ICML 2025 | 时间序列(Time Series)论文总结
ICML 2025将在2025年7月13日至7月19日(周六)在温哥华会议中心举行,本文总结了ICML 2025有关时间序列(Time Series)相关文章,共计63篇。
时间序列Topic:预测,分类,异常检测,生成,因果发现,基础模型,大语言模型等。如有疏漏,欢迎补充!
如果论文中附图,则论文已经在网络上公开(arXiv,Openreview等)
- Patch-wise Structural Loss for Time Series Forecasting
- TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
- BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimisation and Diffusion Modelling
- Hi-Patch: Hierarchical Patch GNN for Irregular Multivariate Time Series
- HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting
- LSCD: Lomb–Scargle Conditioned Diffusion for Irregular Time series Imputation
- LETS Forecast: Learning Embedology for Time Series Forecasting
- TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting
- Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer
- When Will It Fail?: Anomaly to Prompt for Forecasting Future Anomalies in Time Series
- TransPL: Pseudo-Labeling via Code Transitions for Time Series Adaptation
- Channel Normalization for Time Series Channel Identification
- Slimming the Fat-Tail: MoF for Adaptive Time Series Modeling
- Privacy Amplification by Structured Subsampling for Deep Differentially Private Time Series Forecasting
- CMoS: Rethinking Time Series Prediction Through the Lens of Chunk-wise Spatial Correlations
- Exploring Representations and Interventions in Time Series Foundation Models
- CFPT: Empowering Time Series Forecasting through Cross-Frequency Interaction and Periodic-Aware Timestamp Modeling
- Causal Discovery from Conditionally Stationary Time Series
- TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting
- AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
- TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state
- TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting
- A Non-isotropic Time Series Diffusion Model with Moving Average Transitions
- Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification
- Time Series Representations with Hard-Coded Invariances
- Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting
- Non-stationary Diffusion For Probabilistic Time Series Forecasting
- K 2 K^2 K2VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
- LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization
- Shifting time: Time-series forecasting with Khatri-Rao neural operators
- Optimal Information Retention for Time-Series Explanations
- Lightweight Online Adaption for Time Series Foundation Model Forecasts
- Conditional Diffusion Model with Nonlinear Data Transformation for Time Series Forecasting
- Retrieval Augmented Time Series Forecasting
- IMTS is Worth Time × \times × Channel Patches: Visual Masked Autoencoders for Irregular Multivariate Time Series Prediction
- Relational Conformal Prediction for Correlated Time Series
- In-Context Fine-Tuning for Time-Series Foundation Models
- FSTLLM: Spatio-Temporal LLM for Few Shot Time Series Forecasting
- A Closer Look at Transformers for Time Series Forecasting: Understanding Why They Work and Where They Struggle
- Temporal Query Network for Efficient Multivariate Time Series Forecasting
- TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning
- LightGTS: A Lightweight General Time Series Forecasting Model
- Efficient Time Series Processing for Transformers and State-Space Models through Token Merging
- SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting
- Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series
- LAST SToP for Modeling Asynchronous Time Series
- WAVE: Weighted Autoregressive Varing Gate for Time Series Forecasting
- KAN-AD: Time Series Anomaly Detection with Kolmogorov–Arnold Networks
- Sundial: A Family of Highly Capable Time Series Foundation Models
- KoNODE: Koopman-Driven Neural Ordinary Differential Equations with Evolving Parameters for Time Series Analysis
- ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset
- FIC-TSC: Learning Time Series Classification with Fisher Information Constraint
