Java NIO 核心知识总结
在学习 NIO 之前,需要先了解一下计算机 I/O 模型的基础理论知识。还不了解的话,可以参考我写的这篇文章:Java IO 模型详解。
一、NIO 简介
在传统的 Java I/O 模型(BIO)中,I/O 操作是以阻塞的方式进行的。也就是说,当一个线程执行一个 I/O 操作时,它会被阻塞直到操作完成。这种阻塞模型在处理多个并发连接时可能会导致性能瓶颈,因为需要为每个连接创建一个线程,而线程的创建和切换都是有开销的。
为了解决这个问题,在 Java1.4 版本引入了一种新的 I/O 模型 — NIO (New IO,也称为 Non-blocking IO) 。NIO 弥补了同步阻塞 I/O 的不足,它在标准 Java 代码中提供了非阻塞、面向缓冲、基于通道的 I/O,可以使用少量的线程来处理多个连接,大大提高了 I/O 效率和并发。
下图是 BIO、NIO 和 AIO 处理客户端请求的简单对比图(关于 AIO 的介绍,可以看我写的这篇文章:Java IO 模型详解,不是重点,了解即可)。
⚠️需要注意:使用 NIO 并不一定意味着高性能,它的性能优势主要体现在高并发和高延迟的网络环境下。当连接数较少、并发程度较低或者网络传输速度较快时,NIO 的性能并不一定优于传统的 BIO
二、工作原理
-
非阻塞模式
-
Java NIO的非阻塞模式使得一个线程可以从某个通道发送或读取数据,但它仅能得到当前可用的数据。如果没有数据可用,线程不会被阻塞,而是可以继续做其他事情。
-
这种非阻塞模式提高了线程的利用率和应用的性能。
-
-
缓冲区操作
-
在NIO中,数据总是从通道读取到缓冲区中,或者从缓冲区写入到通道中。
-
缓冲区提供了对数据读写的灵活性和高效性。通过缓冲区的position、limit和capacity属性,可以精确地控制数据的读写操作。
-
-
选择器监听
-
选择器通过监听多个通道的事件来管理多个输入和输出通道。
-
当某个通道的事件发生时(如连接请求、数据到达等),选择器会返回并告知哪些通道的事件已经就绪。
-
线程可以根据选择器返回的信息来处理相应的事件。
-
三、NIO 核心组件
NIO 主要包括以下三个核心组件:
-
Buffer(缓冲区):
-
NIO 读写数据都是通过缓冲区进行操作的。读操作的时候将 Channel 中的数据填充到 Buffer 中,而写操作时将 Buffer 中的数据写入到 Channel 中。
-
缓冲区是一个容器对象,它实质上是一个数组。在NIO中,所有数据都是用缓冲区处理的。缓冲区提供了对数据读写的灵活性和高效性。
-
常用的缓冲区类型包括:ByteBuffer(字节缓冲区)、CharBuffer(字符缓冲区)、IntBuffer(整数缓冲区)、LongBuffer(长整型缓冲区)、DoubleBuffer(双精度浮点缓冲区)和FloatBuffer(单精度浮点缓冲区)。
-
缓冲区有三个关键属性:capacity(容量)、position(位置)和limit(限制)。capacity表示缓冲区的总大小,position表示当前读写操作的位置,limit表示当前可以操作的最大位置。
-
-
Channel(通道):
-
Channel 是一个双向的、可读可写的数据传输通道,NIO 通过 Channel 来实现数据的输入输出。通道是一个抽象的概念,它可以代表文件、套接字或者其他数据源之间的连接。
-
通道是NIO中用于读写数据的通道,它类似于传统的流,但提供了更高的性能和更多的功能。
-
通道可以是双向的,这意味着它既可以从通道读取数据,也可以向通道写入数据。
-
常用的通道类型包括:FileChannel(文件通道)、SocketChannel(套接字通道)、ServerSocketChannel(服务器套接字通道)和DatagramChannel(数据报通道)。
-
-
Selector(选择器):
-
允许一个线程处理多个 Channel,基于事件驱动的 I/O 多路复用模型。所有的 Channel 都可以注册到 Selector 上,由 Selector 来分配线程来处理事件。
-
选择器是NIO中的一个重要组件,它允许一个线程监视多个通道的事件(如连接请求、数据到达等)。
-
通过选择器,一个线程可以管理多个输入和输出通道,从而提高了网络应用的性能和响应速度。
-
使用选择器时,需要先将通道注册到选择器上,并指定感兴趣的事件类型。然后,通过调用选择器的select()方法来等待事件的发生。一旦有事件发生,选择器就会返回并告知哪些通道的事件已经就绪。
-
三者的关系如下图所示(暂时不理解没关系,后文会详细介绍):
下面详细介绍一下这三个组件。
1、Buffer(缓冲区)
在传统的 BIO 中,数据的读写是面向流的, 分为字节流和字符流。
在 Java 1.4 的 NIO 库中,所有数据都是用缓冲区处理的,这是新库和之前的 BIO 的一个重要区别,有点类似于 BIO 中的缓冲流。NIO 在读取数据时,它是直接读到缓冲区中的。在写入数据时,写入到缓冲区中。 使用 NIO 在读写数据时,都是通过缓冲区进行操作。
Buffer
的子类如下图所示。其中,最常用的是 ByteBuffer
,它可以用来存储和操作字节数据。
你可以将 Buffer 理解为一个数组,IntBuffer
、FloatBuffer
