当前位置: 首页 > news >正文

重温设计模式--职责链模式

文章目录

      • 职责链模式的详细介绍
      • C++ 代码示例
      • C++示例代码2

职责链模式的详细介绍

  1. 定义与概念
    职责链模式(Chain of Responsibility Pattern)是一种行为型设计模式,它旨在将请求的发送者和多个接收者解耦,让多个对象都有机会处理请求,这些对象就像一条链一样依次传递请求,直到有一个对象能够处理该请求为止。如果某个对象不能处理请求,它会将请求转发给链上的下一个对象。

例如,在一个员工请假审批系统中,员工提交请假申请后,可能先由小组长审批,如果请假天数较多,小组长无法审批,就会将申请转交给部门经理审批,若部门经理权限也不够,还可能继续往上传递给更高层领导审批。这里的小组长、部门经理、高层领导等就构成了一条职责链,每个角色都是链上的一环,根据自己的审批权限来决定是否处理该请假申请这个请求。

  1. 角色构成及职责

    • 抽象处理者(Handler):它定义了一个处理请求的接口,通常包含一个抽象的处理请求方法以及设置下一个处理者的方法。这个抽象类是整个职责链的基础,所有具体的处理者类都要继承自它。例如,在上述请假审批示例中,抽象处理者可以定义一个抽象的“审批请求”方法和“设置下一个审批者”的方法,无论是小组长还是部门经理等具体审批角色对应的类都要遵循这个统一的接口规范。
    • 具体处理者(ConcreteHandler):是抽象处理者的子类,实现了处理请求的具体逻辑。每个具体处理者会判断自己是否能够处理当前请求,如果可以,就进行处理;如果不行,就将请求传递给下一个处理者(通过调用设置好的下一个处理者对应的处理请求方法)。比如小组长这个具体处理者,会根据自己能审批的请假天数范围来判断是否处理员工的请假申请,若超出范围就把申请转交给部门经理这个下一个处理者。
    • 请求(Request):这是需要在职责链中传递并被处理的对象,它包含了与请求相关的各种信息,例如请假申请中的请假天数、请假事由等内容。
      在这里插入图片描述
  2. 优点

    • 降低耦合度:请求的发送者不需要知道具体是哪个对象来处理请求,它只需要将请求发送到职责链的起始端即可,而各个具体处理者之间也只是通过链的方式依次传递请求,相互之间的依赖关系比较松散,便于系统的维护和扩展。
    • 增强灵活性:可以动态地增加、删除或者重新排列职责链上的处理者,比如在请假审批系统中,如果公司组织结构调整,增加了新的管理层级或者调整了审批权限,只需要相应地修改或添加具体处理者类以及调整它们在链上的顺序就可以适应变化,而不需要大规模改动整个系统的其他部分。
    • 便于分工协作:不同的具体处理者可以专注于处理自己职责范围内的请求,符合单一职责原则,有利于代码的编写、测试以及后续的维护工作。
  3. 缺点

    • 可能导致性能问题:如果职责链比较长,而且每个请求都需要遍历较长的链才能找到合适的处理者,可能会消耗较多的时间和资源,特别是在对性能要求较高的场景下,这一点需要注意并合理优化。
    • 调试难度增加:由于请求在多个对象之间传递,当出现问题时,确定是哪个环节的处理者出现故障或者错误的处理逻辑相对复杂一些,不利于快速定位和解决问题。
  4. 应用场景

    • 审批流程:如前面提到的员工请假审批、费用报销审批等各种涉及多层级审批的场景,不同层级的审批人员构成职责链,根据审批权限来处理请求。
    • 事件处理系统:在图形用户界面开发中,比如鼠标点击事件、键盘按键事件等,不同的控件或者组件可以按照一定的顺序构成职责链,根据各自的功能和逻辑来判断是否处理这些事件,比如先由按钮控件判断是否点击在自己范围内,如果不是再由父容器等继续判断处理。
    • 客户服务系统:客户提出的问题按照问题的类型、难度等可以在不同的客服人员或者部门之间传递,例如一线客服先尝试解决简单问题,解决不了就转交给专业技术部门等,形成一条处理客户问题的职责链。

