU实例的过程中,镜像选择是一个至关重要的环节。蓝耘GPU算力平台为用户提供了多样化的镜像选择,以满足不同用户群体的需求。这些镜像涵盖了主流的操作系统和深度学习框架,为用户提供了广泛的选择空间。
在这里插入图片描述

蓝耘GPU算力平台提供了多种镜像选择,主要包括:

镜像类型描述适用场景
Ubuntu基于Ubuntu的通用操作系统镜像适合大多数GPU计算任务
CentOS另一种流行的Linux发行版适合需要长期稳定版本的用户
TensorFlow预装TensorFlow框架的镜像专门用于TensorFlow相关的深度学习任务
PyTorch预装PyTorch框架的镜像专门用于PyTorch相关的深度学习任务
自定义镜像用户可以上传自己的镜像满足特殊需求或已有特定环境配置的用户

在选择镜像时,用户需要考虑以下几个方面:

  1. 操作系统兼容性 :确保选择的镜像与您熟悉的开发环境兼容。
  2. 框架版本匹配 :选择与您的项目需求相匹配的深度学习框架版本。
  3. 性能优化 :考虑镜像是否针对GPU进行了优化,以获得最佳性能。
  4. 安全性 :选择可信来源的镜像,确保系统的安全性。

为了更好地理解和选择合适的镜像,我们可以举几个例子:

如果您是一位Python开发者,正在使用TensorFlow框架进行图像识别项目,那么选择预装TensorFlow的Ubuntu镜像可能是最方便的选择。这样可以省去手动安装框架的时间,直接开始编写代码。

如果您需要在一个长期运行的生产环境中部署模型,选择CentOS镜像可能更适合,因为它提供了更长时间的支持周期。

在创建实例时,镜像选择通常是在配置界面的一个下拉菜单中完成的。用户只需选择合适的镜像,系统就会自动为实例配置相应的环境。对于需要特殊配置的用户,蓝耘平台也提供了上传自定义镜像的功能,增加了灵活性。

通过提供多样化的镜像选择,蓝耘GPU算力平台有效地降低了用户的学习曲线,提高了工作效率,使得研究人员和开发者能够更专注于核心业务逻辑的开发,而不是被繁琐的环境配置所困扰。

四、连接实例

SSH连接方法

SSH(Secure Shell)是一种加密的网络协议,用于在不安全的网络环境中进行安全的远程登录和数据传输。在蓝耘GPU算力平台上,SSH连接是访问和管理GPU实例的主要方式之一。以下是通过SSH连接蓝耘GPU算力平台实例的详细步骤:

  1. 准备工作

在开始SSH连接之前,需要做一些准备工作:

  • 确保您的本地计算机已安装SSH客户端程序(如PuTTY或OpenSSH)
  • 获取GPU实例的IP地址和登录凭据(通常在创建实例后通过平台界面提供)
  1. 生成SSH密钥对

出于安全考虑,推荐使用SSH密钥对进行身份验证:

ssh-keygen -t rsa

此命令将在本地生成一个RSA类型的SSH密钥对,包括公钥和私钥。

  1. 上传公钥到GPU实例

将生成的公钥上传到GPU实例:

ssh-copy-id <username>@<instance_ip>

请将<username><instance_ip>替换为实际的用户名和GPU实例IP地址。

  1. 建立SSH连接

使用以下命令建立SSH连接:

ssh -i <private_key_path> <username>@<instance_ip>

其中:

  • <private_key_path>是本地私钥文件的完整路径
  • <username>是GPU实例的用户名
  • <instance_ip>是GPU实例的IP地址
  1. 使用图形界面工具

如果您习惯使用图形界面,可以使用PuTTY等工具进行SSH连接。在PuTTY配置中:

  • 输入GPU实例的IP地址
  • 选择SSH作为连接类型
  • 导入之前生成的私钥文件
  1. 高级配置

对于需要频繁连接的用户,可以考虑将SSH配置信息保存到~/.ssh/config文件中,简化每次连接的过程。

通过这些步骤,您可以安全地连接到蓝耘GPU算力平台的GPU实例,开始进行高性能计算任务。SSH连接不仅提供了安全的远程访问方式,还允许您执行各种命令行操作,充分调动GPU实例的强大计算能力。

