【机器学习】近似分布的熵到底是p(x)lnq(x)还是q(x)lnq(x)?
【1】通信的定义
信息量(Information Content)是信息论中的一个核心概念,用于定量描述一个事件发生时所提供的“信息”的多少。它通常用随机变量 𝑥的概率分布来定义。事件 𝑥发生所携带的信息量由公式给出:
I ( x ) = − log p ( x ) I(x)=-\log p(x) I(x)=−logp(x)
其中, p ( x ) p(x) p(x)表示事件 𝑥发生的概率。
∙ 概率越小,事件越不常见,发生时提供的信息量越大。 ∙ 概率为 1 的事件是确定的,不提供任何信息量( I ( x ) = 0 )。 ∙ 概率接近 0 的事件非常罕见,信息量趋近无穷大。 \begin{aligned}&\bullet\quad\text{概率越小,事件越不常见,发生时提供的信息量越大。}\\&\bullet\quad\text{概率为 }1\text{ 的事件是确定的,不提供任何信息量(}I(x)=0\text{)。}\\&\bullet\quad\text{概率接近 }0\text{ 的事件非常罕见,信息量趋近无穷大。}\end{aligned} ∙概率越小,事件越不常见,发生时提供的信息量越大。∙概率为 1 的事件是确定的,不提供任何信息量(I(x)=0)。∙概率接近 0 的事件非常罕见,信息量趋近无穷大。
信息量描述单个事件的信息贡献,而熵(Entropy)是信息量的期望值,用于衡量整个概率分布的不确定性:
对于离散随机变量的熵的定义为:
H [ x ] = − ∑ x p ( x ) log 2 p ( x ) \mathrm{H}[x]=-\sum_xp(x)\log_2p(x) H[x]=−x∑p(x)log2p(x)
对于连续随机变量的熵的定义为:
H [ x ] = E [ − ln p ( x ) ] = − ∫ p ( x ) ln p ( x ) d x \mathrm H[x]=\mathbb E[-\ln p(x)]=-\int p(x)\ln p(x) dx H[x]=E[−lnp(x)]=−∫p(x)lnp(x)dx
从通信角度来说,熵的值相当于对随机变量 x x x 的每个可能状态进行编码时,理论上的最短平均编码长度。
熵越大,系统的不确定性越大;熵越小,系统越接近确定性。
【2】机器学习应用
在机器学习中,一般需要构造一个概率分布 q ( x ) q(x) q(x) 来逼近一个未知的目标分布 p ( x ) p(x) p(x)。
对于一个给定的连续分布 p ( x ) p(x) p(x),其随机变量 x x x 取特定值所能提供的信息量为 − l n p ( x ) − ln p(x) −lnp(x),并且该随机变量 x x x 的平均信息量为 − ∫ p ( x ) l n p ( x ) d x − ∫p(x) ln p(x) dx −∫p(x)lnp(x)dx。
当用近似分布 q ( x ) q(x) q(x) 来替代目标分布 p ( x ) p(x) p(x) 时,随机变量 x 取特定值的估计信息量变
为 − l n q ( x ) − ln q(x) −lnq(x),而相应的熵变为 − ∫ p ( x ) l n q ( x ) d x −∫p(x) ln q(x) dx −∫p(x)lnq(x)dx。
疑问
问题:这里为什么变成 p ( x ) l n q ( x ) p(x)lnq(x) p(x)lnq(x),而不是 q ( x ) l n q ( x ) q(x)lnq(x) q(x)lnq(x)?