、CharBuffer
等分别对应 int[]
、float[]
、char[]
等。
为了更清晰地认识缓冲区,我们来简单看看Buffer
类中定义的四个成员变量:
public abstract class Buffer {// Invariants: mark <= position <= limit <= capacityprivate int mark = -1;private int position = 0;private int limit;private int capacity;
}
这四个成员变量的具体含义如下:
-
容量(
capacity
):Buffer
可以存储的最大数据量,Buffer
创建时设置且不可改变; -
界限(
limit
):Buffer
中可以读/写数据的边界。写模式下,limit
代表最多能写入的数据,一般等于capacity
(可以通过limit(int newLimit)
方法设置);读模式下,limit
等于 Buffer 中实际写入的数据大小。 -
位置(
position
):下一个可以被读写的数据的位置(索引)。从写操作模式到读操作模式切换的时候(flip),position
都会归零,这样就可以从头开始读写了。 -
标记(
mark
):Buffer
允许将位置直接定位到该标记处,这是一个可选属性;
并且,上述变量满足如下的关系:0 <= mark <= position <= limit <= capacity 。
另外,Buffer 有读模式和写模式这两种模式,分别用于从 Buffer 中读取数据或者向 Buffer 中写入数据。Buffer 被创建之后默认是写模式,调用 flip()
可以切换到读模式。如果要再次切换回写模式,可以调用 clear()
或者 compact()
方法。
Buffer
对象不能通过 new
调用构造方法创建对象 ,只能通过静态方法实例化 Buffer
。
这里以 ByteBuffer
为例进行介绍:
// 分配堆内存
public static ByteBuffer allocate(int capacity);
// 分配直接内存
public static ByteBuffer allocateDirect(int capacity);
Buffer 最核心的两个方法:
-
get
: 读取缓冲区的数据 -
put
:向缓冲区写入数据
除上述两个方法之外,其他的重要方法:
-
flip
:将缓冲区从写模式切换到读模式,它会将limit
的值设置为当前position
的值,将position
的值设置为 0。 -
clear
: 清空缓冲区,将缓冲区从读模式切换到写模式,并将position
的值设置为 0,将limit
的值设置为capacity
的值。
Buffer 中数据变化的过程:
import java.nio.*;public class CharBufferDemo {public static void main(String[] args) {// 分配一个容量为8的CharBufferCharBuffer buffer = CharBuffer.allocate(8);System.out.println("初始状态:");printState(buffer);// 向buffer写入3个字符buffer.put('a').put('b').put('c');System.out.println("写入3个字符后的状态:");printState(buffer);// 调用flip()方法,准备读取buffer中的数据,将 position 置 0,limit 的置 3buffer.flip();System.out.println("调用flip()方法后的状态:");printState(buffer);// 读取字符while (buffer.hasRemaining()) {System.out.print(buffer.get());}// 调用clear()方法,清空缓冲区,将 position 的值置为 0,将 limit 的值置为 capacity 的值buffer.clear();System.out.println("调用clear()方法后的状态:");printState(buffer);}// 打印buffer的capacity、limit、position、mark的位置private static void printState(CharBuffer buffer) {System.out.print("capacity: " + buffer.capacity());System.out.print(", limit: " + buffer.limit());System.out.print(", position: " + buffer.position());System.out.print(", mark 开始读取的字符: " + buffer.mark());System.out.println("\n");}
}
输出:
初始状态:
capacity: 8, limit: 8, position: 0写入3个字符后的状态:
capacity: 8, limit: 8, position: 3准备读取buffer中的数据!
