当前位置: 首页 > news >正文

线性代数的发展简史

线性代数的发展简史

线性代数作为数学的一个重要分支,其发展历史悠久而丰富。从古代文明中的基础计算到现代复杂的理论体系,线性代数经历了多个阶段的演变。

古代的起源

线性代数的雏形可以追溯到古埃及、古希腊、古印度和古代中国时期。这些早期文明在几何学和算术领域的探索,奠定了线性方程和线性关系的基础。

在古埃及,数学主要用于实用目的,如测量土地、建筑设计和天文学。《里约德卡皮塔尔》(Rhind Mathematical Papyrus)中记录了大量的算术问题,这些问题涉及简单的线性方程。古埃及数学家在规划和建设金字塔时,需要精确计算材料的分配和土地的面积,这些问题本质上可以转化为线性方程组的解决。古埃及人还使用了一种类似于今天的单位制,通过图形和符号来表示数值和关系,这为后来的线性代数理论提供了基础。

古希腊是线性代数理论发展的重要源泉之一。著名的数学家欧几里得在他的著作《几何原本》中,系统地讨论了几何学的基本原理,其中包括对线性方程组的初步研究。欧几里得的方法强调几何构造和逻辑推理,这为后来的线性代数理论提供了严密的数学基础。古希腊数学家阿波罗尼奥斯在研究圆锥曲线时,应用了线性方程来描述曲线的性质,这进一步拓展了线性代数的应用范围。另一个重要人物是丢番图,他的工作奠定了代数理论的基础,间接促进了线性代数的发展。

印度数学家在解决更多变量和更高维度的线性方程组时,已经开始使用类似矩阵的概念,尽管尚未形成系统化的理论。印度的《巴布里卡》(Bhaskara)等数学著作中,可以看到对线性方程组的解决方法的深入探讨。巴斯卡拉二世在他的著作《利拉巴纳桑》(Lilavati)中,描述了如何通过逐步消元法解决两元和三元一次方程组。这些早期的探索展示了人类对线性关系理解的初步尝试,为后来的数学家提供了宝贵的思路。印度数学家还提出了一些关于矩阵行列式的早期概念,尽管这些概念的系统化发展要晚于其他文明。

古代中国的数学对线性代数的发展也做出了一定贡献。《九章算术》是中国古代最重要的数学经典之一,其中记录了解决线性方程组的方法,尤其是在实际应用中的农业、工程和商业问题。《九章算术》中的“方程”部分介绍了一种类似于高斯消元法的方法,用以解决多元一次方程组。这些方法虽然没有形成独立的线性代数理论,但展示了古代中国数学家在处理复杂问题时,对线性关系和系统化求解方法的理解和应用。中国古代数学家还发展了丰富的符号和算法,使得线性方程组的解决更加高效和系统化。

尽管线性代数作为一个独立的数学分支在古代尚未形成,但古埃及、古希腊、古印度和古代中国的数学发展为后来线性代数理论的系统化奠定了坚实的基础。这些文明在几何学、代数和算术领域的探索和创新,展示了线性关系在不同应用中的重要性,并为现代线性代数的发展提供了历史渊源。

文艺复兴时期的进展

到了文艺复兴时期,欧洲经历了一场思想和科学的巨大变革,数学领域也得到了迅速的发展,线性代数的概念在此期间逐渐明确。这一时期的数学进步不仅受到古典学术复兴的影响,也受益于实际应用需求的推动,促进了数学理论与实践的紧密结合。

贾罗拉莫·卡尔达诺(Giacomo Cardano),作为16世纪意大利著名的数学家和医生,是文艺复兴时期数学发展的重要代表人物之一。他在《大阿尔祖巴拉》(Ars Magna)一书中首次系统性地讨论了多元方程的解法,尤其是在三次和四次方程的解决上取得了突破。卡尔达诺的工作不仅解决了代数方程的具体问题,还通过对代数结构的深入研究,为后来的数学家提供了研究线性关系和方程组的重要理论工具。他的方法间接为行列式的概念奠定了基础,尽管行列式的正式定义和应用直到后世才得以完善。