远程桌面配置

在完成GPU实例创建后,配置远程桌面是访问和管理GPU资源的重要方式。蓝耘GPU算力平台支持多种远程桌面方案,其中NoMachine是一款广受欢迎的选择。配置步骤如下:

  1. 安装NoMachine客户端
  2. 输入GPU实例IP地址和登录凭证
  3. 启用GPU Passthrough功能(如需直接访问GPU资源)
  4. 调整显示质量和网络性能平衡设置

这种方法为用户提供了直观的图形界面,便于进行复杂的GPU密集型任务,如深度学习模型训练和可视化数据分析。

详细内容可以登录:
https://cloud.lanyun.net//#/registerPage?promoterCode=0131

相关文章:

人工智能的发展领域之GPU加速计算的应用概述、架构介绍与教学过程

文章目录 一、架构介绍GPU算力平台概述优势与特点 二、注册与登录账号注册流程GPU服务器类型配置选择指南内存和存储容量网络带宽CPU配置 三、创建实例实例创建步骤镜像选择与设置 四、连接实例SSH连接方法远程桌面配置 一、架构介绍 GPU算力平台概述 一个专注于GPU加速计算的…...

【51单片机零基础-chapter5:模块化编程】

模块化编程 将以往main中泛型的代码,放在与main平级的c文件中,在h中引用. 简化main函数 将原来main中的delay抽出 然后将delay放入单独c文件,并单独开一个delay头文件,里面放置函数的声明,相当于收纳delay的c文件里面写的函数的接口. 注意,单个c文件所有用到的变量需要在该文…...

彻底学会Gradle插件版本和Gradle版本及对应关系

看完这篇&#xff0c;保你彻底学会Gradle插件版本和Gradle版本及对应关系&#xff0c;超详细超全的对应关系表 需要知道Gradle插件版本和Gradle版本的对应关系&#xff0c;其实就是需要知道Gradle插件版本对应所需的gradle最低版本&#xff0c;详细对应关系如下表格&#xff0…...

容器技术思想 Docker K8S

容器技术介绍 以Docker为代表的容器技术解决了程序部署运行方面的问题。在容器技术出现前&#xff0c;程序直接部署在物理服务器上&#xff0c;依赖管理复杂&#xff0c;包括各类运行依赖&#xff0c;且易变&#xff0c;多程序混合部署时还可能产生依赖冲突&#xff0c;给程序…...

在C程序中实现类似Redis的SCAN机制的LevelDB大规模key分批扫描

在C程序中实现类似Redis的SCAN机制的LevelDB大规模key分批扫描&#xff0c;需要充分利用LevelDB的迭代器&#xff08;iterator&#xff09;功能&#xff0c;以便能够高效地扫描和处理大量的键值对。下面是一个详细的实现指南。 环境准备 首先&#xff0c;确保已经安装了Level…...

多模态论文笔记——CogVLM和CogVLM2

大家好&#xff0c;这里是好评笔记&#xff0c;公主号&#xff1a;Goodnote&#xff0c;专栏文章私信限时Free。本文详细介绍多模态模型的LoRA版本——CogVLM和CogVLM2。在SD 3中使用其作为captioner基准模型的原因和优势。 文章目录 CogVLM论文背景VLMs 的任务与挑战现有方法及…...

BLDC无感控制的驱动逻辑

如何知道转子已经到达预定位置&#xff0c;因为我们只有知道了转子到达了预定位置之后才能进行换相&#xff0c;这样电机才能顺滑的运转。转子位置检测常用的有三种方式。 方式一&#xff1a;通过过零检测&#xff0c;三相相电压与电机中性点电压进行比较。过零检测的优点在于…...

分布式多机多卡训练全景指南:MPI、DeepSpeed 与 Colossal-AI 深度解析

分布式多机多卡训练技术是深度学习领域提高训练效率和加快模型收敛的重要手段。以下是几个流行的框架和工具&#xff1a; 1. MPI&#xff08;Message Passing Interface&#xff09; 概述 MPI 是一种标准化的消息传递协议&#xff0c;用于多机多卡之间的通信与协作&#xff0c…...

Unity中 Xlua使用整理(一)

1.安装: 从GitHub上下载Xlua源码 Tencent/xLua: xLua is a lua programming solution for C# ( Unity, .Net, Mono) , it supports android, ios, windows, linux, osx, etc. (github.com) 下载Xlua压缩包&#xff0c;并解压将Aseet文件夹中的Xlua和Plugins文件夹复制到Unit…...