在机器学习中,当使用一个近似分布 ( q ( x ) q(x) q(x) ) 来替代目标分布 ( p ( x ) p(x) p(x) ) 时,出现 ( p ( x ) ln q ( x ) p(x) \ln q(x) p(x)lnq(x)) 而不是 ( q ( x ) ln q ( x ) q(x) \ln q(x) q(x)lnq(x) ) 的原因主要源于我们关心的是目标分布 ( p ( x ) p(x) p(x) ) 的特性,而不是 ( q ( x ) q(x) q(x) ) 本身。这可以从以下几个方面理解:
1. 核心目标:逼近目标分布 ( p(x) )
- 我们的目标是构造一个 ( q ( x ) q(x) q(x) ) 来逼近 ( p ( x ) p(x) p(x) )。因此,我们需要使用 ( p ( x ) p(x) p(x) ) 来评估 ( q ( x ) q(x) q(x) ) 的好坏。
- 如果直接使用 ( q ( x ) ln q ( x ) q(x) \ln q(x) q(x)lnq(x) ),我们只是在描述 ( q ( x ) q(x) q(x) ) 本身的性质,而没有体现它与 ( p ( x ) p(x) p(x) ) 的关系。
2. 期望的计算权重由 ( p(x) ) 决定
- 在概率分布中,期望的计算权重应该反映目标分布 ( p ( x ) p(x) p(x) ) 的实际情况。
- 通过积分 − ∫ p ( x ) ln q ( x ) d x - \int p(x) \ln q(x) dx −∫p(x)lnq(x)dx我们是用目标分布 ( p ( x ) p(x) p(x) ) 的概率来加权评估 ( q ( x ) q(x) q(x) ) 的表现。
这意味着我们关注的是目标分布下的“真实情况”,而不是 ( q ( x ) q(x) q(x) ) 自己的特性。
3. 解释:信息论中的编码思想
信息论中,我们希望用 ( q ( x ) q(x) q(x) ) 来编码目标分布 ( p ( x ) p(x) p(x) ) 中的数据。如果 ( p ( x ) p(x) p(x) ) 是真实分布, ( q ( x ) q(x) q(x) ) 是我们的近似分布:
- ( − ln p ( x ) -\ln p(x) −lnp(x) ):真实分布下的理想编码长度。
- ( − ln q ( x ) -\ln q(x) −lnq(x) ):用近似分布编码时的实际长度。
用 ( q ( x ) q(x) q(x) ) 来编码 ( p ( x ) p(x) p(x) ) 时,随机变量 ( x x x ) 的取值是依据 ( p ( x ) p(x) p(x) ) 来产生的,因此应该以 ( p ( x ) p(x) p(x) ) 为权重来衡量编码的平均长度,即 ( − ∫ p ( x ) ln q ( x ) d x -\int p(x) \ln q(x) dx −∫p(x)lnq(x)dx)。
4. 直观理解:错误代价的衡量
如果我们直接使用 ( q ( x ) ln q ( x ) q(x) \ln q(x) q(x)lnq(x) ),那相当于仅关注 ( q ( x ) q(x) q(x) ) 自己的内部一致性,但我们真正关心的是 ( q ( x ) q(x) q(x) ) 与 ( p ( x ) p(x) p(x) ) 的差异。这种差异需要通过目标分布 ( p ( x ) p(x) p(x) ) 来衡量:
- ( p ( x ) ln q ( x ) p(x) \ln q(x) p(x)lnq(x) ):用 ( q ( x ) q(x) q(x) ) 来描述 ( p ( x ) p(x) p(x) ) 时的估计误差。
- 它是对真实分布 ( p ( x ) p(x) p(x) ) 的状态进行编码的平均代价,而非对 ( q ( x ) q(x) q(x) ) 自身的特性描述。
5. 与 KL 散度的关系
KL 散度(Kullback-Leibler divergence)用于衡量两个分布的差异,其定义为:
D K L ( p ∣ ∣ q ) = ∫ p ( x ) ln p ( x ) q ( x ) d x = − ∫ p ( x ) ln q ( x ) d x + ∫ p ( x ) ln p ( x ) d x D_{KL}(p || q) = \int p(x) \ln \frac{p(x)}{q(x)} dx = - \int p(x) \ln q(x) dx + \int p(x) \ln p(x) dx DKL(p∣∣q)=∫p(x)lnq(x)p(x)dx=−∫p(x)lnq(x)dx+∫p(x)lnp(x)dx
可以看出, ( − ∫ p ( x ) ln q ( x ) d x -\int p(x) \ln q(x) dx −∫p(x)lnq(x)dx) 是 KL 散度的一部分,用来描述 ( q ( x ) q(x) q(x) ) 对 ( p ( x ) p(x) p(x) ) 的拟合质量。
总结
变成 ( − ∫ p ( x ) ln q ( x ) d x -\int p(x) \ln q(x) dx −∫p(x)lnq(x)dx) 是因为我们关心的是 ( q ( x ) q(x) q(x) ) 对目标分布 ( p ( x ) p(x) p(x) ) 的拟合情况,而不是 ( q ( x ) q(x) q(x) ) 自己的特性。通过以 ( p ( x ) p(x) p(x) ) 作为权重来计算期望,我们能够更准确地反映目标分布下的编码代价和近似质量。
后记
2024年11月21日21点00分于上海。基于GPT4o大模型生成。
相关文章:
【机器学习】近似分布的熵到底是p(x)lnq(x)还是q(x)lnq(x)?