比阿哥拉·卡瓦列里(Bonaventura Cavalieri),17世纪初期的意大利数学家,以其提出的卡瓦列里原理而闻名。卡瓦列里原理主要用于求解立体几何体的体积,通过将复杂的三维问题分解为简单的二维切片,从而简化了积分计算。这一原理不仅在积分学的发展中起到了关键作用,也展示了几何方法在解决代数问题中的潜力。卡瓦列里的工作为后来的数学家提供了新的思路,即通过几何直观来理解和操作线性方程组和矩阵,从而促进了线性代数理论的进一步发展。

勒内·笛卡尔(René Descartes),17世纪法国哲学家和数学家,是解析几何的奠基人。他在《几何学》(La Géométrie)一书中首次系统地将代数与几何相结合,创立了解析几何。笛卡尔引入了笛卡尔坐标系,这一概念使得几何问题可以转化为代数方程来解决,从而大大简化了几何问题的表达和计算过程。通过坐标系的引入,数学家们能够更加直观地理解和处理线性方程组,这不仅推动了线性代数的理论化进程,也为后来的线性变换和向量空间理论的发展提供了坚实的基础。笛卡尔的方法使得线性代数能够在更高维度和更复杂的空间中发挥作用,促进了数学与物理学等自然科学的结合。

卡尔·弗里德里希·高斯(Carl Friedrich Gauss),尽管其主要成就在19世纪,但他早期的工作已展现出对线性代数的深刻理解。高斯在研究最小二乘法时,广泛应用了矩阵和向量的概念,这为线性代数的发展奠定了重要的应用基础。高斯消去法(Gaussian elimination)作为解决线性方程组的基本方法,成为线性代数中不可或缺的工具之一。他的工作不仅提升了数学的理论深度,也极大地推动了线性代数在天文学、测量学和物理学等领域的应用。

文艺复兴时期还涌现出其他重要的数学家和思想家,他们通过对数学理论的不断探索和创新,为线性代数的成熟和系统化发展提供了宝贵的贡献。这一时期的数学家们不仅注重理论的研究,更强调数学在实际问题中的应用,形成了理论与实践相结合的发展模式。这种模式不仅促进了线性代数的迅速发展,也为后来的数学理论奠定了坚实的基础。

19世纪的系统化

19世纪是线性代数发展的关键时期。这一时期,线性代数逐渐从基础的计算工具发展成为独立的数学分支,理论体系日益完善。德国数学家卡尔·弗里德里希·高斯在最小二乘法的研究中广泛使用矩阵运算,极大地推动了线性代数的应用。高斯最著名的贡献之一是高斯消去法(Gaussian elimination),这是一种用于求解线性方程组的系统方法,不仅简化了计算过程,也为后来的矩阵理论打下了坚实的基础。

与此同时,法国数学家奥古斯丁·马吕斯(Augustin-Louis Cauchy)提出了矩阵的概念,并系统地研究了矩阵的基本性质,包括矩阵的加法、乘法、转置等操作。他在《线性代数基础》(Cours d’Analyse de l’École Royale Polytechnique)中详细阐述了这些概念,为矩阵论的发展奠定了坚实的理论基础。马吕斯的工作不仅使得矩阵运算更加规范化,也为线性代数的进一步研究提供了重要的工具和方法。

英国数学家阿瑟·凯莱(Arthur Cayley)和德国数学家赫尔曼·格拉斯曼(Hermann Grassmann)等人对向量空间理论进行了深入探讨,推动了线性代数的系统化发展。凯莱特别在矩阵理论方面做出了重要贡献,他在1858年发表了关于矩阵的基础论文,首次系统地定义了矩阵的乘法和逆矩阵的概念。他引入了凯莱-哈密顿定理(Cayley-Hamilton Theorem),该定理指出每个方阵都满足其特征多项式,这是线性代数中一个重要的理论结果。凯莱还与詹姆斯·乔治·西尔维斯特(James Joseph Sylvester)共同推动了矩阵理论的发展,提出了行列式的抽象概念,并研究了行列式在各种线性代数问题中的应用。

赫尔曼·格拉斯曼则在向量空间的概念上做出了开创性的贡献,他的《线性代数的扩展理论》(Die lineale Ausdehnungslehre)一书引入了多维向量空间的概念,虽然他的工作在当时未被广泛接受,但后来被证明对现代线性代数的发展具有深远的影响。格拉斯曼的方法强调了向量之间的线性组合和空间结构,为后来的向量空间理论奠定了基础。