C++ 代码示例

以下是一个简单的模拟请假审批的 C++ 代码示例来体现职责链模式:

#include <iostream>
#include <string>// 请求类,这里模拟请假申请,包含请假天数和请假事由
class LeaveRequest {
public:LeaveRequest(int days, const std::string& reason) : m_days(days), m_reason(reason) {}int getDays() const { return m_days; }std::string getReason() const { return m_reason; }private:int m_days;std::string m_reason;
};// 抽象处理者类,定义处理请求的接口以及设置下一个处理者的方法
class Handler {
public:Handler() : m_nextHandler(nullptr) {}virtual ~Handler() = default;void setNextHandler(Handler* next) { m_nextHandler = next; }virtual void handleRequest(LeaveRequest& request) = 0;protected:Handler* m_nextHandler;
};// 具体处理者 - 小组长类
class TeamLeader : public Handler {
public:void handleRequest(LeaveRequest& request) override {if (request.getDays() <= 2) {std::cout << "Team leader approved the leave request for " << request.getReason() << ". Days: " << request.getDays() << std::endl;} else if (m_nextHandler!= nullptr) {m_nextHandler->handleRequest(request);}}
};// 具体处理者 - 部门经理类
class DepartmentManager : public Handler {
public:void handleRequest(LeaveRequest& request) override {if (request.getDays() <= 5) {std::cout << "Department manager approved the leave request for " << request.getReason() << ". Days: " << request.getDays() << std::endl;} else if (m_nextHandler!= nullptr) {m_nextHandler->handleRequest(request);}}
};// 具体处理者 - 总经理类
class GeneralManager : public Handler {
public:void handleRequest(LeaveRequest& request) override {std::cout << "General manager approved the leave request for " << request.getReason() << ". Days: " << request.getDays() << std::endl;}
};int main() {LeaveRequest request1(1, "Personal affairs");LeaveRequest request2(4, "Sick leave");LeaveRequest request3(8, "Family trip");TeamLeader teamLeader;DepartmentManager departmentManager;GeneralManager generalManager;teamLeader.setNextHandler(&departmentManager);departmentManager.setNextHandler(&generalManager);teamLeader.handleRequest(request1);teamLeader.handleRequest(request2);teamLeader.handleRequest(request3);return 0;
}

在上述代码中:

  • LeaveRequest 类作为请求对象,封装了请假天数和请假事由等信息。
  • Handler 类是抽象处理者,定义了 handleRequest 方法用于处理请求以及 setNextHandler 方法来设置下一个处理者。
  • TeamLeaderDepartmentManagerGeneralManager 分别是具体的处理者类,它们继承自 Handler 类,在 handleRequest 方法中根据自己的审批权限(这里以请假天数衡量)来决定是处理请求还是将请求传递给下一个处理者。
  • main 函数中,创建了不同的请求对象以及各个具体处理者对象,并将它们连接成职责链(通过 setNextHandler 方法),然后将请求依次发送到职责链的起始端(这里是小组长),由职责链上的处理者根据自身规则来处理请求。

C++示例代码2

#include<iostream>
#include<string>
using namespace std;
//请求
class request
{
public:string type;//类型int count;//数量string content;//内容
public:request(string m_type, int len ,string m_content):type(m_type),count(len),content(m_content){}
};
//抽象管理类
class Manger
{
protected:string m_name;Manger *super;
public:Manger(string name):m_name(name){}virtual void setsuper(Manger *m_super){super = m_super;}virtual void requestapplication(request m_request){}
};
//经理
class jingli:public Manger
{
public:jingli(string name):Manger(name){}void requestapplication(request m_request){if(m_request.type=="请假" && m_request.count<3){cout<<m_name<<": "<<m_request.content<<"数量:"<<m_request.count<<" 批准"<<endl;}else{super->requestapplication(m_request);}}
};
//主管
class zhuguan:public Manger
{
public:zhuguan(string name):Manger(name){}void requestapplication(request m_request){if(m_request.type=="请假" && m_request.count<5){cout<<m_name<<": "<<m_request.content<<"数量:"<<m_request.count<<" 批准"<<endl;}else{super->requestapplication(m_request);}}
};
//总经理
class zongjingli:public Manger
{
public:zongjingli(string name):Manger(name){}void requestapplication(request m_request){if(m_request.type=="请假" && m_request.count<10){cout<<m_name<<": "<<m_request.content<<"数量:"<<m_request.count<<" 批准"<<endl;}else{cout<<m_name<<": "<<m_request.content<<"数量:"<<m_request.count<<" 不批准"<<endl;}}
};
int main()
{request *myrequest = new request("请假" ,6,"小明请假");jingli *m_jingli = new jingli("经理");zhuguan*m_zhuguan = new zhuguan("主管");zongjingli *m_zongjingli = new zongjingli("总经理");m_jingli->setsuper(m_zhuguan);m_zhuguan->setsuper(m_zongjingli);m_jingli->requestapplication(*myrequest);myrequest->count=100;cout<<endl;m_jingli->requestapplication(*myrequest);myrequest->count=1;cout<<endl;m_jingli->requestapplication(*myrequest);return 0;
}