【1】通信的定义 信息量(Information Content)是信息论中的一个核心概念,用于定量描述一个事件发生时所提供的“信息”的多少。它通常用随机变量 𝑥的概率分布来定义。事件 𝑥发生所携带的信息量由公式给出࿱…...
C语言:深入理解指针
一.内存和地址 我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存是 8GB/16GB/32GB 等,那这些内存空间…...
Vue实训---4-使用Pinia实现menu菜单展示/隐藏
0.menu菜单展示/隐藏实现方法 Menu 菜单 | Element Plus中,当:collapse"isCollapse"其中isCollapse的值为true时菜单栏隐藏,当isCollapse的值为false时菜单栏显示。接下来使用pinia实现CommonAside.vue和CommonHeader.vue组件之间数据的共享&…...
Fakelocation Server服务器/专业版 Centos7
前言:需要Centos7系统 Fakelocation开源文件系统需求 Centos7 | Fakelocation | 任务一 更新Centos7 (安装下载不再赘述) sudo yum makecache fastsudo yum update -ysudo yum install -y kernelsudo reboot//如果遇到错误提示为 Another app is curre…...
网络安全,文明上网(4)掌握网络安全技术
前言 在数字化时代,个人信息和企业数据的安全变得尤为重要。为了有效保护这些宝贵资产,掌握一系列网络安全技术是关键。 核心技术及实施方式 1. 网络监控与过滤系统: 这些系统构成了网络防御体系的基石,它们负责监控网络通信&…...
Ettus USRP X410
总线连接器: 以太网 RF频率范围: 1 MHz 至 7.2 GHz GPSDO: 是 输出通道数量: 4 RF收发仪瞬时带宽: 400 MHz 输入通道数量: 4 FPGA: Zynq US RFSoC (ZU28DR) 1 MHz to 7.2 GHz,400 MHz带宽,GPS驯服OCXO,USRP软件无线电设备 Ettus USRP X410集…...
在SQLyog中导入和导出数据库
导入 假如我要导入一个xxx.sql,我就先创建一个叫做xxx的数据库。 然后右键点击导入、执行SQL脚本 选择要导入的数据库文件的位置,点击执行即可 注意: 导入之后记得刷新一下导出 选择你要导出的数据库 右键选择:备份/导出、…...
一文了解Spring提供的几种扩展能力
基于 spring bean 的扩展 1. BeanPostProcessor spring 提供的针对 bean 的初始化过程时提供的扩展能力,从方法名也很容易看出,提供的两个方法分别是为 bean 对象提供了初始化之前以及初始化之后的扩展能力。 package com.wyl.conf;import org.spring…...
VXLAN说明
1. 什么是 VXLAN ? VXLAN(Virtual Extensible LAN,虚拟扩展局域网)是一种网络虚拟化技术,旨在通过在现有的物理网络上实现虚拟网络扩展,从而克服传统 VLAN 的一些限制。 VXLAN 主要用于数据中心、云计算环…...
MyBatis基本使用
一、向SQL语句传参: 1.MyBatis日志输出配置: mybatis配置文件设计标签和顶层结构如下: 可以在mybatis的配置文件使用settings标签设置,输出运过程SQL日志,通过查看日志,可以判定#{}和${}的输出效果 settings设置项: logImpl指定 MyBatis 所用日志的具…...
Linux笔记---进程:进程切换与O(1)调度算法
1. 补充概念 1.1 并行与并发 竞争性:系统进程数目众多,而CPU资源只有少量,甚至只有1个,所以进程之间是具有竞争属性的。为了高效完成任务,更合理竞争相关资源,便具有了优先级。独立性:多进程运…...
Flink学习连载第二篇-使用flink编写WordCount(多种情况演示)
使用Flink编写代码,步骤非常固定,大概分为以下几步,只要牢牢抓住步骤,基本轻松拿下: 1. env-准备环境 2. source-加载数据 3. transformation-数据处理转换 4. sink-数据输出 5. execute-执行 DataStream API开发 //n…...
[AutoSar]BSW_Diagnostic_007 BootLoader 跳转及APP OR boot response 实现
目录 关键词平台说明背景一、Process Jump to Bootloader二、相关函数和配置2.1 Dcm_GetProgConditions()2.2 Dcm_SetProgConditions() 三、如何实现在APP 还是BOOT 中对10 02服务响应3.1 配置3.2 code 四、报文五、小结 关键词 嵌入式、C语言、autosar、OS、BSW、UDS、diagno…...