爱尔兰数学家詹姆斯·吉尔伯特·西尔维斯特(James Gilbert Sylvester)在矩阵理论和行列式理论方面也做出了重要贡献。他与凯莱合作,发展了矩阵的理论框架,推动了线性代数在理论和应用上的进一步拓展。西尔维斯特还引入了双矩阵(bilinear forms)的概念,这在后来的统计学和物理学中得到了广泛应用。

19世纪的数学家们通过系统化的理论研究和实际应用的推动,奠定了现代线性代数的基础。他们的发展不仅提升了线性代数的理论深度,也扩展了其应用范围,使其成为现代数学、物理学、工程学以及经济学中不可或缺的工具。19世纪的系统化进程为20世纪线性代数的进一步发展和应用打下了坚实的基础。

20世纪的抽象化与应用

进入20世纪,线性代数经历了显著的抽象化进程,逐渐发展成为现代数学的核心组成部分之一。这一时期,许多数学家致力于将线性代数与其他数学领域,特别是抽象代数、泛函分析等相结合,拓展了其理论深度和应用广度。

数学理论的深化:

美国数学家赫尔曼·外尔(Hermann Weyl)与哈罗德·霍普金森(Harold Hopkins)等人通过将线性代数与抽象代数相结合,推动了向量空间和线性变换理论的发展。他们的工作不仅深化了对线性代数基本概念的理解,还促进了矩阵理论和多线性代数的发展。外尔在表示论方面的研究,将线性代数应用于对称群和李群的表示,极大地丰富了抽象代数的内容。

泛函分析的兴起:

泛函分析作为20世纪数学的重要分支,依赖于线性代数的基础理论。数学家如斯蒂芬·查尔默斯(Stefan Banach)和约翰·冯·诺依曼(John von Neumann)等,通过研究无限维向量空间和线性算子,拓展了线性代数的应用范围。他们的发展不仅提升了线性代数在数学理论中的地位,也为量子力学等物理学科提供了坚实的数学基础。

数值线性代数的发展:

随着计算机科学的兴起,数值线性代数成为一个重要的研究领域。数学家如高斯(Carl Friedrich Gauss)的消元法被计算机算法化,发展出了高效的数值方法,如LU分解、QR分解和奇异值分解(SVD)。这些算法在解决大规模线性方程组、特征值问题和数据降维等方面具有关键作用,广泛应用于工程、物理和经济等领域。

计算机科学与工程中的应用:

计算机科学的快速发展为线性代数的应用提供了新的舞台。在计算机图形学中,线性代数用于描述和实现三维图形的旋转、缩放和平移,通过矩阵运算实现复杂的图像变换和渲染技术。在工程领域,线性代数被用于结构分析、电路设计和控制系统的建模,通过线性方程组求解实现精确的工程计算。

机器学习与数据科学的核心:

20世纪后期,随着大数据时代的到来,线性代数在机器学习和数据科学中的地位愈加重要。算法如线性回归、主成分分析(PCA)和支持向量机(SVM)等,都依赖于矩阵和向量的高效运算。深度学习中的神经网络训练过程,也大量使用线性代数中的矩阵乘法和向量运算,实现高效的参数更新和模型优化。

量子计算与现代物理:

量子计算的发展进一步推动了线性代数的应用。量子算法,如量子傅里叶变换和量子相位估计,基于线性代数中的矩阵运算和向量空间理论,极大地提升了计算效率和处理能力。线性代数在量子力学中的应用,使得复杂的物理系统能够通过线性算子进行精确描述和分析。

跨学科的整合与创新:

20世纪的线性代数不仅在数学内部深化和拓展,还积极与其他学科进行跨界融合。生物信息学、经济学、金融工程等领域,通过线性代数的方法,解决复杂的数据分析和优化问题。在金融工程中,矩阵运算用于风险管理和资产组合优化,提升了金融模型的准确性和效率。

20世纪的线性代数通过理论的深化与抽象化,以及广泛的跨学科应用,奠定了其在现代科学和工程中的核心地位。这一时期的进展不仅提升了数学本身的理论深度,也为各类实际应用提供了强有力的工具和方法,推动了科技与社会的持续发展。