在调用 borrowObject 方法时,Apache Commons Pool 会根据连接池的配置触发一系列相关的方法

在调用 borrowObject 方法时&#xff0c;Apache Commons Pool 会根据连接池的配置触发一系列相关的方法 1. GrpcChannel 的概念 GrpcChannel 是 gRPC 客户端与服务器之间通信的核心组件。它是基于 HTTP/2 的连接&#xff0c;支持多路复用&#xff0c;即通过单个通道可以发送多…...

【数据结构与算法:八、排序】

第8章 排序 排序是计算机科学中最基本且最常用的操作之一。本章详细介绍了排序算法的概念、分类、每种算法的定义、图示、代码实现及其应用场景。 8.1 基本概念和排序方法概述 8.1.1 排序的基本概念 排序是指将一组无序的记录按照某种指定的顺序重新排列的过程。 排序的目…...

Unity学习笔记(六)使用状态机重构角色移动、跳跃、冲刺

前言 本文为Udemy课程The Ultimate Guide to Creating an RPG Game in Unity学习笔记 整体状态框架(简化) Player 是操作对象的类&#xff1a; 继承了 MonoBehaviour 用于定义游戏对象的行为&#xff0c;每个挂载在 Unity 游戏对象上的脚本都需要继承自 MonoBehaviour&#x…...

搭建Golang gRPC环境:protoc、protoc-gen-go 和 protoc-gen-go-grpc 工具安装教程

参考文章&#xff1a; 安装protoc、protoc-gen-go、protoc-gen-go-grpc-CSDN博客 一、简单介绍 本文开发环境&#xff0c;均为 windows 环境&#xff0c;mac 环境其实也类似 ~ ① 编译proto文件&#xff0c;相关插件 简单介绍&#xff1a; protoc 是编译器&#xff0c;用于将…...

策略模式(strategy)

一.策略模式是什么 策略模式是一种行为型对象模式&#xff0c;它定义了一系列算法&#xff0c;并将每一个算法封装起来&#xff0c;使它们可以相互替换。这样&#xff0c;算法可以独立于使用它的客户端而变化‌‌。 策略者模式的核心思想是将一系列的算法封装到一系列的策略类里…...

Centos源码安装MariaDB 基于GTID主从部署(一遍过)

MariaDB安装 安装依赖 yum install cmake ncurses ncurses-devel bison 下载源码 // 下载源码 wget https://downloads.mariadb.org/interstitial/mariadb-10.6.20/source/mariadb-10.6.20.tar.gz // 解压源码 tar xzvf mariadb-10.5.9.tar.gz 编译安装 cmake -DCMAKE_INSTA…...

如何在 VSCode 中配置 C++ 开发环境:详细教程

如何在 VSCode 中配置 C 开发环境&#xff1a;详细教程 在软件开发的过程中&#xff0c;选择一个合适的开发环境是非常重要的。Visual Studio Code&#xff08;VSCode&#xff09;作为一款轻量级的代码编辑器&#xff0c;凭借其强大的扩展性和灵活性&#xff0c;受到许多开发者…...

信息安全、网络安全和数据安全的区别和联系

1. 前言 有次有朋友问我 信息安全、网络安全和数据安全&#xff0c;这三个词平时写文档时怎么用&#xff1f; 我想很多人都说不清。这次我查阅了资料&#xff0c;尽量讲清楚这三者之间的区别和联系。 2. 信息安全 2.1 定义 信息安全是指为数据处理系统建立和采用的技术和管…...

路由组件与一般组件的区别

路由组件与一般组件的区别 1. 基本概念 1.1 路由组件 路由组件是指通过路由规则映射的组件&#xff0c;通常放在 pages 或 views 文件夹中。 1.2 一般组件 一般组件是指通过 import 导入后直接使用的组件&#xff0c;通常放在 components 文件夹中。 2. 主要区别 2.1 存…...

【微服务】4、服务保护

微服务架构与组件介绍 单体架构拆分&#xff1a;黑马商城早期为单体架构&#xff0c;后拆分为微服务架构。跨服务调用与组件使用 服务拆分后存在跨服务远程调用&#xff0c;如下单需查询商品信息&#xff0c;使用openfeign组件解决。服务间调用关系复杂&#xff0c;需维护服务…...