相关文章:

重温设计模式--职责链模式

文章目录 职责链模式的详细介绍C 代码示例C示例代码2 职责链模式的详细介绍 定义与概念 职责链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为型设计模式&#xff0c;它旨在将请求的发送者和多个接收者解耦&#xff0c;让多个对象都有机会处理请求&a…...

单点登录平台Casdoor搭建与使用,集成gitlab同步创建删除账号

一&#xff0c;简介 一般来说&#xff0c;公司有很多系统使用&#xff0c;为了实现统一的用户名管理和登录所有系统&#xff08;如 GitLab、Harbor 等&#xff09;&#xff0c;并在员工离职时只需删除一个主账号即可实现权限清除&#xff0c;可以采用 单点登录 (SSO) 和 集中式…...

【Rust自学】5.1. 定义并实例化struct

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 5.1.1. 什么是struct struct的中文意思为结构体&#xff0c;它是一种自定义的数据类型&#xff0c;它允许程序为相关联的值命名和打包&am…...

vue-cli 5接入模块联邦 module federation

vue-cli 5接入模块联邦 module federation 模块联邦概念实现思路配置遇到的问题: 模块联邦概念 模块联邦由webpack 5最先推出的,让应用加载远程的代码模块来实现不同的Web应用共享代码片段.模块联邦分为两个角色,一个是生产者,一个是消费者.生产者暴露代码供消费者消费 (用一个…...

[前端]mac安装nvm(node.js)多版本管理

NVM功能简介 NVM&#xff08;Node Version Manager&#xff09;是一个用于管理多个Node.js版本的命令行工具&#xff0c;它允许开发者在同一台机器上安装、切换和卸载不同版本的Node.js&#xff0c;从而解决版本不兼容的问题。以下是NVM的一些主要功能和用途&#xff1a; 安装和…...

thinkphp8+layui分页

前端 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>demo</title><link href"//unpkg.com/layui2.9.20/dist/css/layui.css" rel"stylesheet"> </head> <…...

【NLP高频面题 - Transformer篇】Transformer的位置编码是如何计算的?

【NLP高频面题 - Transformer篇】Transformer的位置编码是如何计算的&#xff1f; 重要性&#xff1a;★★★ NLP Github 项目&#xff1a; NLP 项目实践&#xff1a;fasterai/nlp-project-practice 介绍&#xff1a;该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用…...

VSCode搭建Java开发环境 2024保姆级安装教程(Java环境搭建+VSCode安装+运行测试+背景图设置)

名人说&#xff1a;一点浩然气&#xff0c;千里快哉风。—— 苏轼《水调歌头》 创作者&#xff1a;Code_流苏(CSDN) 目录 一、Java开发环境搭建二、VScode下载及安装三、VSCode配置Java环境四、运行测试五、背景图设置 很高兴你打开了这篇博客&#xff0c;更多详细的安装教程&…...

计算机网络压缩版

计算机网络到现在零零散散也算过了三遍&#xff0c;一些协议大概了解&#xff0c;但总是模模糊糊的印象&#xff0c;现在把自己的整体认识总结一下&#xff0c;&#xff08;本来想去起名叫《看这一篇就够了》&#xff0c;但是发现网上好的文章太多了&#xff0c;还是看这篇吧&a…...