当代的发展趋势

在当代,线性代数不断拓展其应用边界,深入渗透到许多前沿科技和新兴领域。大数据时代的到来,使得高效的矩阵运算和向量计算成为关键技术。无论是在数据挖掘、推荐系统,还是在市场分析和金融模型中,线性代数都发挥着至关重要的作用。特别是在机器学习领域,深度学习模型的大规模训练依赖于线性代数中的矩阵乘法、矩阵分解等操作,这些技术直接影响着模型的训练速度和预测准确性。

自然语言处理(NLP)是另一大受益于线性代数的领域。从词向量的表示(如Word2Vec、GloVe)到句子和段落的嵌入(如BERT、Transformer模型),线性代数在这些模型的设计和实现中起到了基础性作用。通过优化矩阵计算,研究人员能够处理海量的数据,提升模型的准确性和效率,同时也推动了更复杂、更深层次的模型结构的演变。

量子计算的发展也为线性代数提供了新的研究方向。量子算法中的线性代数操作,如量子傅里叶变换、量子相位估计和量子线路的设计,正在改变我们对计算能力的理解。量子线性代数算法有潜力在某些计算任务上实现指数级的加速,在解决线性方程组、特征值问题和矩阵分解等方面,这些进展不仅促进了量子物理学和计算机科学的交叉融合,也为破解传统计算难题提供了新的思路。

线性代数在计算机图形学、工程仿真、经济建模、生物信息学等领域也展现出广泛的应用前景。在计算机图形学中,矩阵运算用于三维图形的变换和渲染,确保图像处理的高效与精确;在工程仿真中,线性代数方法用于结构分析、热力学计算和流体动力学模拟,提高了工程设计和优化的效率与可靠性;在经济和金融领域,线性代数被用于风险管理、资产组合优化和计量经济模型的构建,有助于提升决策的科学性和有效性;而在生物信息学中,线性代数技术被应用于基因表达数据的分析、蛋白质结构预测和药物设计,推动了生命科学研究的发展。

未来,随着技术的不断进步,线性代数将在更多新兴领域展现其独特的价值和潜力。在虚拟现实(VR)和增强现实(AR)技术中,线性代数用于实现沉浸式环境的实时计算和交互;在区块链技术和加密算法中,线性代数为数据安全和隐私保护提供了数学基础;在能源领域,线性代数被应用于优化电网管理和新能源开发,提升了能源利用效率。随着人工智能与物联网(IoT)的快速发展,线性代数将在智能设备的数据处理、边缘计算和分布式系统中扮演更加重要的角色,推动科技与社会的持续创新与进步。

声明

本文部分内容由AI辅助创作,请谨慎参考。

相关文章:

线性代数的发展简史

线性代数的发展简史 线性代数作为数学的一个重要分支,其发展历史悠久而丰富。从古代文明中的基础计算到现代复杂的理论体系,线性代数经历了多个阶段的演变。 古代的起源 线性代数的雏形可以追溯到古埃及、古希腊、古印度和古代中国时期。这些早期文明…...

git使用详解

一、git介绍 1、git简介 Git 是一个开源的分布式版本控制系统(最先进的,没有之一),用于敏捷高效地处理任何或小或大的项目。 Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件。 Git 与常用…...

ros2学习日记_241124_ros相关链接

前言 提醒: 文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。 其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展…...

【SQL】【数据库】语句翻译例题

SQL自然语言到SQL翻译知识点 以下是将自然语言转化为SQL语句的所有相关知识点,分门别类详细列出,并结合技巧说明。 1. 数据库操作 创建数据库 自然语言:创建一个名为“TestDB”的数据库。 CREATE DATABASE TestDB;技巧:识别**“创…...

