当前位置: 首页 > news >正文

探索数据的力量:Elasticsearch中指定链表字段的统计查询记录

目录

一、基本的数据结构说明

二、基本的统计记录

(一)统计当前索引中sellingProducts的所有类型

(二)检索指定文档中sellingProducts的数据总量

(三)检索指定文档中sellingProducts指定类型的数量统计

(四)统计所有文档中sellingProducts中所有元素的总数

(五)统计所有文档中sellingProducts中详细分类总数统计

三、总结


干货分享,感谢您的阅读!

在当今数据驱动的时代,企业和组织面临着海量数据的挑战,如何有效地提取和分析这些数据已成为关键问题。Elasticsearch作为一种强大的搜索和分析引擎,提供了灵活而高效的数据检索能力,能够帮助我们快速获取所需信息。本篇文章将深入探讨在Elasticsearch中对sellingProducts字段的统计操作。

通过具体的案例和查询示例,我们将展示如何从sell_product_order索引中提取出关键信息,包括产品类型的统计、产品数量的计算以及更复杂的聚合查询。无论是想要了解产品销售状况的市场分析师,还是希望提升数据处理能力的开发者,本文都将为你提供实用的参考和技术支持。

在接下来的部分中,我们将逐步介绍基本的数据结构、关键的统计操作以及相应的Elasticsearch查询语法,帮助读者掌握在实际应用中如何进行数据统计和分析。通过这次学习,我们希望读者能够更加熟悉Elasticsearch的使用,并在实际工作中充分利用这一强大的工具,挖掘出数据背后的价值。

一、基本的数据结构说明

对应ES索引:sell_product_order

针对假设ES文档的基本结构内容如下:

   {"id": "2024041801000115936701","sellingProducts": ["FUND_20150718000230030000000000002549","STOCK_656","STOCK_4055","STOCK_1720","FUND_20180920000230030000000000015303"]}

我们针对里面的sellingProducts字段进行一些基本的统计操作,本次记录一下相关的基本操作。

二、基本的统计记录

(一)统计当前索引中sellingProducts的所有类型

sell_product_order 索引中检索数据,然后根据 sellingProducts 字段中的内容,聚合出售产品的类型信息,并返回前 10 个最频繁出现的产品类型。

GET /sell_product_order/_search
{"size": 0,"aggs": {"types": {"terms": {"script": {"source": """HashSet types = new HashSet();for (item in doc['sellingProducts']) {int delimiterIndex = item.indexOf('_');if (delimiterIndex > -1) {types.add(item.substring(0, delimiterIndex));}}return types;""","lang": "painless"},"size": 10 }}}
}

(二)检索指定文档中sellingProducts的数据总量

从索引为 sell_product_order 中检索数据,并返回指定 _id 的文档,并在结果中包含一个名为 sellingProducts_count 的脚本字段,用于计算每个文档中 sellingProducts 字段的大小。

GET /sell_product_order/_search
{"query": {"terms": {"_id": ["2024041801000115936701"  ]}},"script_fields": {"sellingProducts_count": {"script": {"lang": "painless","source": "doc['sellingProducts'].size()" }}}
}

(三)检索指定文档中sellingProducts指定类型的数量统计

sell_product_order 索引中检索具有指定 _id 的文档,并在结果中返回两个计算字段,分别是 fund_countstock_count,它们分别表示文档中以 'FUND_''STOCK_' 开头的元素的数量。

GET /sell_product_order/_search
{"query": {"terms": {"_id": ["2024041801000115936701"]}},"script_fields": {"fund_count": {"script": {"lang": "painless","source": "int fundCount = 0; for (String item : doc['sellingProducts']) { if (item.startsWith('FUND_')) { fundCount++; } } return fundCount;"}},"stock_count": {"script": {"lang": "painless","source": "int stockCount = 0; for (String item : doc['sellingProducts']) { if (item.startsWith('STOCK_')) { stockCount++; } } return stockCount;"}}}
}

(四)统计所有文档中sellingProducts中所有元素的总数

sell_product_order 索引中检索所有文档,并计算 sellingProducts 字段中所有元素的总数,将结果作为 total_sellingProducts_items 的值返回。