大语言模型中的Agent;常见的Agent开发工具或框架

大语言模型中的Agent 大语言模型中的Agent是指以大语言模型为核心驱动,具有自主理解、感知、规划、记忆和使用工具等能力,能够自动化执行复杂任务的系统.以下是一些例子: AutoGPT:它相当于一个完整的工具包,可以为各种项目构建和运行自定义AI Agent。使用OpenAI的GPT-4和…...

设计模式-备忘录模式

背景 游戏角色恢复问题&#xff1a;角色有攻击力和防御力&#xff0c;在Boss站前保存攻击力和防御力&#xff0c;大战之后&#xff0c;攻击力和防御力下降&#xff0c;从备忘录恢复到大战前的状态。 传统思路&#xff1a; 一个游戏对象&#xff0c;对应一个保存状态对象。 …...

重温设计模式--状态模式

文章目录 状态模式&#xff08;State Pattern&#xff09;概述状态模式UML图作用&#xff1a;状态模式的结构环境&#xff08;Context&#xff09;类&#xff1a;抽象状态&#xff08;State&#xff09;类&#xff1a;具体状态&#xff08;Concrete State&#xff09;类&#x…...

道可云人工智能元宇宙每日资讯|2024(GIAC)智能视听大会在青岛举行

道可云元宇宙每日简报&#xff08;2024年12月23日&#xff09;讯&#xff0c;今日元宇宙新鲜事有&#xff1a; 2024&#xff08;GIAC&#xff09;智能视听大会在青岛举行 12月22日&#xff0c;2024&#xff08;GIAC&#xff09;智能视听大会在青岛举行。大会以“数字文化 智能…...

理解神经网络

神经网络是一种模拟人类大脑工作方式的计算模型&#xff0c;是深度学习和机器学习领域的基础。 基本原理 神经网络的基本原理是模拟人脑神经系统的功能&#xff0c;通过多个节点&#xff08;也叫神经元&#xff09;的连接和计算&#xff0c;实现非线性模型的组合和输出。每个…...

初学stm32 --- NVIC中断

目录 STM32 NVIC 中断优先级管理 NVIC_Type: ISER[8]&#xff1a; ICER[8]&#xff1a; ISPR[8]&#xff1a; ICPR[8]&#xff1a; IABR[8]&#xff1a; IP[240]&#xff1a; STM32 的中断分组&#xff1a; 中断优先级分组函数 NVIC_PriorityGroupConfig 中断初始化函…...

机器人角度参考方式

机器人的角度可以根据需求和系统设计来决定。通常情况下&#xff0c;机器人角度&#xff08;如航向角或偏航角&#xff09;有两种常见的参考方式&#xff1a; 参考开机时的 0&#xff1a;这是最常见的方式&#xff0c;机器人在开机时会将当前的方向作为 0&#xff08;即参考方向…...

不同路径

不同路径 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少条不同的路径&#xff…...

WPS工具栏灰色怎么办

WPS离线不登录&#xff0c;开启工具栏等相关功能 当你在使用WPS的过程中&#xff0c;若因网络问题或其他特殊原因&#xff0c;导致无法登录使用WPS时&#xff0c;可根据以下步骤开启离线兼容模式&#xff0c;开启此模式后&#xff0c;可在未登录的状态下&#xff0c;激活并使用…...

js的节流与防抖方法封装

简介 节流&#xff08;Throttling&#xff09;和 防抖&#xff08;Debouncing&#xff09; 是防止频繁触发函数执行的两种技术&#xff0c;它们的目标都是减少函数的执行次数。 区别 防抖&#xff08;Debouncing&#xff09; &#xff1a;当用户停止触发事件后&#xff0c;经…...

深信服企业级数据备份与恢复系统(整机裸机恢复)

概述 深信服企业级数据备份与恢复系统可实现无需搭建目标环境&#xff0c;目标机可以是没有操作系统的物理主机或虚拟机&#xff0c;实现异构环境下的裸机恢复。 深信服企业级数据备份与恢复系统支持的多种连接恢复方式&#xff1a; 1. PXE连接恢复&#xff1a;PXE连接需要做…...

uniapp 微信小程序 页面部分截图实现

uniapp 微信小程序 页面部分截图实现 ​ 原理都是将页面元素画成canvas 然后将canvas转化为图片&#xff0c;问题是我页面里边本来就有一个canvas&#xff0c;ucharts图画的canvas我无法画出这块。 ​ 想了一晚上&#xff0c;既然canvas最后能转化为图片&#xff0c;那我直接…...