图书管理系统(源码+数据库+报告)

基于SpringBoot的图书管理系统,系统包含两种角色:管理员、用户,系统分为前台和后台两大模块,主要功能如下。 前台: - 首页:展示系统推荐、热门图书等信息。 - 论坛:提供用户交流讨论的平台。 - 公告信息&a…...

python中lxml 库之 etree 使用详解

目录 一、 etree 介绍二、xpath 解析 html/xml1、第一步就是使用 etree 连接 html/xml 代码/文件。2、 xpath 表达式定位① xpath结合属性定位② xpath文本定位及获取③ xpath层级定位④ xpath索引定位⑤ xpath模糊匹配 一、 etree 介绍 lxml 库是 Python 中一个强大的 XML 处…...

vue3(十九)-基础入门之vue-nuxt反向代理

一、反向代理 1、下载 nuxtjs/proxy 使用 npm npm install nuxtjs/proxy 或使用 yarn yarn add nuxtjs/proxy 2、配置 nuxt.config.js 文件 export default {modules: [nuxtjs/axios,nuxtjs/proxy],axios: {baseURL: /,proxy: true},proxy: {/api/: {target: https://i.maoya…...

Unity3D 截图

使用 Unity3D 自带的截图接口,制作截图工具。 截图 有时候我们想对 Unity 的窗口进行截图,如果直接使用一些截图工具,很难截取到一张完整分辨率的图片(例如,我们想要截取一张 1920 * 1080 的图片)。 其实…...

【机器学习】近似分布的熵到底是p(x)lnq(x)还是q(x)lnq(x)?

【1】通信的定义 信息量(Information Content)是信息论中的一个核心概念,用于定量描述一个事件发生时所提供的“信息”的多少。它通常用随机变量 𝑥的概率分布来定义。事件 𝑥发生所携带的信息量由公式给出&#xff1…...

C语言:深入理解指针

一.内存和地址 我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是 8GB/16GB/32GB 等,那这些内存空间…...

Vue实训---4-使用Pinia实现menu菜单展示/隐藏

0.menu菜单展示/隐藏实现方法 Menu 菜单 | Element Plus中,当:collapse"isCollapse"其中isCollapse的值为true时菜单栏隐藏,当isCollapse的值为false时菜单栏显示。接下来使用pinia实现CommonAside.vue和CommonHeader.vue组件之间数据的共享&…...

Fakelocation Server服务器/专业版 Centos7

前言:需要Centos7系统 Fakelocation开源文件系统需求 Centos7 | Fakelocation | 任务一 更新Centos7 (安装下载不再赘述) sudo yum makecache fastsudo yum update -ysudo yum install -y kernelsudo reboot//如果遇到错误提示为 Another app is curre…...

网络安全,文明上网(4)掌握网络安全技术

前言 在数字化时代,个人信息和企业数据的安全变得尤为重要。为了有效保护这些宝贵资产,掌握一系列网络安全技术是关键。 核心技术及实施方式 1. 网络监控与过滤系统: 这些系统构成了网络防御体系的基石,它们负责监控网络通信&…...

Ettus USRP X410

总线连接器: 以太网 RF频率范围: 1 MHz 至 7.2 GHz GPSDO: 是 输出通道数量: 4 RF收发仪瞬时带宽: 400 MHz 输入通道数量: 4 FPGA: Zynq US RFSoC (ZU28DR) 1 MHz to 7.2 GHz,400 MHz带宽,GPS驯服OCXO,USRP软件无线电设备 Ettus USRP X410集…...

在SQLyog中导入和导出数据库

导入 假如我要导入一个xxx.sql,我就先创建一个叫做xxx的数据库。 然后右键点击导入、执行SQL脚本 选择要导入的数据库文件的位置,点击执行即可 注意: 导入之后记得刷新一下导出 选择你要导出的数据库 右键选择:备份/导出、…...

一文了解Spring提供的几种扩展能力

基于 spring bean 的扩展 1. BeanPostProcessor spring 提供的针对 bean 的初始化过程时提供的扩展能力,从方法名也很容易看出,提供的两个方法分别是为 bean 对象提供了初始化之前以及初始化之后的扩展能力。 package com.wyl.conf;import org.spring…...

VXLAN说明

1. 什么是 VXLAN ? VXLAN(Virtual Extensible LAN,虚拟扩展局域网)是一种网络虚拟化技术,旨在通过在现有的物理网络上实现虚拟网络扩展,从而克服传统 VLAN 的一些限制。 VXLAN 主要用于数据中心、云计算环…...

MyBatis基本使用

一、向SQL语句传参: 1.MyBatis日志输出配置: mybatis配置文件设计标签和顶层结构如下: 可以在mybatis的配置文件使用settings标签设置,输出运过程SQL日志,通过查看日志,可以判定#{}和${}的输出效果 settings设置项: logImpl指定 MyBatis 所用日志的具…...