GET /sell_product_order/_search
{"size": 0,  "aggs": {"total_sellingProducts_items": {"sum": {"script": {"source": "doc['sellingProducts'].size()","lang": "painless"}}}}
}

(五)统计所有文档中sellingProducts中详细分类总数统计

计算 sellingProducts 字段中以 FUND_ 开头和以 STOCK_ 开头的元素数量,将结果以 fund_countstock_count 的形式返回。

GET /sell_product_order/_search
{"size": 0,"aggs": {"totals": {"scripted_metric": {"init_script": "state.fund_count = 0; state.stock_count = 0;","map_script": """if (doc.containsKey('sellingProducts')) {for (def item : doc['sellingProducts']) {if (item.startsWith('FUND_')) {state.fund_count++;} if (item.startsWith('STOCK_')) {state.stock_count++;}}}""","combine_script": "return state","reduce_script": """def total_fund_count = 0;def total_stock_count = 0;for (state in states) {total_fund_count += state.fund_count;total_stock_count += state.stock_count;}return ['fund_count': total_fund_count, 'stock_count': total_stock_count];
"""}}}
}

三、总结

在本文中,我们探讨了如何在Elasticsearch中对sell_product_order索引中的sellingProducts字段进行基本的统计操作。通过具体的查询示例,我们展示了多种数据检索和聚合的技巧,帮助我们从海量数据中提取出有价值的信息。

首先,我们介绍了数据结构的基本概念,明确了如何定位目标字段。随后,我们演示了几种不同的统计方法,包括计算产品类型的出现频率、检索指定文档中产品数量、以及对产品类型进行细分统计。这些操作不仅为数据分析提供了基础支持,也为业务决策提供了有力的数据依据。

通过这些示例,读者可以看到Elasticsearch的强大灵活性,以及它在处理复杂数据查询时的高效性。这些技巧不仅适用于特定的业务场景,也为进一步的深入分析和数据挖掘奠定了基础。

在未来的应用中,我们鼓励读者继续探索Elasticsearch的更多功能,如更高级的聚合分析和数据可视化工具,以全面提升数据处理能力和决策支持效果。通过不断实践和学习,大家将能更好地掌握这一工具,从而在日益复杂的数据环境中游刃有余。

相关文章:

探索数据的力量:Elasticsearch中指定链表字段的统计查询记录

目录 一、基本的数据结构说明 二、基本的统计记录 (一)统计当前索引中sellingProducts的所有类型 (二)检索指定文档中sellingProducts的数据总量 (三)检索指定文档中sellingProducts指定类型的数量统计…...

【Datawhale组队学习202506】YOLO-Master task03 IOU总结

系列文章目录 task01 导学课程 task02 YOLO系列发展线 文章目录 系列文章目录前言1 功能分块1.1 骨干网络 Backbone1.2 颈部网络 Neck1.3 头部网络 Head1.3.1 边界框回归头1.3.2 分类头 2 关键概念3 典型算法3.1 NMS3.2 IoU 总结 前言 Datawhale是一个专注于AI与数据科学的开…...

C/C++数据结构之静态数组

概述 静态数组是C/C中一种基础的数据结构,它允许用户在编译时便确定数组的大小,并分配固定数量的连续存储空间来存放相同类型的元素。静态数组的主要特点是:其大小在声明时就必须指定,且在其生命周期内保持不变。这也意味着&#…...

pyqt f-string

文章目录 一、f-string的基本语法二、代码中的具体应用拼接效果 三、f-string的核心优势四、与其他字符串格式化方式的对比五、在Qt程序中的实际作用六、扩展用法:在f-string中添加格式说明 Python的 f-string(格式化字符串字面值) 特性&…...

夏普 AR-2348SV 打印机信息

基本信息:这是一款黑白 A3 激光多功能数码复合机,可实现打印、复印、扫描功能。性能参数 打印 / 复印速度:23 张 / 分钟。分辨率:600x600dpi,能确保文字和图像清晰。最大打印 / 复印尺寸:A3。纸张支持&…...

跨个体预训练与轻量化Transformer在手势识别中的应用:Bioformer

目录 一、从深度学习到边缘部署,手势识别的新突破 (一)可穿戴设备 边缘计算 个性化医疗新可能 (二)肌电信号(sEMG):手势识别的关键媒介 (三)挑战&#…...