- Learning Soft Sparse Shapes for Efficient Time-Series Classification
- VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters
- Winner-takes-all for Multivariate Probabilistic Time Series Forecasting
- Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting
- VerbalTS: Generating Time Series from Texts
- TimeBase: The Power of Minimalism in Efficient Long-term Time Series Forecasting
- Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization
- Empowering Time Series Foundation Models with Sparse Mixture of Experts
- Causality-Aware Contrastive Learning for Robust Multivariate Time-Series Anomaly Detection
- Timing: Temporality-Aware Integrated Gradients for Time Series Explanation
- Arrow: Accelerator for Time Series Causal Discovery with Time Weaving
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
1 TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation
链接:https://icml.cc/virtual/2025/poster/43701
作者:Daoyu Wang, Mingyue Cheng, Zhiding Liu, Qi Liu
关键词:预测,自回归,自监督,
2 Time Series Representations with Hard-Coded Invariances
链接:https://icml.cc/virtual/2025/poster/45216
作者:Thibaut Germain, Chrysoula Kosma, Laurent Oudre
关键词:表示学习,不变性,卷积
3 Exploring Representations and Interventions in Time Series Foundation Models
链接:https://icml.cc/virtual/2025/poster/44453
作者:Michal Wilinski, Mononito Goswami, Nina Żukowska, Willa Potosnak, Artur Dubrawski
关键词:基础模型,表示学习
4 Towards a General Time Series Forecasting Model with Unified Representation and Adaptive Transfer
链接:https://icml.cc/virtual/2025/poster/46383
作者:Yihang Wang, Yuying Qiu, Peng Chen, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo
关键词:预测,少样本,零样本
5 TimeFilter: Patch-Specific Spatial-Temporal Graph Filtration for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/46502
作者:Yifan Hu, Guibin Zhang, Peiyuan Liu, Disen Lan, Naiqi Li, Dawei Cheng, Tao Dai, Shutao Xia, Shirui Pan
关键词:预测,时空图,通道关系
6 Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization
链接:https://icml.cc/virtual/2025/poster/46131
作者:Luca Masserano, Abdul Fatir Ansari, Boran Han, Xiyuan Zhang, Christos Faloutsos, Michael Mahoney, Andrew Wilson, Youngsuk Park, Syama Sundar Yadav Rangapuram, Danielle Maddix, Yuyang Wang
关键词:预测,基础模型,小波变换,token化
7 Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44762
作者:Siru Zhong, Weilin Ruan, Ming Jin, Huan Li, Qingsong Wen, Yuxuan Liang
关键词:预测,多模态,视觉语言模型
8 Lightweight Online Adaption for Time Series Foundation Model Forecasts
链接:https://icml.cc/virtual/2025/poster/44485
作者:Thomas Lee, William Toner, Rajkarn Singh, Artjom Joosen, Martin Asenov
关键词:预测,基础模型,在线学习
9 When Will It Fail?: Anomaly to Prompt for Forecasting Future Anomalies in Time Series
链接:https://icml.cc/virtual/2025/poster/45978
作者:Min-Yeong Park, Won-Jeong Lee, Seong Tae Kim, Gyeong-Moon Park
关键词:异常检测,提示
10 TimeStacker: A Novel Framework with Multilevel Observation for Capturing Nonstationary Patterns in Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/46428
作者:Qinglong Liu, Cong Xu, Wenhao Jiang, Kaixuan Wang, Lin Ma, Haifeng Li
关键词:预测,非平稳性,多尺度
11 AdaPTS: Adapting Univariate Foundation Models to Probabilistic Multivariate Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/43518
作者:Abdelhakim Benechehab, Vasilii Feofanov, Giuseppe Paolo, Albert Thomas, Maurizio Filippone, Balázs Kégl
关键词:预测,基础模型,单变量,概率预测
12 TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state
链接:https://icml.cc/virtual/2025/poster/43851
作者:Xiaowen Ma, Zhen-Liang Ni, Shuai Xiao, Xinghao Chen
关键词:长时预测,变量感知,时间感知
13 Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/43827
作者:Zhining Liu, Ze Yang, Xiao Lin, Ruizhong Qiu, Tianxin Wei, Yada Zhu, Hendrik Hamann, Jingrui He, Hanghang Tong
关键词:预测,自适应
14 TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/43973
作者:Peiyuan Liu, Beiliang Wu, Yifan Hu, Naiqi Li, Tao Dai, Jigang Bao, Shutao Xia
关键词:长时预测,非平稳性
15 HyperIMTS: Hypergraph Neural Network for Irregular Multivariate Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/43741