6_TypeScript 函数 --[深入浅出 TypeScript 测试]

在 TypeScript 中&#xff0c;函数是编程的核心组成部分之一。TypeScript 不仅继承了 JavaScript 的所有函数特性&#xff0c;还添加了静态类型检查和其他一些增强功能&#xff0c;使得函数更加安全和易于理解。以下是关于 TypeScript 函数的一些关键点和两个具体的示例&#x…...

Apifox=Postman+Swagger+Jmeter+Mock

A. 开发人员接口管理使用(Swagger 工具管理接口) B. 后端开发人员通过Postman 工具&#xff0c;一边开发一边测试 C. 前端开发人员需要Mock 工具提供前端调用 D. 测试人员通过(Postman、Jmeter)等工具进行接口测试 为了后台开发、前端开发、测试工程师等不同角色更加便捷管理…...

升级 Spring Boot 3 配置讲解 —— Spring Boot 3 核心源码专讲

学会这款 &#x1f525;全新设计的 Java 脚手架 &#xff0c;从此面试不再怕&#xff01; Spring Boot 3 是 Spring 生态中的重要里程碑&#xff0c;它不仅全面支持 Java 17&#xff0c;还引入了许多新特性&#xff0c;如对 GraalVM 原生镜像的支持、改进的性能优化以及更灵活的…...

接口开发完后,个人对于接下来接口优化的一些思考

优化点 入参的合法性和长度范围&#xff0c;必填项的检查验证 因为没有入参&#xff0c;所以不需要考虑。 批量思想解决N1问题 // 假设要查询100个订单及其对应的用户信息 List<Order> orders orderMapper.selectList(new QueryWrapper<>().last("limit …...

jenkins 使用 ssh-agent向windows进行部署

背景&#xff1a; jenkins在linux的docker环境内&#xff0c;应用服务部署在windows。需要使用jenkins实现自动化部署。 实现方式&#xff1a; jenkins上构建pipeline任务&#xff0c;脚本如下&#xff1a; 遇到问题&#xff1a; 1、问题&#xff1a;jenkins 调用部署bat脚…...

音视频入门基础:MPEG2-PS专题(6)——FFmpeg源码中,获取PS流的视频信息的实现

一、引言 通过FFmpeg命令可以获取到PS文件/PS流的视频压缩编码格式、色彩格式&#xff08;像素格式&#xff09;、分辨率、帧率信息&#xff1a; ./ffmpeg -i XXX.ps 本文以H.264为例讲述FFmpeg到底是从哪个地方获取到这些视频信息的。 二、视频压缩编码格式 &#xff08;…...

如果Adobe 退出中国后怎么办

最近听说Adobe要退出中国了?那咱们的设计师们可得好好想想怎么搞到正版软件了。别急&#xff0c;今天教大家一个超酷的福利——Edu邮箱&#xff01; Edu邮箱是什么&#xff1f;有什么好处&#xff1f; Edu邮箱就是学校给学生和老师们发的邮箱&#xff0c;一般结尾是.edu。有了…...

欧几里得距离在权重矩阵中的物理意义

欧几里得距离在权重矩阵中的物理意义 目录 欧几里得距离在权重矩阵中的物理意义**衡量神经元差异程度**:**反映模型变化程度**:**聚类和分组的依据**:自然语言处理中的模型更新:**神经网络聚类分组**:欧几里得距离在权重矩阵中的物理意义衡量神经元差异程度: 在神经网络中…...

玩转大语言模型——ollama导入huggingface下载的模型

ollama导入huggingface模型 前言gguf模型查找相关模型下载模型 导入Ollama配置参数文件导入模型查看导入情况 safetensfors模型下载模型下载llama.cpp配置环境并转换 前言 ollama在大语言模型的应用中十分的方便&#xff0c;但是也存在一定的问题&#xff0c;比如不能使用自己…...

Linux-----进程通讯(管道Pipe)

目录 进程不共享内存 匿名管道 通过匿名管道实现通讯 有名管道 库函数mkfifo() 案例 进程不共享内存 不同进程之间内存是不共享的。是相互独立的。 #include <stdio.h> #include <stdlib.h> #include <errno.h>int num 0;int main(int argc, char con…...

【C++11】列表初始化、右值引用和移动语义、引用折叠、完美转发

C11 一.C的发展历史二.列表初始化1.C98的{}2.C11的{}3.C11中的std::initializer_list 三.右值引用和移动语义1.左值和右值2.左值引用和右值引用3.引用延长生命周期4.左值和右值的参数匹配5.右值引用和移动语义使用场景1.左值引用使用场景2.移动构造和移动赋值3.右值引用和移动语…...