Sequelize ORM sql 语句工具

Sequelize ORM sql 语句工具 sequelize orm中文网 视频学习长乐未央 初始化配置 Sequelize orm 配置文章落日沉溺于海 在命令行中全局安装 npm i -g sequelize-clisequelize 执行需要匹配 mysql2 对应的依赖&#xff08;安装 mysql2&#xff09; npm i sequelize mysql2初始化…...

搭建Nacos注册中心

Nacos介绍 目前开源的注册中心框架有很多&#xff0c;国内比较常见的有&#xff1a; Eureka&#xff1a;Netflix公司出品&#xff0c;目前被集成在SpringCloud当中&#xff0c;一般用于Java应用 Nacos&#xff1a;Alibaba公司出品&#xff0c;目前被集成在SpringCloudAlibaba中…...

Linux 下SVN新手操作手册

下面来介绍Linux 下 SVN操作方法&#xff1a; 1、SVN的安装 Centos 7 安装Subversion sudo yum -y install subversion Ubuntu 安装Subversion sudo apt-get install subversion 自定义安装&#xff0c;官方地址&#xff1a;https://subversion.apache.org/ 2、SVN的使用…...

解释下什么是面向对象?面向对象和面向过程的区别?

看着很基础是吧&#xff0c;你还真不一定会 4-Java 中创建对象的几种方式&#xff1f; 1、使用new关键字&#xff0c;最常见的创建方式&#xff0c;通过调用类的构造方法&#xff08;构造器&#xff09;来创建对象。 2、使用反射&#xff0c;通过java的反射API可以动态的创建对…...

【CDN】快速了解CDN是什么?以及工作原理和应用场景

快速了解CDN是什么&#xff1f;以及工作原理和应用场景 一、什么是CDN&#xff1f;CDN相关的术语解释 二、CDN工作原理三、CDN与传统网站的区别四、CDN的作用和意义五、CDN的应用场景 一、什么是CDN&#xff1f; CDN英文全称Content Delivery Network&#xff0c;中文翻译即为内…...

【计算机视觉基础CV-图像分类】05 - 深入解析ResNet与GoogLeNet:从基础理论到实际应用

引言 在上一篇文章中&#xff0c;我们详细介绍了ResNet与GoogLeNet的网络结构、设计理念及其在图像分类中的应用。本文将继续深入探讨如何在实际项目中应用这些模型&#xff0c;特别是如何保存训练好的模型、加载模型以及使用模型进行新图像的预测。通过这些步骤&#xff0c;读…...

WPF+MVVM案例实战与特效(四十五)- 打造优雅交互:ListBox 的高级定制与行为触发(侧边菜单交互面板)

文章目录 1、引言2、案例效果3、案例实现1、依赖安装2、文件创建3、代码实现1、依赖引用与上下文2、个性化视觉效果:自定义 ItemContainerStyle3、页面样式与布局完整代码4、ViewModel 逻辑实现5、子界面代码:3、实现效果4、源代码获取5、总结1、引言 在WPF应用程序开发中,…...

Git进阶:本地或远程仓库如何回滚到之前的某个commit

在Git的使用过程中&#xff0c;我们经常会遇到需要回滚到之前某个commit的情况。无论是为了修复错误、撤销更改&#xff0c;还是为了重新组织代码&#xff0c;回滚到特定commit都是一个非常有用的技能。本文将介绍几种常用的回滚方法&#xff0c;帮助读者更好地掌握Git版本控制…...

Django 后端数据传给前端

Step 1 创建一个数据库 Step 2 在Django中点击数据库连接 Step 3 连接成功 Step 4 settings中找DATABASES Step 5 将数据库挂上面 将数据库引擎和数据库名改成自己的 Step 6 在_init_.py中加上数据库的支持语句 import pymysql pymysql.install_as_MySQLdb()Step7 简单创建两列…...