探索常识性概念图谱:构建智能生活的知识桥梁

目录 一、知识图谱背景介绍 (一)基本背景 (二)与NLP的关系 (三)常识性概念图谱的引入对比 二、常识性概念图谱介绍 (一)常识性概念图谱关系图示例 (二&#xff09…...

人人都是音乐家?腾讯开源音乐生成大模型SongGeneration

目录 前言 一、SongGeneration 带来了什么? 1.1 文本控制与风格跟随:你的想法,AI 精准实现 1.2 多轨生成:从“成品”到“半成品”的巨大飞跃 1.3 开源:推倒“高墙”,共建生态 二、3B 参数如何媲美商业…...

一,python语法教程.内置API

一,字符串相关API string.strip([chars])方法:移除字符串开头和结尾的空白字符(如空格、制表符、换行符等),它不会修改原始字符串,而是返回一个新的处理后的字符串 chars(可选)&…...

python中学物理实验模拟:凸透镜成像和凹透镜成像

python中学物理实验模拟:凸透镜成像和凹透镜成像 凸透镜成像 凸透镜是指中间厚、边缘薄的透镜。它对光线有会聚作用,即光线通过凸透镜后会向主光轴方向偏折。 成像原理 基于光的折射,平行于主光轴的光线经凸透镜折射后会聚于焦点&#xff…...

【AGI】突破感知-决策边界:VLA-具身智能2.0

突破感知-决策边界:VLA-具身智能2.0 (一)技术架构核心(二)OpenVLA:开源先锋与性能标杆(三)应用场景:从实验室走向真实世界(四)挑战与未来方向&…...

2D曲线点云平滑去噪

2D曲线点云,含许多噪声,采用类似移动最小二乘的方法(MLS)分段拟合抛物线并投影至抛物线,进行点云平滑去噪。 更通俗的说法是让有一定宽度的曲线点云,变成一条细曲线上的点。 分两种情况进行讨论: 1&#…...

靶场(二十一)---小白心得靶场体会---DVR4

先看端口,看到了一个dvr的服务,老规矩只要有服务就先去看看 PORT STATE SERVICE VERSION 22/tcp open ssh Bitvise WinSSHD 8.48 (FlowSsh 8.48; protocol 2.0; non-commercial use) | ssh-hostkey: | 3072 21:25:f0:53:b4…...

Qt + C++ 入门2(界面的知识点)

补充前面没有说到的一点就是,qt的页面你可以用qt自带的也就是前面所说的自动生成.UI文件生成前端所谓的界面,然后往里面拖控件就可以了,这个UI界面非常的适合用于新手,以及某些软件少量的界面应用 。但是有一个难点就是后期这个UI…...

计算机网络第九章——数据链路层《流量控制和可靠传输》

一、回顾概念 前面上一章讲了数据链路层的《差错控制》,那么回顾一下差错控制和可靠传输的区别: 差错控制:发现一个帧里的【位错(比特错)】 检错(奇偶校验码、CRC循环冗余校验码):接…...

Zephyr 调试实用指南:日志系统、Shell CLI 与 GDB 全面解析

本文深入讲解 Zephyr 的调试利器,包括统一日志系统(logging subsystem)、内置命令行(Shell CLI)、与 GDB 调试集成方法,帮助开发者快速定位问题、分析运行时行为,实现高效开发与排障。 一、日志…...

【知识图谱提取】【阶段总结】【LLM4KGC】LLM4KGC项目提取知识图谱推理部分

文章目录 前言LLM4KGC的三个部分显卡使用效果前言 之前在学习基于大模型的知识图谱提取,就找到了LLM4KGC这个项目: 项目地址: https://github.com/ChristopheCruz/LLM4KGC/ 总体来说,这个项目没有什么比较高深的idea,年份也比较古老,但确实挺适合入手的。主要是绝对简…...

基于YOLO的智能车辆检测与记录系统

基于YOLO的智能车辆检测与记录系统 摘要 本报告总结了智能车辆检测系统的开发工作,主要包括车辆数据标注、YOLO模型训练及QT交互系统搭建三部分。通过使用专业标注工具完成车辆目标数据集的标注与预处理,基于YOLO模型构建车辆检测算法并优化训练流程&a…...