调用flip()方法后的状态:
capacity: 8, limit: 3, position: 0读取到的数据:abc
调用clear()方法后的状态:
capacity: 8, limit: 8, position: 0
为了帮助理解,我绘制了一张图片展示 capacity
、limit
和position
每一阶段的变化。
2、Channel(通道)
Channel 是一个通道,它建立了与数据源(如文件、网络套接字等)之间的连接。我们可以利用它来读取和写入数据,就像打开了一条自来水管,让数据在 Channel 中自由流动。
BIO 中的流是单向的,分为各种 InputStream
(输入流)和 OutputStream
(输出流),数据只是在一个方向上传输。通道与流的不同之处在于通道是双向的,它可以用于读、写或者同时用于读写。
Channel 与前面介绍的 Buffer 打交道,读操作的时候将 Channel 中的数据填充到 Buffer 中,而写操作时将 Buffer 中的数据写入到 Channel 中。
另外,因为 Channel 是全双工的,所以它可以比流更好地映射底层操作系统的 API。特别是在 UNIX 网络编程模型中,底层操作系统的通道都是全双工的,同时支持读写操作。
Channel
的子类如下图所示。
其中,最常用的是以下几种类型的通道:
-
FileChannel
:文件访问通道; -
SocketChannel
、ServerSocketChannel
:TCP 通信通道; -
DatagramChannel
:UDP 通信通道;
Channel 最核心的两个方法:
-
read
:读取数据并写入到 Buffer 中。 -
write
:将 Buffer 中的数据写入到 Channel 中。
这里我们以 FileChannel
为例演示一下是读取文件数据的。
RandomAccessFile reader = new RandomAccessFile("/Users/guide/Documents/test_read.in", "r"))
FileChannel channel = reader.getChannel();
ByteBuffer buffer = ByteBuffer.allocate(1024);
channel.read(buffer);
3、Selector(选择器)
Selector(选择器) 是 NIO 中的一个关键组件,它允许一个线程处理多个 Channel。Selector 是基于事件驱动的 I/O 多路复用模型,主要运作原理是:通过 Selector 注册通道的事件,Selector 会不断地轮询注册在其上的 Channel。当事件发生时,比如:某个 Channel 上面有新的 TCP 连接接入、读和写事件,这个 Channel 就处于就绪状态,会被 Selector 轮询出来。Selector 会将相关的 Channel 加入到就绪集合中。通过 SelectionKey 可以获取就绪 Channel 的集合,然后对这些就绪的 Channel 进行相应的 I/O 操作。
一个多路复用器 Selector 可以同时轮询多个 Channel,由于 JDK 使用了 epoll()
代替传统的 select
实现,所以它并没有最大连接句柄 1024/2048
的限制。这也就意味着只需要一个线程负责 Selector 的轮询,就可以接入成千上万的客户端。
Selector 可以监听以下四种事件类型:
-
SelectionKey.OP_ACCEPT
:表示通道接受连接的事件,这通常用于ServerSocketChannel
。 -
SelectionKey.OP_CONNECT
:表示通道完成连接的事件,这通常用于SocketChannel
。 -
SelectionKey.OP_READ
:表示通道准备好进行读取的事件,即有数据可读。 -
SelectionKey.OP_WRITE
:表示通道准备好进行写入的事件,即可以写入数据。
Selector
是抽象类,可以通过调用此类的 open()
静态方法来创建 Selector 实例。Selector 可以同时监控多个 SelectableChannel
的 IO
状况,是非阻塞 IO
的核心。
一个 Selector 实例有三个 SelectionKey
集合:
-
所有的
SelectionKey
集合:代表了注册在该 Selector 上的Channel
,这个集合可以通过keys()
方法返回。 -
被选择的
SelectionKey
集合:代表了所有可通过select()
方法获取的、需要进行IO
处理的 Channel,这个集合可以通过selectedKeys()
返回。 -
被取消的
SelectionKey
集合:代表了所有被取消注册关系的Channel
,在下一次执行select()
方法时,这些Channel
对应的SelectionKey
会被彻底删除,程序通常无须直接访问该集合,也没有暴露访问的方法。
简单演示一下如何遍历被选择的 SelectionKey
集合并进行处理:
Set<SelectionKey> selectedKeys = selector.selectedKeys();
Iterator<SelectionKey> keyIterator = selectedKeys.iterator();
while (keyIterator.hasNext()) {SelectionKey key = keyIterator.next();if (key != null) {if (key.isAcceptable()) {// ServerSocketChannel 接收了一个新连接} else if (key.isConnectable()) {// 表示一个新连接建立} else if (key.isReadable()) {// Channel 有准备好的数据,可以读取} else if (key.isWritable()) {// Channel 有空闲的 Buffer,可以写入数据}}keyIterator.remove();
}
Selector 还提供了一系列和 select()
相关的方法:
-
int select()
:监控所有注册的Channel
,当它们中间有需要处理的IO
操作时,该方法返回,并将对应的SelectionKey
加入被选择的SelectionKey
集合中,该方法返回这些Channel
的数量。 -
int select(long timeout)
:可以设置超时时长的select()
操作。 -
int selectNow()
:执行一个立即返回的select()
操作,相对于无参数的select()
方法而言,该方法不会阻塞线程。 -
Selector wakeup()
:使一个还未返回的select()
方法立刻返回。
使用 Selector 实现网络读写的简单示例:
import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;public class NioSelectorExample {public static void main(String[] args) {try {ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();serverSocketChannel.configureBlocking(false);serverSocketChannel.socket().bind(new InetSocketAddress(8080));Selector selector = Selector.open();// 将 ServerSocketChannel 注册到 Selector 并监听 OP_ACCEPT 事件serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);while (true) {int readyChannels = selector.select();if (readyChannels == 0) {continue;}Set<SelectionKey> selectedKeys = selector.selectedKeys();Iterator<SelectionKey> keyIterator = selectedKeys.iterator();while (keyIterator.hasNext()) {SelectionKey key = keyIterator.next();if (key.isAcceptable()) {// 处理连接事件ServerSocketChannel server = (ServerSocketChannel) key.channel();SocketChannel client = server.accept();client.configureBlocking(false);// 将客户端通道注册到 Selector 并监听 OP_READ 事件client.register(selector, SelectionKey.OP_READ);} else if (key.isReadable()) {// 处理读事件SocketChannel client = (SocketChannel) key.channel();ByteBuffer buffer = ByteBuffer.allocate(1024);int bytesRead = client.read(buffer);if (bytesRead > 0) {buffer.flip();System.out.println("收到数据:" +new String(buffer.array(), 0, bytesRead));// 将客户端通道注册到 Selector 并监听 OP_WRITE 事件client.register(selector, SelectionKey.OP_WRITE);} else if (bytesRead < 0) {// 客户端断开连接client.close();}} else if (key.isWritable()) {// 处理写事件SocketChannel client = (SocketChannel) key.channel();ByteBuffer buffer = ByteBuffer.wrap("Hello, Client!".getBytes());client.write(buffer);// 将客户端通道注册到 Selector 并监听 OP_READ 事件client.register(selector, SelectionKey.OP_READ);}keyIterator.remove();}}} catch (IOException e) {e.printStackTrace();}}