作者:Boyuan Li, Yicheng Luo, Zhen Liu, Junhao Zheng, Jianming Lv, Qianli Ma
关键词:预测,超图,不规则多元时序
16 LETS Forecast: Learning Embedology for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/45595
作者:Abrar Majeedi, Viswanatha Reddy Gajjala, Satya Sai Srinath Namburi GNVV, Nada Elkordi, Yin Li
关键词:预测,经验动态建模
17 Privacy Amplification by Structured Subsampling for Deep Differentially Private Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44722
作者:Jan Schuchardt, Mina Dalirrooyfard, Jed Guzelkabaagac, Anderson Schneider, Yuriy Nevmyvaka, Stephan Günnemann
关键词:预测,差分隐私
18 TimeBase: The Power of Minimalism in Efficient Long-term Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/45815
作者:Qihe Huang, Zhengyang Zhou, Kuo Yang, Zhongchao Yi, Xu Wang, Yang Wang
关键词:预测,极简主义,高效性
19 CFPT: Empowering Time Series Forecasting through Cross-Frequency Interaction and Periodic-Aware Timestamp Modeling
链接:https://icml.cc/virtual/2025/poster/44425
作者:Feifei Kou, Jiahao Wang, Lei Shi, Yuhan Yao, Yawen Li, Suguo Zhu, Zhongbao Zhang, Junping Du
关键词:预测,时间戳建模,跨频交互
20 Winner-takes-all for Multivariate Probabilistic Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/46485
作者:Adrien Cortes, Remi Rehm, Victor Letzelter
关键词:预测,多元概率预测
21 Conditional Diffusion Model with Nonlinear Data Transformation for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44243
作者:RISHI JINKA, Venkata Sai Mothish Gonugunta, Deepak N. Subramani
关键词:预测,非线性变换,条件扩散模型
22 Patch-wise Structural Loss for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44030
作者:Dilfira Kudrat, Zongxia Xie, Yanru Sun, Tianyu Jia, Qinghua Hu
关键词:预测,结构化损失
23 FSTLLM: Spatio-Temporal LLM for Few Shot Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44031
作者:Yue Jiang, Yile Chen, Xiucheng Li, Qin Chao, SHUAI LIU, Gao Cong
关键词:预测,少样本,时空大模型
24 Non-stationary Diffusion For Probabilistic Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44783
作者:Weiwei Ye, Zhuopeng Xu, Ning Gui
关键词:预测,概率预测,非平稳
25 VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/46346
作者:Xingjian Wu, Xiangfei Qiu, Hongfan Gao, Jilin Hu, Chenjuan Guo, Bin Yang
关键词:概率预测,变分自编码器,库普曼,卡尔曼
26 Shifting time: Time-series forecasting with Khatri-Rao neural operators
链接:https://icml.cc/virtual/2025/poster/44565
作者:Srinath Dama, Kevin L Course, Prasanth B Nair
关键词:时间序列建模、时空建模、时移算子、Khatri-Rao 神经算子、神经算子、算子学习
27 LangTime: A Language-Guided Unified Model for Time Series Forecasting with Proximal Policy Optimization
链接:https://icml.cc/virtual/2025/poster/45059
作者:Wenzhe Niu, Zongxia Xie, Yanru Sun, Wei He, Man Xu, Chao Hao
关键词:预测,语言模型,近端策略优化(PPO)
28 Retrieval Augmented Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/45826
作者:Sungwon Han, Seungeon Lee, MEEYOUNG CHA, Sercan Arik, Jinsung Yoon
关键词:预测,检索增强(RAG)
29 Temporal Query Network for Efficient Multivariate Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44603
作者:Shengsheng Lin, Haojun Chen, Haijie Wu, Chunyun Qiu, Weiwei Lin
关键词:预测,时间查询,多元时间序列预测
30 A Closer Look at Transformers for Time Series Forecasting: Understanding Why They Work and Where They Struggle
链接:https://icml.cc/virtual/2025/poster/44262
作者:Yu Chen, Nathalia Céspedes, Payam Barnaghi
关键词:预测,Transformer
31 LightGTS: A Lightweight General Time Series Forecasting Model
链接:https://icml.cc/virtual/2025/poster/44879
作者:Yihang Wang, Yuying Qiu, Peng Chen, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo
关键词:预测,轻量化
32 SKOLR: Structured Koopman Operator Linear RNN for Time-Series Forecasting
链接:https://icml.cc/virtual/2025/poster/44949
作者:Yitian Zhang, Liheng Ma, Antonios Valkanas, Boris Oreshkin, Mark Coates
关键词:预测,库普曼算子
33 WAVE: Weighted Autoregressive Varing Gate for Time Series Forecasting
链接:https://icml.cc/virtual/2025/poster/45318
作者:Jiecheng Lu, Xu Han, Yan Sun, Shihao Yang
关键词:预测,自回归
34 VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters
链接:https://icml.cc/virtual/2025/poster/46441