Linux笔记---进程:进程切换与O(1)调度算法

1. 补充概念 1.1 并行与并发 竞争性:系统进程数目众多,而CPU资源只有少量,甚至只有1个,所以进程之间是具有竞争属性的。为了高效完成任务,更合理竞争相关资源,便具有了优先级。独立性:多进程运…...

Flink学习连载第二篇-使用flink编写WordCount(多种情况演示)

使用Flink编写代码,步骤非常固定,大概分为以下几步,只要牢牢抓住步骤,基本轻松拿下: 1. env-准备环境 2. source-加载数据 3. transformation-数据处理转换 4. sink-数据输出 5. execute-执行 DataStream API开发 //n…...

[AutoSar]BSW_Diagnostic_007 BootLoader 跳转及APP OR boot response 实现

目录 关键词平台说明背景一、Process Jump to Bootloader二、相关函数和配置2.1 Dcm_GetProgConditions()2.2 Dcm_SetProgConditions() 三、如何实现在APP 还是BOOT 中对10 02服务响应3.1 配置3.2 code 四、报文五、小结 关键词 嵌入式、C语言、autosar、OS、BSW、UDS、diagno…...

用 Python 写了一个天天酷跑(附源码)

Hello,大家好,给大家说一下,我要开始装逼了 这期写个天天酷跑玩一下叭! 制作一个完整的“天天酷跑”游戏涉及很多方面,包括图形渲染、物理引擎、用户输入处理、游戏逻辑等。由于Python是一种高级编程语言,…...

WebGL进阶(九)光线

理论基础: 点光源 符合向量定义,末减初。 平行光 环境光 效果: 点光源 平行光 环境光 源码: 点光源 // 顶点着色器程序let vertexstring attribute vec4 a_position; // 顶点位置属性uniform mat4 u_formMatrix; // 用于变换…...

Lucene(2):Springboot整合全文检索引擎TermInSetQuery应用实例附源码

前言 本章代码已分享至Gitee: https://gitee.com/lengcz/springbootlucene01 接上文。Lucene(1):Springboot整合全文检索引擎Lucene常规入门附源码 如何在指定范围内查询。从lucene 7 开始,filter 被弃用,导致无法进行调节过滤。 TermInSetQuery 指定…...

HarmonyOS(57) UI性能优化

性能优化是APP开发绕不过的话题,那么在HarmonyOS开发过程中怎么进行性能优化呢?今天就来总结下相关知识点。 UI性能优化 1、避免在组件的生命周期内执行高耗时操作2、合理使用ResourceManager3、优先使用Builder方法代替自定义组件4、参考资料 1、避免在…...

机器学习周志华学习笔记-第5章<神经网络>

机器学习周志华学习笔记-第5章<神经网络> 卷王&#xff0c;请看目录 5模型的评估与选择5.1 神经元模型5.2 感知机与多层网络5.3 BP(误逆差)神经网络算法 5.4常见的神经网络5.4.1 RBF网络&#xff08;Radial Basis Function Network&#xff0c;径向基函数网络&#xff0…...

SQL进阶技巧:如何进行数字范围统计?| 货场剩余货位的统计查询方法

目录 0 场景描述 1 剩余空位区间和剩余空位编号统计分析 2 查找已用货位区间 3 小结 0 场景描述 这是在做一个大型货场租赁系统时遇到的问题,在计算货场剩余存储空间时,不仅仅需要知道哪些货位是空闲的,还要能够判断出哪些货位之间是连续的。因为在新货物入场时,可…...

Xilinx IP核(3)XADC IP核

文章目录 1. XADC介绍2.输入要求3.输出4.XADC IP核使用5.传送门 1. XADC介绍 xadc在 所有的7系列器件上都有支持&#xff0c;通过将高质量模拟模块与可编程逻辑的灵活性相结合&#xff0c;可以为各种应用打造定制的模拟接口&#xff0c;XADC 包括双 12 位、每秒 1 兆样本 (MSP…...