用 Python 写了一个天天酷跑(附源码)
Hello,大家好,给大家说一下,我要开始装逼了 这期写个天天酷跑玩一下叭! 制作一个完整的“天天酷跑”游戏涉及很多方面,包括图形渲染、物理引擎、用户输入处理、游戏逻辑等。由于Python是一种高级编程语言,…...
WebGL进阶(九)光线
理论基础: 点光源 符合向量定义,末减初。 平行光 环境光 效果: 点光源 平行光 环境光 源码: 点光源 // 顶点着色器程序let vertexstring attribute vec4 a_position; // 顶点位置属性uniform mat4 u_formMatrix; // 用于变换…...
Lucene(2):Springboot整合全文检索引擎TermInSetQuery应用实例附源码
前言 本章代码已分享至Gitee: https://gitee.com/lengcz/springbootlucene01 接上文。Lucene(1):Springboot整合全文检索引擎Lucene常规入门附源码 如何在指定范围内查询。从lucene 7 开始,filter 被弃用,导致无法进行调节过滤。 TermInSetQuery 指定…...
HarmonyOS(57) UI性能优化
性能优化是APP开发绕不过的话题,那么在HarmonyOS开发过程中怎么进行性能优化呢?今天就来总结下相关知识点。 UI性能优化 1、避免在组件的生命周期内执行高耗时操作2、合理使用ResourceManager3、优先使用Builder方法代替自定义组件4、参考资料 1、避免在…...
机器学习周志华学习笔记-第5章<神经网络>
机器学习周志华学习笔记-第5章<神经网络> 卷王,请看目录 5模型的评估与选择5.1 神经元模型5.2 感知机与多层网络5.3 BP(误逆差)神经网络算法 5.4常见的神经网络5.4.1 RBF网络(Radial Basis Function Network,径向基函数网络࿰…...
SQL进阶技巧:如何进行数字范围统计?| 货场剩余货位的统计查询方法
目录 0 场景描述 1 剩余空位区间和剩余空位编号统计分析 2 查找已用货位区间 3 小结 0 场景描述 这是在做一个大型货场租赁系统时遇到的问题,在计算货场剩余存储空间时,不仅仅需要知道哪些货位是空闲的,还要能够判断出哪些货位之间是连续的。因为在新货物入场时,可…...
Xilinx IP核(3)XADC IP核
文章目录 1. XADC介绍2.输入要求3.输出4.XADC IP核使用5.传送门 1. XADC介绍 xadc在 所有的7系列器件上都有支持,通过将高质量模拟模块与可编程逻辑的灵活性相结合,可以为各种应用打造定制的模拟接口,XADC 包括双 12 位、每秒 1 兆样本 (MSP…...
现代大数据架构设计与实践:从数据存储到处理的全面解读
1. 引言 随着信息技术的不断发展,数据已经成为企业和组织最宝贵的资产之一。大数据的应用已经渗透到各个行业,无论是电商、金融,还是医疗、物流,如何有效管理、存储和处理海量的数据已经成为企业成功的关键之一。本文将深入探讨现代大数据架构的设计理念与技术实践,从数据…...
详细教程-Linux上安装单机版的Hadoop
1、上传Hadoop安装包至linux并解压 tar -zxvf hadoop-2.6.0-cdh5.15.2.tar.gz 安装包: 链接:https://pan.baidu.com/s/1u59OLTJctKmm9YVWr_F-Cg 提取码:0pfj 2、配置免密码登录 生成秘钥: ssh-keygen -t rsa -P 将秘钥写入认…...
前端项目支持tailwindcss写样式
安装 npm install -D tailwindcss npx tailwindcss init配置 tailwind.config.js //根据个人需求填写,比如vue简单配置 /** type {import(tailwindcss).Config} */ module.exports {darkMode: "class",corePlugins: {preflight: false},content: [&quo…...
工程师 - 智能家居方案介绍
1. 智能家居硬件方案概述 智能家居硬件方案是实现家庭自动化的重要组件,通过集成各种设备来提升生活的便利性、安全性和效率。这些方案通常结合了物联网技术,为用户提供智能化、自动化的生活体验。硬件方案的选择直接影响到智能家居系统的性能、兼容性、…...