作者:Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Wang, Jianling Sun, Chenghao Liu
关键词:预测,多模态
35 Causality-Aware Contrastive Learning for Robust Multivariate Time-Series Anomaly Detection
链接:https://icml.cc/virtual/2025/poster/45960
作者:HyunGi Kim, Jisoo Mok, Dong Jun Lee, Jaihyun Lew, Sungjae Sungjae, Sungroh Yoon
关键词:异常检测,因果感知
36 KAN-AD: Time Series Anomaly Detection with Kolmogorov–Arnold Networks
链接:https://icml.cc/virtual/2025/poster/45584
作者:Quan Zhou, Changhua Pei, Fei Sun, Jianhui LI, haiming zhang, Gaogang Xie, Dan Pei, Zhengwei Gao, HanJing
关键词:异常检测,KAN
37 Learning Soft Sparse Shapes for Efficient Time-Series Classification
链接:https://icml.cc/virtual/2025/poster/46130
作者:Zhen Liu, Yicheng Luo, Boyuan Li, Emadeldeen Eldele, Min Wu, Qianli Ma
关键词:分类,高效性
38 FIC-TSC: Learning Time Series Classification with Fisher Information Constraint
链接:https://icml.cc/virtual/2025/poster/45977
作者:Xiwen Chen, Wenhui Zhu, Peijie Qiu, Hao Wang, Huayu Li, ZIHAN LI, Yalin Wang, Aristeidis Sotiras, Abolfazl Razi
关键词:分类
39 Spectral-Aware Reservoir Computing for Fast and Accurate Time Series Classification
链接:https://icml.cc/virtual/2025/poster/45987
作者:Shikang Liu, Chuyang Wei, Xiren Zhou, Huanhuan Chen
关键词:分类,谱感知
40 Generating Hypotheses of Dynamic Causal Graphs in Neuroscience: Leveraging Generative Factor Models of Observed Time Series
链接:https://icml.cc/virtual/2025/poster/45009
作者:Zachary Brown, David Carlson
关键词:因果图
41 Causal Discovery from Conditionally Stationary Time Series
链接:https://icml.cc/virtual/2025/poster/44317
作者:Carles Balsells-Rodas, Xavier Sumba, Tanmayee Narendra, Ruibo Tu, Gabriele Schweikert, Hedvig Kjellström, Yingzhen Li
关键词:因果发现,平稳时间序列
42 Arrow: Accelerator for Time Series Causal Discovery with Time Weaving
链接:https://icml.cc/virtual/2025/poster/46084
作者:YUANYUAN YAO, Yuan Dong, Lu Chen, Kun Kuang, Ziquan Fang, Cheng Long, Yunjun Gao, TIANYI LI
关键词:因果发现
43 KoNODE: Koopman-Driven Neural Ordinary Differential Equations with Evolving Parameters for Time Series Analysis
链接:https://icml.cc/virtual/2025/poster/45804
作者:Hanru Bai, Weiyang Ding
关键词:时间序列分析,库普曼理论
44 TransPL: Pseudo-Labeling via Code Transitions for Time Series Adaptation
链接:https://icml.cc/virtual/2025/poster/46696
作者:Jaeho Kim, Seulki Lee
关键词:时间序列自适应
45 Efficient Time Series Processing for Transformers and State-Space Models through Token Merging
链接:https://icml.cc/virtual/2025/poster/44933
作者:Leon Götz, Marcel Kollovieh, Stephan Günnemann, Leo Schwinn
关键词:时间序列处理加速,token化,状态空间模型
46 A Non-isotropic Time Series Diffusion Model with Moving Average Transitions
链接:https://icml.cc/virtual/2025/poster/43547
作者:Chenxi Wang, Linxiao Yang, Zhixian Wang, Liang Sun, Yi Wang
47 LAST SToP for Modeling Asynchronous Time Series
链接:https://icml.cc/virtual/2025/poster/45155
作者:Shubham Gupta, Thibaut Durand, Graham Taylor, Lilian Bialokozowicz
关键词:异步时间序列,大模型
48 Slimming the Fat-Tail: MoF for Adaptive Time Series Modeling
链接:https://icml.cc/virtual/2025/poster/44444
作者:Tianyu Liu, kai sun, Fuchun Sun, Yu Luo, Yuanlong Zhang
关键词:时间序列建模,变形流
49 In-Context Fine-Tuning for Time-Series Foundation Models
链接:https://icml.cc/virtual/2025/poster/43707
作者:Matthew Faw, Rajat Sen, Yichen Zhou, Abhimanyu Das
50 Sundial: A Family of Highly Capable Time Series Foundation Models
链接:https://icml.cc/virtual/2025/poster/45591
作者:Yong Liu, Guo Qin, Zhiyuan Shi, Zhi Chen, Caiyin Yang, Xiangdong Huang, Jianmin Wang, Mingsheng Long
关键词:基础模型,多任务
51 ITFormer: Bridging Time Series and Natural Language for Multi-Modal QA with Large-Scale Multitask Dataset
链接:https://icml.cc/virtual/2025/poster/45847
作者:Yilin Wang, Peixuan Lei, chen tao, Jie Song, Haoyuzhe, Yuxuan Zhang, LEI JIA, Yuanxiang Li, Zhongyu Wei
关键词:多模态问答,多任务
52 TimePoint: Accelerated Time Series Alignment via Self-Supervised Keypoint and Descriptor Learning
链接:https://icml.cc/virtual/2025/poster/44741
作者:Ron Shapira Weber, shahar benishay, Shahaf E. Finder, Andrey Lavrinenko, Oren Freifeld