Docker 技术系列之安装多版本Mysql5.6和Mysql5.7

image 大家好&#xff0c;后面的就不是关于MAC专有的内容&#xff0c;基本是跟Java环境&#xff0c;基础技术方面有关。所以这个教程对于在linux系统还是macOS都是通用的&#xff0c;不用担心。 上一篇&#xff0c;我们安装好对应的Docker之后&#xff0c;感受到了它的便利。接…...

C# 范围判断函数

封装范围函数 public static class CommonUtil {/// <summary>/// 范围判断函数&#xff0c;检查给定的值是否在指定的最小值和最大值之间。/// 例如&#xff0c;可以用来判断当前日期是否在开始日期和结束日期之间。/// 该方法适用于任何实现了 IComparable 接口的类型…...

技术速递|使用 Dependabot 管理 .NET SDK 更新

作者&#xff1a;Jamie Magee - 高级软件工程师 排版&#xff1a;Alan Wang 保持 .NET SDK 版本的更新对于维护安全高效的应用程序至关重要。现在 Dependabot 可以在 global.json 中更新 .NET SDK 版本&#xff0c;这使您可以比以往更轻松地确保自己的应用程序始终运行最新的安…...

笔记本通过HDMI转VGA线连接戴尔显示器,wifi不可用或网速变慢

早上开开心心的来使用我的分屏显示器&#xff0c;结果winP开拓展&#xff0c;我的wifi就断掉了&#xff0c;琢磨了好一阵我以为是wifi的问题&#xff0c;发现不进行拓展&#xff0c;网络又好了&#xff0c;一上午就研究这个了&#xff0c;说是hdmi信号干扰了wifi信号啥的额&…...

Excel中match()函数

函数功能概述 MATCH 函数是 Excel 中用于在指定区域中查找特定值的位置的函数。它返回指定数值在指定数组区域中的位置。这个位置是相对于查找区域的相对位置&#xff0c;而不是绝对的单元格位置。语法结构 MATCH(lookup_value, lookup_array, match_type)lookup_value&#xf…...

ACl访问控制列表

ACL的原理 ACL也称为访问控制列表&#xff0c;主要有包过滤的功能&#xff0c;同时也是包过滤防火前的本质 其方式主要是定立规则&#xff0c;这些规则控制着数据包的允许或者通过 ACL的场景 如下图&#xff0c;在全网互通的情况下&#xff0c;控制特定的数据包走向 例如控…...

android 用户空间切换流程

在Android开发中,创建和切换用户是一个重要的功能,特别是在需要多用户支持的应用中,下面讲述一下用户切换的流程。 一、CarUserManager.java 准备创建新用户,可以减少真正创建用户的时间 @RequiresPermission(anyOf = {Manifest.permission.MANAGE_USERS,Manifest.permis…...

突破续航瓶颈:数字样机技术引领新能源汽车复合制动新方向

随着我国经济快速发展和人民生活水平不断提升&#xff0c;汽车保有量截至2023年9月底就已达到了3.3亿&#xff0c;同比增长6.32%。庞大的汽车保有量对我国的环境和能源都产生了巨大的压力&#xff0c;具备节能环保优势的新能源汽车对于有效解决环境恶化和能源危机问题具有重要意…...

51单片机仿真摇号抽奖机源程序 12864液晶显示

资料下载地址&#xff1a;51单片机仿真摇号抽奖机源程序12864液晶显示仿真程序 一、功能介绍 单片机连接12864&#xff08;st7920&#xff09;液晶显示器和1个按键接INT0&#xff0c;模拟一个抽奖机。 实现效果&#xff1a; 1、液晶初始显示“祝你好运&#xff01;”&#xff…...

路由器的原理

✍作者&#xff1a;柒烨带你飞 &#x1f4aa;格言&#xff1a;生活的情况越艰难&#xff0c;我越感到自己更坚强&#xff1b;我这个人走得很慢&#xff0c;但我从不后退。 &#x1f4dc;系列专栏&#xff1a;网路安全入门系列 目录 路由器的原理一&#xff0c;路由器基础及相关…...