Openssl1.1.1s rpm包构建与升级

rpmbuild入门知识 openssh/ssl二进制升级 文章目录 前言一、资源准备1.下载openssh、openssl二进制包2.安装rpmbuild工具3.拷贝源码包到SOURCES目录下4.系统开启telnet&#xff0c;防止意外导致shh无法连接5.编译工具安装6.补充说明 二、制作 OpenSSL RPM 包1.编写 SPEC 文件2.…...

递归思想的深度理解——汉诺塔问题和青蛙跳台阶问题

递归的深度理解——汉诺塔问题and青蛙跳台阶问题 青蛙跳台阶问题汉诺塔问题 青蛙跳台阶问题 问题&#xff1a;一只青蛙可以一次跳一级台阶&#xff0c;也可以一次跳两级台阶&#xff0c;如果青蛙要跳n级台阶&#xff0c;共有多少种跳法&#xff1f; 解答&#xff1a;我们可以先…...

从数据到诊断:朴素贝叶斯算法助力肿瘤预测之路

1.案例概述 肿瘤性质的判断影响着患者的治疗方式和痊愈速度。传统的做法是医生根据数十个指标来判断肿瘤的性质&#xff0c;预测效果依赖于医生的个人经验而且效率较低&#xff0c;而通过机器学习有望能快速预测肿瘤的性质。 2.数据集 本次肿瘤预测使用的数据集共有569组样本…...

Element-UI:如何实现表格组件el-table多选场景下根据数据对某一行进行禁止被选中?

如何实现表格组件el-table多选场景下根据数据对某一行进行禁止被选中&#xff1f; 在使用 Element UI 的 Table 组件时&#xff0c;如果你想要禁用某一行的选中&#xff08;特别是在多选模式下&#xff09;&#xff0c;可以通过自定义行的 selectable 属性来实现。selectable …...

Dexcap复现代码数据预处理全流程(四)——demo_clipping_3d.py

此脚本的主要功能是可视化点云数据文件&#xff08;.pcd 文件&#xff09;&#xff0c;并通过键盘交互选择演示数据的起始帧和结束帧&#xff0c;生成片段标记文件 (clip_marks.json) 主要流程包括&#xff1a; 用户指定数据目录&#xff1a;检查目录是否存在并处理标记文件 -…...

JWT理解

前言 随着互联网的快速发展&#xff0c;身份验证和授权成为了许多应用的重要需求。JWT&#xff08;JSON Web Token&#xff09;作为一种轻量级的身份验证和授权机制&#xff0c;得到了广泛的应用。本文将为您详细介绍JWT的原理、结构和优点&#xff0c;帮助您更好地理解和应用…...

一种融合联邦学习和大模型特点的全新系统架构

一种融合联邦学习和大模型特点的全新系统架构 以下是一种融合联邦学习和大模型特点的全新系统架构设计: 分层分布式架构 底层 - 数据采集与预处理层:由大量的边缘设备和终端节点组成,如智能手机、物联网传感器等。这些设备负责采集本地数据,并在本地进行初步的数据预处理,…...

html表格table导出excel,主从表格式,带样式.自动分列

html的table导出成excel, vue模板 项目使用xlsx-js-style 源代码从https://github.com/gitbrent/xlsx-js-style/releases/tag/v1.2.0 下载 用里面的dist目录下的文件即可. 复制到vue项目的public目录下的XLSX目录下. 在index.hml中引入js脚本, 为啥要在这里引入? 是因为这里…...

U8G2库使用案例(stm32)

目录 一、小球在 OLED 屏幕平面内运动并碰撞反弹的效果 二、 简单的波形生成和显示程序: 三、三维三角形旋转展示 四、正方形平面内顺时针旋转 五、带有旋转点的空心圆圈应用 六、字幕滚动效果 七、下雪动画效果 八、进度条动画效果 自己移植的U8g2库&#xff0c;OLED库…...

067B-基于R语言平台Biomod2模型的物种分布建模与数据可视化-高阶课程【2025】

课程培训包含&#xff1a;发票全套软件脚本学习数据视频文件导师答疑 本教程旨在通过系统的培训学习&#xff0c;学员可以掌握Biomod2模型最新版本的使用方法&#xff0c;最新版包含12个模型&#xff08;ANN, CTA, FDA, GAM, GBM, GLM, MARS, MAXENT, MAXNET, RF, SRE, XGBOOST…...