现代大数据架构设计与实践:从数据存储到处理的全面解读

1. 引言 随着信息技术的不断发展,数据已经成为企业和组织最宝贵的资产之一。大数据的应用已经渗透到各个行业,无论是电商、金融,还是医疗、物流,如何有效管理、存储和处理海量的数据已经成为企业成功的关键之一。本文将深入探讨现代大数据架构的设计理念与技术实践,从数据…...

详细教程-Linux上安装单机版的Hadoop

1、上传Hadoop安装包至linux并解压 tar -zxvf hadoop-2.6.0-cdh5.15.2.tar.gz 安装包&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1u59OLTJctKmm9YVWr_F-Cg 提取码&#xff1a;0pfj 2、配置免密码登录 生成秘钥&#xff1a; ssh-keygen -t rsa -P 将秘钥写入认…...

前端项目支持tailwindcss写样式

安装 npm install -D tailwindcss npx tailwindcss init配置 tailwind.config.js //根据个人需求填写&#xff0c;比如vue简单配置 /** type {import(tailwindcss).Config} */ module.exports {darkMode: "class",corePlugins: {preflight: false},content: [&quo…...

工程师 - 智能家居方案介绍

1. 智能家居硬件方案概述 智能家居硬件方案是实现家庭自动化的重要组件&#xff0c;通过集成各种设备来提升生活的便利性、安全性和效率。这些方案通常结合了物联网技术&#xff0c;为用户提供智能化、自动化的生活体验。硬件方案的选择直接影响到智能家居系统的性能、兼容性、…...

H.264/H.265播放器EasyPlayer.js网页全终端安防视频流媒体播放器关于iOS不能系统全屏

在数字化时代&#xff0c;流媒体播放器已成为信息传播和娱乐消遣的主流载体。随着技术的进步&#xff0c;流媒体播放器的核心技术和发展趋势不断演变&#xff0c;影响着整个行业的发展方向。 EasyPlayer播放器属于一款高效、精炼、稳定且免费的流媒体播放器&#xff0c;可支持…...

2.langchain中的prompt模板 (FewShotPromptTemplate)

本教程将介绍如何使用 LangChain 库中的 PromptTemplate 和 FewShotPromptTemplate 来构建和运行提示&#xff08;prompt&#xff09;&#xff0c;并通过示例数据展示其应用。 安装依赖 首先&#xff0c;确保你已经安装了 langchain 和相关依赖&#xff1a; pip install lan…...

TCP/IP

1、浏览器输入网址后发生了什么 1&#xff09;应用层&#xff1a;浏览器解析ULR&#xff0c;生成发送给web服务器的请求信息&#xff0c;HTTP请求报文生成&#xff0c;委托给操作系统将消息发送给web服务器&#xff0c;发送之前需要查询服务器域名对应的IP地址&#xff08;需要…...

详细探索xinput1_3.dll:功能、问题与xinput1_3.dll丢失的解决方案

本文旨在深入探讨xinput1_3.dll这一动态链接库文件。首先介绍其在计算机系统中的功能和作用&#xff0c;特别是在游戏和输入设备交互方面的重要性。然后分析在使用过程中可能出现的诸如文件丢失、版本不兼容等问题&#xff0c;并提出相应的解决方案&#xff0c;包括重新安装相关…...

Spring:AOP切入点表达式

对于AOP中切入点表达式&#xff0c;我们总共会学习三个内容&#xff0c;分别是语法格式、通配符和书写技巧。 语法格式 首先我们先要明确两个概念: 切入点:要进行增强的方法切入点表达式:要进行增强的方法的描述方式 对于切入点的描述&#xff0c;我们其实是有两中方式的&a…...

STM32的中断(什么是外部中断和其他中断以及中断号是什么)

一、什么是EXTI 和NVIC EXTI&#xff08;External Interrupt/Event Controller&#xff09;EXTI 是外部中断/事件控制器&#xff0c;它负责处理外部信号变化&#xff0c;并将信号传递给中断控制器&#xff08;如 NVIC&#xff09;。主要负责以下功能&#xff1a; 外部事件检测…...

MySQL底层概述—1.InnoDB内存结构

大纲 1.InnoDB引擎架构 2.Buffer Pool 3.Page管理机制之Page页分类 4.Page管理机制之Page页管理 5.Change Buffer 6.Log Buffer 1.InnoDB引擎架构 (1)InnoDB引擎架构图 (2)InnoDB内存结构 (1)InnoDB引擎架构图 下面是InnoDB引擎架构图&#xff0c;主要分为内存结构和磁…...