关键词:对齐,自监督
53 Channel Normalization for Time Series Channel Identification
链接:https://icml.cc/virtual/2025/poster/45365
作者:Seunghan Lee, Taeyoung Park, Kibok Lee
关键词:通道归一化,通道验证
54 CMoS: Rethinking Time Series Prediction Through the Lens of Chunk-wise Spatial Correlations
链接:https://icml.cc/virtual/2025/poster/44558
作者:Haotian Si, Changhua Pei, Dan Pei, Gaogang Xie, Jianhui LI
关键词:预测,分块空间
55 LSCD: Lomb–Scargle Conditioned Diffusion for Irregular Time series Imputation
链接:https://icml.cc/virtual/2025/poster/45821
作者:Elizabeth M Fons Etcheverry, Alejandro Sztrajman, Yousef El-Laham, Luciana Ferrer, Svitlana Vyetrenko, Manuela Veloso
关键词:插补,不规则时间序列,扩散
56 VerbalTS: Generating Time Series from Texts
链接:https://icml.cc/virtual/2025/poster/45631
作者:Shuqi Gu, Chuyue Li, Baoyu Jing, Kan Ren
关键词:时间序列生成,文本数据
57 Hi-Patch: Hierarchical Patch GNN for Irregular Multivariate Time Series
链接:https://icml.cc/virtual/2025/poster/44115
作者:Yicheng Luo, Bowen Zhang, Zhen Liu, Qianli Ma
关键词:不规则时间序列,图神经网络
58 BRIDGE: Bootstrapping Text to Control Time-Series Generation via Multi-Agent Iterative Optimisation and Diffusion Modelling
链接:https://icml.cc/virtual/2025/poster/43728
作者:Hao Li, Yu-Hao Huang, Chang Xu, Viktor Schlegel, Renhe Jiang, Riza Batista-Navarro, Goran Nenadic, Jiang Bian
59 Empowering Time Series Foundation Models with Sparse Mixture of Experts
链接:https://icml.cc/virtual/2025/poster/45201
作者:Xu Liu, Juncheng Liu, Gerald Woo, Taha Aksu, Yuxuan Liang, Roger Zimmermann, Chenghao Liu, Junnan Li, Silvio Savarese, Caiming Xiong, Doyen Sahoo
关键词:时间序列基础模型,混合专家系统
60 Optimal Information Retention for Time-Series Explanations
链接:https://icml.cc/virtual/2025/poster/43746
作者:Jinghang Yue, Jing Wang, Lu Zhang, Shuo Zhang, Da Li, Zhaoyang Ma, Youfang Lin
关键词:最优信息保留原则,可解释性
61 Timing: Temporality-Aware Integrated Gradients for Time Series Explanation
链接:https://icml.cc/virtual/2025/poster/43941
作者:Hyeongwon Jang, Changhun Kim, Eunho Yang
关键词:可解释性,积分梯度
62 IMTS is Worth Time Channel Patches: Visual Masked Autoencoders for Irregular Multivariate Time Series Prediction
链接:https://icml.cc/virtual/2025/poster/46570
作者:Zhangyi Hu, Jiemin Wu, Hua XU, Mingqian Liao, Ninghui Feng, Bo Gao, Songning Lai, Yutao Yue
关键词:预测,不规则时间序列
63 Relational Conformal Prediction for Correlated Time Series
链接:https://icml.cc/virtual/2025/poster/43601
作者:Andrea Cini, Alexander Jenkins, Danilo Mandic, Cesare Alippi, Filippo Maria Bianchi
关键词:共形预测,关联时间序列
词**:可解释性,积分梯度
62 IMTS is Worth Time Channel Patches: Visual Masked Autoencoders for Irregular Multivariate Time Series Prediction
链接:https://icml.cc/virtual/2025/poster/46570
作者:Zhangyi Hu, Jiemin Wu, Hua XU, Mingqian Liao, Ninghui Feng, Bo Gao, Songning Lai, Yutao Yue
关键词:预测,不规则时间序列
63 Relational Conformal Prediction for Correlated Time Series
链接:https://icml.cc/virtual/2025/poster/43601
作者:Andrea Cini, Alexander Jenkins, Danilo Mandic, Cesare Alippi, Filippo Maria Bianchi
关键词:共形预测,关联时间序列
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅时空探索之旅
相关文章:
ICML 2025 | 时间序列(Time Series)论文总结
ICML 2025将在2025年7月13日至7月19日(周六)在温哥华会议中心举行,本文总结了ICML 2025有关时间序列(Time Series)相关文章,共计63篇。 时间序列Topic:预测,分类,异常检测,生成&…...
理解后端开发中的中间件(以gin框架为例)
中间件(Middleware)是后端开发中的一个核心概念,它在请求(Request)和响应(Response)之间扮演着桥梁角色。以下是关于中间件的详细解释: 基本概念 中间件是在请求到达最终处理程序之前或响应返回客户端之前执行的一系列函数或组件。它可以: 访…...
【分布式技术】Bearer Token以及MAC Token深入理解
Bearer Token以及MAC Token深入理解 **Bearer Token 详解****1. 什么是 Bearer Token?****2. Bearer Token 的构建详情****(1)生成流程****(2)Token 示例(JWT)****(3)Tok…...
WebRTC(七):媒体能力协商
目的 在 WebRTC 中,每个浏览器或终端支持的音视频编解码器、分辨率、码率、帧率等可能不同。媒体能力协商的目的就是: 确保双方能“听得懂”对方发的媒体流;明确谁发送、谁接收、怎么发送;保障连接的互操作性和兼容性。 P2P的基…...
(线性代数最小二乘问题)Normal Equation(正规方程)
Normal Equation(正规方程) 是线性代数中的一个重要概念,主要用于解决最小二乘问题(Least Squares Problem)。它通过直接求解一个线性方程组,找到线性回归模型的最优参数(如权重或系数ÿ…...
【机器学习】数学基础——标量
目录 一、标量的定义 二、标量的核心特征:无方向的纯粹量级 2.1 标量 vs 矢量 直观对比 三、 标量的数学本质:零阶张量 3.1 张量阶数金字塔 3.2 标量的数学特性 四、 现实世界的标量图谱 4.1 常见标量家族 4.2 经典案例解析 五、 标量的运算奥秘…...