【通俗理解】AI的两次寒冬:从感知机困局到深度学习前夜

AI的两次寒冬&#xff1a;从感知机困局到深度学习前夜 引用&#xff08;中英双语&#xff09; 中文&#xff1a; “第一次AI寒冬&#xff0c;是因为感知机局限性被揭示&#xff0c;让人们失去了对算法可行性的信心。” “第二次AI寒冬&#xff0c;则是因为专家系统的局限性和硬…...

141.《mac m系列芯片安装mongodb详细教程》

文章目录 下载从官网下载安装包 下载后双击解压出文件夹安装文件名修改为 mongodb配置data存放位置和日志log的存放位置启动方式一方式二方式二:输入mongo报错以及解决办法 本人电脑 m2 pro,属于 arm 架构 下载 官网地址: mongodb官网 怎么查看自己电脑应该下载哪个版本,输入…...

【Linux】sed编辑器

一、基本介绍 sed编辑器也叫流编辑器&#xff08;stream editor&#xff09;&#xff0c;它是根据事先设计好得一组规则编辑数据流。 交互式文本编辑器&#xff08;如Vim&#xff09;中&#xff0c;可以用键盘命令交互式地插入、删除或替换文本数据。 sed编辑器是根据命令处理…...

unity3d-搞个场景漫游如何实现Alpha

要处理两个问题&#xff1a; 如何设置地面人不掉下去 方法一、 游戏物体加刚体&#xff0c;将游戏物体和地面加collider。如果是地形&#xff0c;可以使用 Terrain Collider&#xff1b;如果是简单的平面&#xff0c;可以添加 Box Collider 或者 Mesh Collider&#xff08;如果…...

概率基本概念 --- 离散型随机变量实例

条件概率&独立事件 随机变量 - 离散型随机变量 - 非离散型随机变量 连续型随机变量奇异性型随机变量 概率表示 概率分布函数概率密度函数概率质量函数全概率公式贝叶斯公式 概率计算 数学期望方差协方差 计算实例 假设有两个离散型随机变量X和Y&#xff0c;它们代…...

oscp备考 oscp系列——Kioptix Level 1靶场 古老的 Apache Vuln

目录 前言 1. 主机发现 2. 端口扫描 3. 指纹识别 4. 目录扫描 5. 漏洞搜索和利用 前言 oscp备考&#xff0c;oscp系列——Kioptix Level 1靶场 Kioptix Level 1难度为简单靶场&#xff0c;主要考察 nmap的使用已经是否会看输出&#xff0c;以及是否会通过应用查找对应漏…...

【简博士统计学习方法】3. 统计学习方法的三要素

3. 统计学习方法的三要素 3.1 监督学习的三要素 3.1.1 模型 假设空间&#xff08;Hypothesis Space&#xff09;&#xff1a;所有可能的条件概率分布或决策函数&#xff0c;用 F \mathcal{F} F表示。 若定义为决策函数的集合&#xff1a; F { f ∣ Y f ( X ) } \mathcal{F…...

UnionTech OS Server 20 网页无法访问yum源地址

统信yum地址 https://euler-packages.chinauos.com/server-euler/fuyu/1060/everything/sw_64/Packages/ 浏览器访问401报错无权限&#xff0c;查看linux uos环境下yum配置的用户名和密码 cat /etc/yum/vars/auth_* 然后自己组装生成Basic Authorization def generate_basic_…...

WPF区域导航+导航参数使用+路由守卫+导航日志

背景&#xff1a;使用ContentControl控件实现区域导航是有Mvvm框架的WPF都能使用的&#xff0c;不限于Prism 主要是将ContenControl控件的Content内容在ViewModel中切换成不同的用户控件 下面是MainViewModel&#xff1a; private object body;public object Body {get { retu…...

jvm基础

jvm的基本结构‌‌ ‌类加载器&#xff08;ClassLoader&#xff09;‌&#xff1a;加载class文件到内存中进行使用。 ‌运行时数据区&#xff08;Runtime Data Area&#xff09;‌&#xff1a;这是JVM在运行Java程序期间管理的内存区域&#xff0c;包括方法区&#xff08;Meta…...