H.264/H.265播放器EasyPlayer.js网页全终端安防视频流媒体播放器关于iOS不能系统全屏
在数字化时代,流媒体播放器已成为信息传播和娱乐消遣的主流载体。随着技术的进步,流媒体播放器的核心技术和发展趋势不断演变,影响着整个行业的发展方向。 EasyPlayer播放器属于一款高效、精炼、稳定且免费的流媒体播放器,可支持…...
2.langchain中的prompt模板 (FewShotPromptTemplate)
本教程将介绍如何使用 LangChain 库中的 PromptTemplate 和 FewShotPromptTemplate 来构建和运行提示(prompt),并通过示例数据展示其应用。 安装依赖 首先,确保你已经安装了 langchain 和相关依赖: pip install lan…...
TCP/IP
1、浏览器输入网址后发生了什么 1)应用层:浏览器解析ULR,生成发送给web服务器的请求信息,HTTP请求报文生成,委托给操作系统将消息发送给web服务器,发送之前需要查询服务器域名对应的IP地址(需要…...
详细探索xinput1_3.dll:功能、问题与xinput1_3.dll丢失的解决方案
本文旨在深入探讨xinput1_3.dll这一动态链接库文件。首先介绍其在计算机系统中的功能和作用,特别是在游戏和输入设备交互方面的重要性。然后分析在使用过程中可能出现的诸如文件丢失、版本不兼容等问题,并提出相应的解决方案,包括重新安装相关…...
Spring:AOP切入点表达式
对于AOP中切入点表达式,我们总共会学习三个内容,分别是语法格式、通配符和书写技巧。 语法格式 首先我们先要明确两个概念: 切入点:要进行增强的方法切入点表达式:要进行增强的方法的描述方式 对于切入点的描述,我们其实是有两中方式的&a…...
STM32的中断(什么是外部中断和其他中断以及中断号是什么)
一、什么是EXTI 和NVIC EXTI(External Interrupt/Event Controller)EXTI 是外部中断/事件控制器,它负责处理外部信号变化,并将信号传递给中断控制器(如 NVIC)。主要负责以下功能: 外部事件检测…...
MySQL底层概述—1.InnoDB内存结构
大纲 1.InnoDB引擎架构 2.Buffer Pool 3.Page管理机制之Page页分类 4.Page管理机制之Page页管理 5.Change Buffer 6.Log Buffer 1.InnoDB引擎架构 (1)InnoDB引擎架构图 (2)InnoDB内存结构 (1)InnoDB引擎架构图 下面是InnoDB引擎架构图,主要分为内存结构和磁…...
Linux 下进程基本概念与状态
文章目录 一、进程的定义二、 描述进程-PCBtask_ struct内容分类 三、 进程状态 一、进程的定义 狭义定义:进程是正在运行的程序的实例(an instance of a computer program that is being executed)。广义定义:进程是一个具有一定…...
Go语言链接Redis数据库
1.使用go get命令安装go-redis/v8库: 我这里使用的vscode工具安装: go get github.com/go-redis/redis/v82.创建Redis客户端实例 使用以下Go代码连接到Redis服务器并执行命令: package mainimport ("context""fmt"&q…...
SQL 分页查询详解
在处理大型数据集时,分页查询是一种常见的技术,用于将数据分成多个小块,以便逐步加载和显示。这不仅可以提高应用的性能,还可以提升用户体验,避免一次性加载过多数据导致页面加载缓慢或资源消耗过大。本文将详细介绍 S…...
ACP科普:风险价值矩阵
风险价值矩阵(Risk-Value Matrix)是一种常用的工具,用于在项目管理中帮助团队识别、评估和优先处理风险。它通过将风险和价值两个因素进行结合,帮助决策者明确哪些风险需要优先关注和处理,从而有效地管理项目的不确定性…...
计算机网络socket编程(2)_UDP网络编程实现网络字典
个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 计算机网络socket编程(2)_UDP网络编程实现网络字典 收录于专栏【计算机网络】 本专栏旨在分享学习计算机网络的一点学习笔记,欢迎大家在评论区交流讨…...
(Keil)MDK-ARM各种优化选项详细说明、实际应用及拓展内容
参考 MDK-ARM各种优化选项详细说明、实际应用及拓展内容 本文围绕MDK-ARM优化选项,以及相关拓展知识(微库、实际应用、调试)进行讲述,希望对你今后开发项目有所帮助。 1 总述 我们所指的优化,主要两方面: 1.代码大小(Size) 2.代码性能(运行时间) 在MDK-ARM中,优…...
mac2024 安装node和vue
以下是使用 Node.js 官方 .pkg 安装包 安装 Node.js 和 Vue CLI 的完整流程,包括如何重新设置 npm 的环境,以避免权限问题。 安装 Node.js 步骤 1.1:下载 Node.js 安装包 1. 打开 Node.js 官网。 2. 下载 LTS(长期支持…...