}
在示例中,我们创建了一个简单的服务器,监听 8080 端口,使用 Selector 处理连接、读取和写入事件。当接收到客户端的数据时,服务器将读取数据并将其打印到控制台,然后向客户端回复 "Hello, Client!"。
四、NIO 零拷贝
零拷贝是提升 IO 操作性能的一个常用手段,像 ActiveMQ、Kafka 、RocketMQ、QMQ、Netty 等顶级开源项目都用到了零拷贝。
零拷贝是指计算机执行 IO 操作时,CPU 不需要将数据从一个存储区域复制到另一个存储区域,从而可以减少上下文切换以及 CPU 的拷贝时间。也就是说,零拷贝主要解决操作系统在处理 I/O 操作时频繁复制数据的问题。零拷贝的常见实现技术有: mmap+write
、sendfile
和 sendfile + DMA gather copy
。
下图展示了各种零拷贝技术的对比图:
CPU 拷贝 | DMA 拷贝 | 系统调用 | 上下文切换 | |
---|---|---|---|---|
传统方法 | 2 | 2 | read+write | 4 |
mmap+write | 1 | 2 | mmap+write | 4 |
sendfile | 1 | 2 | sendfile | 2 |
sendfile + DMA gather copy | 0 | 2 | sendfile | 2 |
可以看出,无论是传统的 I/O 方式,还是引入了零拷贝之后,2 次 DMA(Direct Memory Access) 拷贝是都少不了的。因为两次 DMA 都是依赖硬件完成的。零拷贝主要是减少了 CPU 拷贝及上下文的切换。
Java 对零拷贝的支持:
MappedByteBuffer
是 NIO 基于内存映射(mmap
)这种零拷⻉⽅式的提供的⼀种实现,底层实际是调用了 Linux 内核的mmap
系统调用。它可以将一个文件或者文件的一部分映射到内存中,形成一个虚拟内存文件,这样就可以直接操作内存中的数据,而不需要通过系统调用来读写文件。FileChannel
的transferTo()/transferFrom()
是 NIO 基于发送文件(sendfile
)这种零拷贝方式的提供的一种实现,底层实际是调用了 Linux 内核的sendfile
系统调用。它可以直接将文件数据从磁盘发送到网络,而不需要经过用户空间的缓冲区。关于FileChannel
的用法可以看看这篇文章:Java NIO 文件通道 FileChannel 用法。
代码示例:
private void loadFileIntoMemory(File xmlFile) throws IOException {FileInputStream fis = new FileInputStream(xmlFile);// 创建 FileChannel 对象FileChannel fc = fis.getChannel();// FileChannel.map() 将文件映射到直接内存并返回 MappedByteBuffer 对象MappedByteBuffer mmb = fc.map(FileChannel.MapMode.READ_ONLY, 0, fc.size());xmlFileBuffer = new byte[(int)fc.size()];mmb.get(xmlFileBuffer);fis.close();
}
总结
这篇文章我们主要介绍了 NIO 的核心知识点,包括 NIO 的核心组件和零拷贝。
如果我们需要使用 NIO 构建网络程序的话,不建议直接使用原生 NIO,编程复杂且功能性太弱,推荐使用一些成熟的基于 NIO 的网络编程框架比如 Netty。Netty 在 NIO 的基础上进行了一些优化和扩展比如支持多种协议、支持 SSL/TLS 等等
相关文章:
Java NIO 核心知识总结
在学习 NIO 之前,需要先了解一下计算机 I/O 模型的基础理论知识。还不了解的话,可以参考我写的这篇文章:Java IO 模型详解。 一、NIO 简介 在传统的 Java I/O 模型(BIO)中,I/O 操作是以阻塞的方式进行的。…...
音频信号采集前端电路分析
音频信号采集前端电路 一、实验要求 要求设计一个声音采集系统 信号幅度:0.1mVpp到1Vpp 信号频率:100Hz到16KHz 搭建一个带通滤波器,滤除高频和低频部分 ADC采用套件中的AD7920,转换率设定为96Ksps ;96*161536 …...