5.2 Qt Creator 使用FFmpeg库

一、目录结构 ├─3rdparty # 第三方依赖库 │ └─ffmpeg-4.4.3 # ffmpeg库 │ ├─mingw # 用MinGW64编译的库 │ │ ├─bin │ │ ├─include │ │ └─lib │ └─msvc # 用MSVC编译的库 │ ├─bin │ …...

C++基础练习 sort函数,用于排序函数

题目&#xff1a; https://acm.hdu.edu.cn/showproblem.php?pid2039 解答&#xff1a; #include <iostream> #include <cmath> #include <algorithm> using namespace std;double a[3]; int main(){int n;cin>>n;while(n--){cin>>a[0]>>…...

【Docker 08】Compose - 容器编排

&#x1f308; 一、Docker Compose 介绍 ⭐ 1. Docker Compose 是什么 Docker Compose 是由 Docker 官方提供的一个用于定义和运行多容器应用的工具&#xff0c;它让用户可以通过一个 YAML 文件&#xff08;通常是 docker-compose.yml&#xff09;来配置应用所需要的服务&…...

docker执行yum报错Could not resolve host: mirrorlist.centos.org

解决办法&#xff1a; -- 依次执行以下命令cd /etc/yum.repos.d/sed -i s|#baseurlhttp://mirror.centos.org|baseurlhttp://vault.centos.org|g /etc/yum.repos.d/CentOS-*sed -i s/mirrorlist/#mirrorlist/g /etc/yum.repos.d/CentOS-*yum update -yecho "export LC_ALL…...

信贷域——信贷授信业务

摘要 本文详细介绍了信贷授信业务&#xff0c;包括其核心目标、典型流程、不同机构授信流程的对比、授信业务的其他类型以及授信模块的技术实现。信贷授信是金融机构在放贷前对客户信用额度的评估与审批流程&#xff0c;旨在控制风险、合理设定额度和期限、确保合规&#xff0…...

python的校园兼职系统

目录 技术栈介绍具体实现截图系统设计研究方法&#xff1a;设计步骤设计流程核心代码部分展示研究方法详细视频演示试验方案论文大纲源码获取/详细视频演示 技术栈介绍 Django-SpringBoot-php-Node.js-flask 本课题的研究方法和研究步骤基本合理&#xff0c;难度适中&#xf…...

深度剖析 PACK_SESSIONID 实现原理与安全突破机制

&#x1f310; 深度剖析 PACK_SESSIONID 实现原理与安全突破机制 &#x1f5bc;️ 1. 完整数据处理流程 #mermaid-svg-TW7jVIcz81hCZVS9 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-TW7jVIcz81hCZVS9 .error-ico…...

从0开始学习计算机视觉--Day02--数据驱动

上次我们在课程里了解到&#xff0c;亚马逊网站在当时构建了一个在那时候最大的供AI训练的数据集&#xff0c;为了推广这个测试&#xff0c;他们举办了比赛邀请了许多的参赛者&#xff0c;识别图片的标准是输出的类别中只要在前面五个里包含了正确答案就算识别成功。在这个过程…...

【LeetCode#第198题】打家劫舍(一维dp)

198. 打家劫舍 - 力扣&#xff08;LeetCode&#xff09; 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上被小偷闯入&#…...

stm32串口(uart)2转发到串口(uart)3实现

今天博主在用kelil5写stm32的程序时遇到了一个全局变量因为在中断和任务切换时没有加 volatile 修饰&#xff0c;导致任务检测不到标志位变化&#xff0c;无法实现效果的问题。 全部代码&#xff1a; /* USER CODE BEGIN Header */ /***************************************…...

数据结构——函数填空题

链队出队入队 入队&#xff1a;新指针p赋给队尾的下一个&#xff0c;再赋给队尾 出队&#xff1a;队首指针赋给p&#xff0c;后移 p的下一个赋给队首指向的下一个 若队尾p&#xff0c;则证明首尾相连为1个 字符串匹配算法 二叉树 统计二叉树度为1的节点 树T为空&#xff0…...

什么是跨域问题?后端如何解决跨域问题?