基于python代码的通过爬虫方式实现TK下载视频(2025年6月)
Tk的视频页面通常需要登录才能获取完整数据,但通过构造匿名游客的请求,我们可以绕过登录限制,提取视频的元信息(如标题、ID和播放地址)。核心思路如下: 构造匿名Cookie:通过模拟浏览器的请求,获取Tk服务器分配的游客Cookie。解析网页:利用BeautifulSoup解析HTML,定位…...
Go 语言的堆糖图片爬虫
基于 Go 语言的堆糖图片爬取探索之旅 在互联网的浩瀚海洋中,堆糖网以其丰富多样的高清图片、美图壁纸等内容吸引了众多用户。对于图片爱好者来说,能高效获取心仪的图片资源无疑是一件极具吸引力的事情。今天,就带大家走进一段基于 Go 语言的…...
python+uni-app基于微信小程序的儿童安全教育系统
文章目录 具体实现截图本项目支持的技术路线源码获取详细视频演示:文章底部获取博主联系方式!!!!本系统开发思路进度安排及各阶段主要任务java类核心代码部分展示主要参考文献:源码获取/详细视频演示 ##项目…...
DAY 39 图像数据与显存
图像数据的格式:灰度和彩色数据模型的定义显存占用的4种地方 模型参数梯度参数优化器参数数据批量所占显存神经元输出中间状态 batchisize和训练的关系 import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader ,…...
ELK搭建
1、elasticsearch和kibana搭建配置见 https://blog.csdn.net/yh_zeng2/article/details/148812447?spm1001.2014.3001.5501 2、logstash 下载 下载和elasticsearch版本一致的logstash,下载地址: Past Releases of Elastic Stack Software | Elastic …...
【ELK(Elasticsearch+Logstash+Kibana) 从零搭建实战记录:日志采集与可视化】
ELK(ElasticsearchLogstashKibana) 从零搭建实战记录:日志采集与可视化 本文记录了我在搭建ELK(Elasticsearch, Logstash, Kibana)技术栈时的完整实战过程。使用Docker Compose快速搭建了ELK服务端(监控主机),并通过Filebeat实现…...
反无人机系统:技术利刃如何守护低空安全?
反无人机系统:技术利刃如何守护低空安全? ——从军事防御到城市安防的全景解析 一、技术体系:从“电磁软杀伤”到“激光硬摧毁”的立体防御网 反无人机技术本质是一场“降维打击”:用百万级防御系统对抗千元级消费无人机。当前…...
第十章——8天Python从入门到精通【itheima】-102-Python基础综合案例-数据可视化(pyecharts的入门使用+数据处理)
目录 102节——pyecharts的入门使用 1.学习目标 2.pyecharts入门——基础折线图 3.pyecharts的配置对象有哪些? 4.全局配置——set_global_opts 5.小节总结 103节——数据处理 1.学习目标 2.无法继续关于第一阶段的pyecharts的相关学习 因为关于JSON数据获…...
Neo4j 中存储和查询数组数据的完整指南
Neo4j 中存储和查询数组数据的完整指南 图形数据库 Neo4j 不仅擅长处理节点和关系,还提供了强大的数组(Array)存储和操作能力。本文将全面介绍如何在 Neo4j 中高效地使用数组,包括存储、查询、优化以及实际应用场景。 数组在 Neo4j 中的基本使用 数组…...
云原生/容器相关概念记录
文章目录 网络与虚拟化技术云平台与架构容器与编排容器网络方案性能优化与工具硬件与协议 网络与虚拟化技术 P4可编程网关 P4: Programming Protocol-independent Packet Processors一种基于P4语言的可编程网络设备,支持自定义数据包处理逻辑。P4可编程技术详解&am…...
uni-app项目实战笔记21--uniapp缓存的写入和读取
一、缓存的写入 uni.setStorageSync("storageClassList",classifyList.value) 二、缓存的读取,如果缓存不存在,则返回空数组 const storageClassList uni.getStorageSync("storageClassList") || []; 三、对读取到的数据进行转…...
操作系统概述
覆盖了操作系统概述、运行机制、中断、异常、操作系统的五大结构、虚拟机。 借鉴:王道、我的好朋友杨某、我的笔记。 一、操作系统概念 概念 1.操作系统体现了封装思想 由于底层硬件只接受二进制的指令不方便用户操作,所以操作系统把这些封装成简易的…...
探索数据的力量:Elasticsearch中指定链表字段的统计查询记录
目录 一、基本的数据结构说明 二、基本的统计记录 (一)统计当前索引中sellingProducts的所有类型 (二)检索指定文档中sellingProducts的数据总量 (三)检索指定文档中sellingProducts指定类型的数量统计…...
【Datawhale组队学习202506】YOLO-Master task03 IOU总结
系列文章目录 task01 导学课程 task02 YOLO系列发展线 文章目录 系列文章目录前言1 功能分块1.1 骨干网络 Backbone1.2 颈部网络 Neck1.3 头部网络 Head1.3.1 边界框回归头1.3.2 分类头 2 关键概念3 典型算法3.1 NMS3.2 IoU 总结 前言 Datawhale是一个专注于AI与数据科学的开…...