Linux 下进程基本概念与状态

文章目录 一、进程的定义二、 描述进程-PCBtask_ struct内容分类 三、 进程状态 一、进程的定义 狭义定义&#xff1a;进程是正在运行的程序的实例&#xff08;an instance of a computer program that is being executed&#xff09;。广义定义&#xff1a;进程是一个具有一定…...

Go语言链接Redis数据库

1.使用go get命令安装go-redis/v8库&#xff1a; 我这里使用的vscode工具安装&#xff1a; go get github.com/go-redis/redis/v82.创建Redis客户端实例 使用以下Go代码连接到Redis服务器并执行命令&#xff1a; package mainimport ("context""fmt"&q…...

SQL 分页查询详解

在处理大型数据集时&#xff0c;分页查询是一种常见的技术&#xff0c;用于将数据分成多个小块&#xff0c;以便逐步加载和显示。这不仅可以提高应用的性能&#xff0c;还可以提升用户体验&#xff0c;避免一次性加载过多数据导致页面加载缓慢或资源消耗过大。本文将详细介绍 S…...

ACP科普:风险价值矩阵

风险价值矩阵&#xff08;Risk-Value Matrix&#xff09;是一种常用的工具&#xff0c;用于在项目管理中帮助团队识别、评估和优先处理风险。它通过将风险和价值两个因素进行结合&#xff0c;帮助决策者明确哪些风险需要优先关注和处理&#xff0c;从而有效地管理项目的不确定性…...

计算机网络socket编程(2)_UDP网络编程实现网络字典

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 计算机网络socket编程(2)_UDP网络编程实现网络字典 收录于专栏【计算机网络】 本专栏旨在分享学习计算机网络的一点学习笔记&#xff0c;欢迎大家在评论区交流讨…...

(Keil)MDK-ARM各种优化选项详细说明、实际应用及拓展内容

参考 MDK-ARM各种优化选项详细说明、实际应用及拓展内容 本文围绕MDK-ARM优化选项,以及相关拓展知识(微库、实际应用、调试)进行讲述,希望对你今后开发项目有所帮助。 1 总述 我们所指的优化,主要两方面: 1.代码大小(Size) 2.代码性能(运行时间) 在MDK-ARM中,优…...

mac2024 安装node和vue

以下是使用 Node.js 官方 .pkg 安装包 安装 Node.js 和 Vue CLI 的完整流程&#xff0c;包括如何重新设置 npm 的环境&#xff0c;以避免权限问题。 安装 Node.js 步骤 1.1&#xff1a;下载 Node.js 安装包 1. 打开 Node.js 官网。 2. 下载 LTS&#xff08;长期支持&#xf…...

在win10环境部署opengauss数据库(包含各种可能遇到的问题解决)

适用于windows环境下通过docker desktop实现opengauss部署&#xff0c;请审题。 文章目录 前言一、部署适合deskdocker的环境二、安装opengauss数据库1.配置docker镜像源2.拉取镜像源 总结 前言 注意事项&#xff1a;后面docker拉取镜像源最好电脑有科学上网工具如果没有科学上…...

Docker1:认识docker、在Linux中安装docker

欢迎来到“雪碧聊技术”CSDN博客&#xff01; 在这里&#xff0c;您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者&#xff0c;还是具有一定经验的开发者&#xff0c;相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导&#xff0c;我将…...

鸿蒙开发-音视频

Media Kit 特点 一般场合的音视频处理&#xff0c;可以直接使用系统集成的Video组件&#xff0c;不过外观和功能自定义程度低Media kit&#xff1a;轻量媒体引擎&#xff0c;系统资源占用低支持音视频播放/录制&#xff0c;pipeline灵活拼装&#xff0c;插件化扩展source/demu…...

Vue3学习笔记

目录 Vue3Vue3优势Vue3组合式API & Vue2选项式APIcreate-vue使用create-vue创建项目 项目目录和关键文件组合式API-setup选项组合式API-reactive和ref函数reactive()ref() 组合式API-computed组合式API-watch基础使用immdiate和deep配置精确侦听对象的某个属性 组合式API-生…...