跨域问题是指浏览器为了安全&#xff0c;对不同域&#xff08;包含不同协议、不同端口或不同主机名&#xff09;的请求进行限制&#xff0c;从而导致请求无法正常访问后端接口。 跨域问题的产生源于浏览器的同源策略&#xff08;Same-Origin Policy&#xff09;&#xff0c;这…...

使用ccs生成bin

CCS12.6 编译生成BIN文件正确方法_ccs生成bin文件-CSDN博客...

Python 邻接表详细实现指南

邻接表是图数据结构的一种高效表示方法&#xff0c;特别适合表示稀疏图。下面我将用 Python 详细讲解邻接表的多种实现方式、操作方法和实际应用。 一、邻接表基础概念 邻接表的核心思想是为图中的每个顶点维护一个列表&#xff0c;存储与该顶点直接相连的所有邻接顶点。 邻…...

FVISION 未来视界工作室:AI驱动的创新与智能外包平台

大家好&#xff0c;今天给大家介绍一个非常有意思的AI创新平台——FVISION 未来视界工作室。如果你正在寻找高效、智能、前沿的数字化工具和服务&#xff0c;这里一定有你想要的答案&#xff01; &#x1f31f; 平台简介 FVISION 未来视界工作室专注于AI驱动的创新应用开发&am…...

领域驱动设计(DDD)【3】之事件风暴

文章目录 说明一 事件风暴理论知识1.1 事件风暴的核心目标1.2事件风暴的关键步骤1.2.1 准备工作1.2.2 核心流程1.2.3 事件风暴的输出 1.3 事件风暴的优势1.4 常见问题Q1&#xff1a;事件风暴适合所有项目吗&#xff1f;Q2&#xff1a;事件风暴后如何落地&#xff1f;Q3&#xf…...

3.10 坐标导航

1.编写代码 新建文件nav_clienr.cpp编写代码 #include<ros/ros.h> #include<move_base_msgs/MoveBaseAction.h> #include<actionlib/client/simple_action_client.h>typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> MoveBas…...

TensorFlow 安装与 GPU 驱动兼容(h800)

环境说明TensorFlow 安装与 GPU 驱动兼容CUDA/H800 特殊注意事项PyCharm 和终端环境变量设置方法测试 GPU 是否可用的 Python 脚本 # 使用 TensorFlow 2.13 在 NVIDIA H800 上启用 GPU 加速完整指南在使用 TensorFlow 进行深度学习训练时&#xff0c;充分利用 GPU 能力至关重要…...

WPF调试三种工具介绍:Live Visual Tree、Live Property Explorer与Snoop

WPF调试工具详解&#xff1a;Live Visual Tree、Live Property Explorer与Snoop 1. Live Visual Tree (实时可视化树) 简介 Live Visual Tree是Visual Studio内置的WPF调试工具&#xff0c;允许开发者在应用程序运行时检查可视化树结构&#xff0c;查看控件的层次关系及其状态。…...

用OBS Studio录制WAV音频,玩转语音克隆和文本转语音!

言简意赅的讲解OBS Studio解决的痛点 随着AI技术的快速发展&#xff0c;语音克隆与文本生成语音技术越来越受欢迎。无论你想要制作个人虚拟主播&#xff0c;还是给自媒体视频配音&#xff0c;拥有高质量的原始音频都是关键。本文详细教你使用免费且功能强大的软件——OBS Stud…...

5.3 VSCode使用FFmpeg库

一、VSCMake 1.1 使用ffmpeg动态库 项目目录结构&#xff1a; ./ ├── 3rdparty # 第三方依赖库 │ └── ffmpeg_4.4.1 │ ├── include # 头文件 │ ├── lib # 静态库库 │ └── share ├── build # 编译目…...

【Datawhale组队学习202506】零基础学爬虫 02 数据解析与提取

系列文章目录 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;第一章 Python 机器学习入门之pandas的使用 文章目录 系列文章目录前言2.1 概述2.2 re 解析2.3 bs4 解析2.4 xpath 解析总结 前言 Datawhale是一个专注于…...