C/C++数据结构之静态数组
概述 静态数组是C/C中一种基础的数据结构,它允许用户在编译时便确定数组的大小,并分配固定数量的连续存储空间来存放相同类型的元素。静态数组的主要特点是:其大小在声明时就必须指定,且在其生命周期内保持不变。这也意味着&#…...
pyqt f-string
文章目录 一、f-string的基本语法二、代码中的具体应用拼接效果 三、f-string的核心优势四、与其他字符串格式化方式的对比五、在Qt程序中的实际作用六、扩展用法:在f-string中添加格式说明 Python的 f-string(格式化字符串字面值) 特性&…...
夏普 AR-2348SV 打印机信息
基本信息:这是一款黑白 A3 激光多功能数码复合机,可实现打印、复印、扫描功能。性能参数 打印 / 复印速度:23 张 / 分钟。分辨率:600x600dpi,能确保文字和图像清晰。最大打印 / 复印尺寸:A3。纸张支持&…...
跨个体预训练与轻量化Transformer在手势识别中的应用:Bioformer
目录 一、从深度学习到边缘部署,手势识别的新突破 (一)可穿戴设备 边缘计算 个性化医疗新可能 (二)肌电信号(sEMG):手势识别的关键媒介 (三)挑战&#…...
探索常识性概念图谱:构建智能生活的知识桥梁
目录 一、知识图谱背景介绍 (一)基本背景 (二)与NLP的关系 (三)常识性概念图谱的引入对比 二、常识性概念图谱介绍 (一)常识性概念图谱关系图示例 (二)…...
人人都是音乐家?腾讯开源音乐生成大模型SongGeneration
目录 前言 一、SongGeneration 带来了什么? 1.1 文本控制与风格跟随:你的想法,AI 精准实现 1.2 多轨生成:从“成品”到“半成品”的巨大飞跃 1.3 开源:推倒“高墙”,共建生态 二、3B 参数如何媲美商业…...
一,python语法教程.内置API
一,字符串相关API string.strip([chars])方法:移除字符串开头和结尾的空白字符(如空格、制表符、换行符等),它不会修改原始字符串,而是返回一个新的处理后的字符串 chars(可选)&…...
python中学物理实验模拟:凸透镜成像和凹透镜成像
python中学物理实验模拟:凸透镜成像和凹透镜成像 凸透镜成像 凸透镜是指中间厚、边缘薄的透镜。它对光线有会聚作用,即光线通过凸透镜后会向主光轴方向偏折。 成像原理 基于光的折射,平行于主光轴的光线经凸透镜折射后会聚于焦点ÿ…...
【AGI】突破感知-决策边界:VLA-具身智能2.0
突破感知-决策边界:VLA-具身智能2.0 (一)技术架构核心(二)OpenVLA:开源先锋与性能标杆(三)应用场景:从实验室走向真实世界(四)挑战与未来方向&…...
2D曲线点云平滑去噪
2D曲线点云,含许多噪声,采用类似移动最小二乘的方法(MLS)分段拟合抛物线并投影至抛物线,进行点云平滑去噪。 更通俗的说法是让有一定宽度的曲线点云,变成一条细曲线上的点。 分两种情况进行讨论: 1&#…...
靶场(二十一)---小白心得靶场体会---DVR4
先看端口,看到了一个dvr的服务,老规矩只要有服务就先去看看 PORT STATE SERVICE VERSION 22/tcp open ssh Bitvise WinSSHD 8.48 (FlowSsh 8.48; protocol 2.0; non-commercial use) | ssh-hostkey: | 3072 21:25:f0:53:b4…...
Qt + C++ 入门2(界面的知识点)
补充前面没有说到的一点就是,qt的页面你可以用qt自带的也就是前面所说的自动生成.UI文件生成前端所谓的界面,然后往里面拖控件就可以了,这个UI界面非常的适合用于新手,以及某些软件少量的界面应用 。但是有一个难点就是后期这个UI…...
计算机网络第九章——数据链路层《流量控制和可靠传输》
一、回顾概念 前面上一章讲了数据链路层的《差错控制》,那么回顾一下差错控制和可靠传输的区别: 差错控制:发现一个帧里的【位错(比特错)】 检错(奇偶校验码、CRC循环冗余校验码):接…...
Zephyr 调试实用指南:日志系统、Shell CLI 与 GDB 全面解析
本文深入讲解 Zephyr 的调试利器,包括统一日志系统(logging subsystem)、内置命令行(Shell CLI)、与 GDB 调试集成方法,帮助开发者快速定位问题、分析运行时行为,实现高效开发与排障。 一、日志…...