Vue(四)

1.Vuex 1.1 Vuex是什么 Vuex 是一个插件&#xff0c;可以帮我们管理 Vue 通用的数据。例如&#xff1a;购物车数据、个人信息数据。 1.2 vuex的使用 1.安装 vuex 安装 vuex 与 vue-router 类似&#xff0c;vuex 是一个独立存在的插件&#xff0c;如果脚手架初始化没有选 v…...

今日总结 2024-12-23

项目初始化 拉取代码与环境配置&#xff1a; 难点&#xff1a;Git 命令不熟悉&#xff0c;依赖文件定位不准&#xff0c;启动脚本含义不明。解决办法&#xff1a;系统学习 Git 基础操作&#xff0c;如通过官方文档、优质的 Git 教程视频&#xff0c;反复练习克隆、分支切换等常…...

Vue常用指令

1. 插值表达式 {{}} <script setup> let msg="hello vue!" </script> <template> <h1>{{ msg }}--{{ 1+1 }}--{{ msg+sb }}</h1> </template> 2. Vue 常用指令 (以v- 开头) 2.1 v-html 替换标签元素内容,包含标签…...

欢乐力扣1-10

文章目录 前言1、合并两个有序数组1.1.描述 2、移除元素2.1.描述2.2.思路 3、删除有序数组中的重复元素3.1.描述3.2.思路 4、输出有序数组中的重复项二4.1.描述4.2.思路 5、多数元素5.1.描述5.2.思路 6、轮转数组6.1.描述6.2.思路 7、买卖股票最佳时机一7.1.思路 8、买卖股票最…...

[创业之路-204]:《华为战略管理法-DSTE实战体系》- 5-平衡记分卡绩效管理

目录 一、平衡计分卡概述 1、平衡计分卡的基本概念 2、平衡计分卡的发展阶段 3、平衡计分卡在华为的应用 4、平衡计分卡的优缺点 五、财务&#xff08;股东&#xff09;、顾客&#xff08;用户&#xff09;、内部运营&#xff08;内部&#xff09;及学习与发展&#xff0…...

算法设计期末复习

文章目录 1. 什么是算法&#xff0c;算法有哪些特征&#xff0c;算法设计的基本步骤&#xff0c;算法的时间复杂度的确定2. 什么是算法分析&#xff0c;算法分析的主要内容是什么&#xff1f;怎么确定算法的时间复杂度&#xff1f;3. 什么是分治算法&#xff0c;分治算法通常用…...

芝法酱学习笔记(2.2)——sql性能优化2

一、前言 在上一节中&#xff0c;我们使用实验的方式&#xff0c;验证了销售单报表的一些sql性能优化的猜想。但实验结果出乎我们的意料&#xff0c;首先是时间查询使用char和datetime相比&#xff0c;char可能更快&#xff0c;使用bigint&#xff08;转为秒&#xff09;和cha…...

Linux 安装 nvm

Linux 安装 nvm 网上用curl命令安装的方式都下载不成功&#xff0c;直接使用压缩包安装 ####### wget https://github.com/nvm-sh/nvm/archive/refs/tags/v0.39.1.tar.gz mkdir -p /root/.nvm tar xvf nvm-0.39.1.tar.gz -C /root/.nvm#######vi ~/.bashrc,在~/.bashrc的末尾…...

图像处理基础 | 查看两张图像的亮度差异,Y通道相减

两张图像的Y通道相减通常用于图像差异分析或比较&#xff0c;尤其是在亮度方面。具体来说&#xff0c;这一操作是基于YCbCr颜色空间中的Y通道进行的&#xff0c;其中Y通道代表图像的亮度信息&#xff08;亮度成分&#xff09;&#xff0c;而Cb和Cr通道分别代表色度成分&#xf…...

机器学习-43-可解释性机器学习库LIME

文章目录 1 LIME1.1 LIME的特点1.2 LIME的步骤2 应用LIME2.1 分类模型2.1.1 创建模型和解释器2.1.2 解释样本2.2 回归模型2.2.1 创建模型和解释器2.2.2 解释样本2.3 文本模型2.3.1 创建模型和解释器2.3.2 解释样本2.4 图像模型2.4.1 创建模型和解释器2.4.2 解释样本3 附录3.1 l…...