[muduo] ThreadPool | TcpClient | 异步任务 | 通信测试

第九章&#xff1a;线程池&#xff08;ThreadPool&#xff09; 在第八章《TcpServer》中&#xff0c;我们了解到muduo::net::TcpServer通过EventLoop线程池处理入站连接。 这些EventLoop线程主要负责网络I/O&#xff1a;套接字读写和定时器处理&#xff0c;由Poller和Channel…...

探索 Vue 替代方案

Vue vs React vs Angular 在快速迭代的前端世界&#xff0c;Vue、React和Angular三大框架的竞争从未停止。2025年的今天&#xff0c;它们各自进化出了怎样的面貌&#xff1f;让我们深入剖析它们的核心差异&#xff0c;助你做出明智的技术选型。 Vue.js 完整的基于组件的UI框…...

大模型的开发应用(十二):RAG 与 LlamaIndex基础

这里写目录标题 1 LlamaIndex 简要介绍1.1 核心价值1.2 核心组件1.3 核心流程1.4 为什么要用 LlamaIndex&#xff1f;1.5 典型应用场景1.6 与类似工具对比1.7 安装1.8 学习资源 2 文档解析与 Document 对象2.1 示例文件与代码2.2 Document 对象的核心特性2.3 在 RAG 工作流程中…...

Java面试题025:一文深入了解数据库Redis(1)

欢迎大家关注我的JAVA面试题专栏&#xff0c;该专栏会持续更新&#xff0c;从原理角度覆盖Java知识体系的方方面面。 一文吃透JAVA知识体系&#xff08;面试题&#xff09;https://blog.csdn.net/wuxinyan123/category_7521898.html?fromshareblogcolumn&sharetypeblogco…...

Web攻防-XSS跨站Cookie盗取数据包提交网络钓鱼BEEF项目XSS平台危害利用

知识点&#xff1a; 1、Web攻防-XSS跨站-手工代码&框架工具&在线平台 2、Web攻防-XSS跨站-Cookie盗取&数据提交&网络钓鱼 演示案例-WEB攻防-XSS跨站-Cookie盗取&数据提交&网络钓鱼&Beef工具 1、XSS跨站-攻击利用-凭据盗取 条件&#xff1a;无防…...

(LeetCode 面试经典 150 题) 169. 多数元素(哈希表 || 二分查找)

题目&#xff1a;169. 多数元素 方法一&#xff1a;二分法&#xff0c;最坏的时间复杂度0(nlogn)&#xff0c;但平均0(n)即可。空间复杂度为0(1)。 C版本&#xff1a; int nnums.size();int l0,rn-1;while(l<r){int mid(lr)/2;int ans0;for(auto x:nums){if(xnums[mid]) a…...

71、单元测试-Junit5简介

71、单元测试-Junit5简介 # JUnit 5 简介 JUnit 5 是 Java 平台上最流行的单元测试框架之一&#xff0c;是 JUnit 的重大升级版本&#xff0c;引入了许多新特性和改进&#xff0c;旨在提供更现代化、灵活和强大的测试体验。 ## 主要组成部分 JUnit 5 由三个模块组成&#xff1a…...

IEC61850 一致性测试中的 UCA 测试

一、IEC61850 与 UCA 的关系背景 标准演进&#xff1a;IEC61850 是电力系统自动化领域的国际通信标准&#xff0c;其发展与美国 UCA&#xff08;User Communications Architecture&#xff09;标准密切相关。2001 年&#xff0c;UCA 国际用户组织与 IEC 合作&#xff0c;将 UC…...

ProtoBuf:proto3 语法详解

&#x1f308; 个人主页&#xff1a;Zfox_ &#x1f525; 系列专栏&#xff1a;ProtoBuf 在语法详解部分&#xff0c;依旧使⽤项⽬推进的⽅式完成讲解。这个部分会对通讯录进⾏多次升级&#xff0c;使⽤2.x表⽰升级的版本&#xff0c;最终将会升级如下内容&#xff1a; 不再打…...

博图SCL语言GOTO语句深度解析:精准跳转

在SCL编程中&#xff0c;**GOTO语句**是控制流程的底层工具&#xff0c;它允许程序无条件跳转到指定的**标签位置**。虽然现代编程中较少使用&#xff0c;但在特定工业场景下仍能发挥独特价值。 GOTO语句核心机制 基本语法结构 // 定义标签 <标签名>: // 跳转指令 GOTO…...