【知识图谱提取】【阶段总结】【LLM4KGC】LLM4KGC项目提取知识图谱推理部分
文章目录 前言LLM4KGC的三个部分显卡使用效果前言 之前在学习基于大模型的知识图谱提取,就找到了LLM4KGC这个项目: 项目地址: https://github.com/ChristopheCruz/LLM4KGC/ 总体来说,这个项目没有什么比较高深的idea,年份也比较古老,但确实挺适合入手的。主要是绝对简…...
基于YOLO的智能车辆检测与记录系统
基于YOLO的智能车辆检测与记录系统 摘要 本报告总结了智能车辆检测系统的开发工作,主要包括车辆数据标注、YOLO模型训练及QT交互系统搭建三部分。通过使用专业标注工具完成车辆目标数据集的标注与预处理,基于YOLO模型构建车辆检测算法并优化训练流程&a…...
5.2 Qt Creator 使用FFmpeg库
一、目录结构 ├─3rdparty # 第三方依赖库 │ └─ffmpeg-4.4.3 # ffmpeg库 │ ├─mingw # 用MinGW64编译的库 │ │ ├─bin │ │ ├─include │ │ └─lib │ └─msvc # 用MSVC编译的库 │ ├─bin │ …...
C++基础练习 sort函数,用于排序函数
题目: https://acm.hdu.edu.cn/showproblem.php?pid2039 解答: #include <iostream> #include <cmath> #include <algorithm> using namespace std;double a[3]; int main(){int n;cin>>n;while(n--){cin>>a[0]>>…...
【Docker 08】Compose - 容器编排
🌈 一、Docker Compose 介绍 ⭐ 1. Docker Compose 是什么 Docker Compose 是由 Docker 官方提供的一个用于定义和运行多容器应用的工具,它让用户可以通过一个 YAML 文件(通常是 docker-compose.yml)来配置应用所需要的服务&…...
docker执行yum报错Could not resolve host: mirrorlist.centos.org
解决办法: -- 依次执行以下命令cd /etc/yum.repos.d/sed -i s|#baseurlhttp://mirror.centos.org|baseurlhttp://vault.centos.org|g /etc/yum.repos.d/CentOS-*sed -i s/mirrorlist/#mirrorlist/g /etc/yum.repos.d/CentOS-*yum update -yecho "export LC_ALL…...
信贷域——信贷授信业务
摘要 本文详细介绍了信贷授信业务,包括其核心目标、典型流程、不同机构授信流程的对比、授信业务的其他类型以及授信模块的技术实现。信贷授信是金融机构在放贷前对客户信用额度的评估与审批流程,旨在控制风险、合理设定额度和期限、确保合规࿰…...
python的校园兼职系统
目录 技术栈介绍具体实现截图系统设计研究方法:设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示 技术栈介绍 Django-SpringBoot-php-Node.js-flask 本课题的研究方法和研究步骤基本合理,难度适中…...
深度剖析 PACK_SESSIONID 实现原理与安全突破机制
🌐 深度剖析 PACK_SESSIONID 实现原理与安全突破机制 🖼️ 1. 完整数据处理流程 #mermaid-svg-TW7jVIcz81hCZVS9 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-TW7jVIcz81hCZVS9 .error-ico…...
从0开始学习计算机视觉--Day02--数据驱动
上次我们在课程里了解到,亚马逊网站在当时构建了一个在那时候最大的供AI训练的数据集,为了推广这个测试,他们举办了比赛邀请了许多的参赛者,识别图片的标准是输出的类别中只要在前面五个里包含了正确答案就算识别成功。在这个过程…...
【LeetCode#第198题】打家劫舍(一维dp)
198. 打家劫舍 - 力扣(LeetCode) 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入&#…...
stm32串口(uart)2转发到串口(uart)3实现
今天博主在用kelil5写stm32的程序时遇到了一个全局变量因为在中断和任务切换时没有加 volatile 修饰,导致任务检测不到标志位变化,无法实现效果的问题。 全部代码: /* USER CODE BEGIN Header */ /***************************************…...
数据结构——函数填空题
链队出队入队 入队:新指针p赋给队尾的下一个,再赋给队尾 出队:队首指针赋给p,后移 p的下一个赋给队首指向的下一个 若队尾p,则证明首尾相连为1个 字符串匹配算法 二叉树 统计二叉树度为1的节点 树T为空࿰…...
什么是跨域问题?后端如何解决跨域问题?
跨域问题是指浏览器为了安全,对不同域(包含不同协议、不同端口或不同主机名)的请求进行限制,从而导致请求无法正常访问后端接口。 跨域问题的产生源于浏览器的同源策略(Same-Origin Policy),这…...
使用ccs生成bin
CCS12.6 编译生成BIN文件正确方法_ccs生成bin文件-CSDN博客...
Python 邻接表详细实现指南
邻接表是图数据结构的一种高效表示方法,特别适合表示稀疏图。下面我将用 Python 详细讲解邻接表的多种实现方式、操作方法和实际应用。 一、邻接表基础概念 邻接表的核心思想是为图中的每个顶点维护一个列表,存储与该顶点直接相连的所有邻接顶点。 邻…...