在win10环境部署opengauss数据库(包含各种可能遇到的问题解决)
适用于windows环境下通过docker desktop实现opengauss部署,请审题。 文章目录 前言一、部署适合deskdocker的环境二、安装opengauss数据库1.配置docker镜像源2.拉取镜像源 总结 前言 注意事项:后面docker拉取镜像源最好电脑有科学上网工具如果没有科学上…...
Docker1:认识docker、在Linux中安装docker
欢迎来到“雪碧聊技术”CSDN博客! 在这里,您将踏入一个专注于Java开发技术的知识殿堂。无论您是Java编程的初学者,还是具有一定经验的开发者,相信我的博客都能为您提供宝贵的学习资源和实用技巧。作为您的技术向导,我将…...
鸿蒙开发-音视频
Media Kit 特点 一般场合的音视频处理,可以直接使用系统集成的Video组件,不过外观和功能自定义程度低Media kit:轻量媒体引擎,系统资源占用低支持音视频播放/录制,pipeline灵活拼装,插件化扩展source/demu…...
Vue3学习笔记
目录 Vue3Vue3优势Vue3组合式API & Vue2选项式APIcreate-vue使用create-vue创建项目 项目目录和关键文件组合式API-setup选项组合式API-reactive和ref函数reactive()ref() 组合式API-computed组合式API-watch基础使用immdiate和deep配置精确侦听对象的某个属性 组合式API-生…...
node + Redis + svg-captcha 实现验证码
目录 前提说明 Redis链接与封装 svg-captcha使用步骤 封装中间件验证 前端接收 扩展【svg API】 svgCaptcha.create(options) svgCaptcha.createMathExpr(options) svgCaptcha.loadFont(url) svgCaptcha.options svgCaptcha.randomText([size|options]) svgCaptcha(…...
dubbo-go框架介绍
框架介绍 什么是 dubbo-go Dubbo-go 是 Apache Dubbo 的 go 语言实现,它完全遵循 Apache Dubbo 设计原则与目标,是 go 语言领域的一款优秀微服务开发框架。dubbo-go 提供: API 与 RPC 协议:帮助解决组件之间的 RPC 通信问题&am…...
玛哈特矫平机:工业制造中的平整利器
在日新月异的工业制造领域,每一个细节都至关重要。而在这其中,矫平机以其独特的功能和卓越的性能,成为了不可或缺的重要工具。它就像一位技艺高超的工匠,精心雕琢着每一件工业产品,赋予它们平整、光滑的表面。 矫平机…...
IDEA 2024安装指南(含安装包以及使用说明 cannot collect jvm options 问题 四)
汉化 setting 中选择插件 完成 安装出现问题 1.可能是因为之前下载过的idea,找到连接中 文件,卸载即可。...
Jmeter中的定时器
4)定时器 1--固定定时器 功能特点 固定延迟:在每个请求之间添加固定的延迟时间。精确控制:可以精确控制请求的发送频率。简单易用:配置简单,易于理解和使用。 配置步骤 添加固定定时器 右键点击需要添加定时器的请求…...
共享单车管理系统项目学习实战
前言 Spring Boot Vue前后端分离 前端:Vue(CDN) Element axios(前后端交互) BaiDuMap ECharts(图表展示) 后端:Spring Boot Spring MVC(Web) MyBatis Plus(数据库) 数据库:MySQL 验证码请求 git提交 cd C:/Users/Ustini…...
学Linux的第九天--磁盘管理
目录 一、磁盘简介 (一)、认知磁盘 (1)结构 (2)物理设备的命名规则 (二)、磁盘分区方式 MBR分区 MBR分区类型 扩展 GPT格式 lsblk命令 使用fdisk管理分区 使用gdisk管理分…...
CLIP-Adapter: Better Vision-Language Models with Feature Adapters 论文解读
abstract 大规模对比视觉-语言预训练在视觉表示学习方面取得了显著进展。与传统的通过固定一组离散标签训练的视觉系统不同,(Radford et al., 2021) 引入了一种新范式,该范式在开放词汇环境中直接学习将图像与原始文本对齐。在下游任务中,通…...