PyTorch基础学习03_数学运算自动微分
目录 一、数学运算 1、基本操作 2、三角函数 3、统计学函数 二、保存和加载 三、并行化 四、自动微分 1、相关概念 2、计算梯度 1.标量梯度计算 2.向量梯度计算 3.多标量梯度计算 4.多向量梯度计算 5.矩阵梯度计算 3、梯度上下文控制 1、梯度控制 2、梯度更新…...
HarmonyOS4+NEXT星河版入门与项目实战(16)------ 状态管理 @State(页面数据刷新与渲染)
文章目录 1、@State装饰器2、视图渲染演示1、无嵌套的对象属性值变化时可以触发页面渲染2、嵌套对象的嵌套属性值变化时不能够触发页面刷新渲染3、数组中对象的属性值变化时不能触发页面刷新渲染3、总结1、@State装饰器 2、视图渲染演示 常规的 string、number 这里就不演示了…...
K8s 一键部署 MongoDB 的 Replica-Set 和 MongoDB-Express
什么是 MongoDB 副本集? MongoDB 副本集(Replica-Set)是一个分布式数据库系统,它包含一个主节点和多个从节点。主节点负责处理所有写操作,从节点用于读取数据。当主节点发生故障时,从节点可以自动选举一个…...
React Native的界面与交互
React Native (RN) 是一个由 Facebook 开发的开源框架,用于构建跨平台的移动应用程序。它允许开发者使用 JavaScript 和 React 来创建原生 iOS 和 Android 应用。RN 的出现极大地简化了移动应用的开发过程,使得开发者可以更快速、更高效地构建高质量的应…...
【探寻密码的奥秘】-001:解开密码的神秘面纱
目录 1、密码学概述1.1、概念1.2、目的1.3、应用场景 2、密码学的历史2.1、第一时期:古代密码时代2.2、第二时期:机械密码时代2.3、第三时期:信息密码时代2.4、第四时期:现代密码时代 3、密码学的基本概念3.1、一般通信系统3.2、保…...
C++实现Raft算法
概念部分 Raft 算法是一种用于实现分布式系统中的一致性的算法。它是为了容易理解而设计的,其目标是实现和 Paxos 算法相同的功能,但更加容易理解和实现。Raft 算法在分布式系统中尤其关键,因为它帮助系统中的多个节点就其数据的准确状态达成…...
FastApi教程
FastAPI框架 fastapi,一个用于构建 API 的现代、快速(高性能)的web框架。 fastapi是建立在Starlette和Pydantic基础上的,Pydantic是一个基于Python类型提示来定义数据验证、序列化和文档的库。Starlette是一种轻量级的ASGI框架/…...
HTB:WifineticTwo[WriteUP]
目录 连接至HTB服务器并启动靶机 信息搜集 使用rustscan对靶机TCP端口进行开放扫描 使用nmap对靶机开放端口进行脚本、服务扫描 使用curl访问靶机8080端口 使用浏览器直接访问/login路径 漏洞利用 使用searchsploit搜索该WebAPP漏洞 Payload USER_FLAG:bb…...
ubuntu16.04在ros使用USB摄像头-解决could not open /dev/video0问题
首先检查摄像头 lsusb 安装 uvc camera 功能包 sudo apt-get install ros-indigo-uvc-camera 安装 image 相关功能包 sudo apt-get install ros-kinetic-image-* sudo apt-get install ros-kinetic-rqt-image-view运行 uvc_camera 节点 首先输入roscore 然后另外开一个终端输入…...
大模型专栏--什么是大模型
什么是大模型 来自 chatGPT 的回答: “大模型”通常指的是在机器学习和深度学习领域,尤其是自然语言处理(NLP)和计算机视觉(CV)中,具有大量参数和复杂结构的模型。这些模型通常需要大量的数据和…...
LLaMA-Mesh: Unifying 3D Mesh Generation with Language Models 论文解读
目录 一、概述 二、相关工作 1、LLMs到多模态 2、3D对象生成 3、自回归的Mesh生成 三、LLaMA-Mesh 1、3D表示 2、预训练模型 3、有监督的微调数据集 4、数据集演示 四、实验 1、生成的多样性 2、不同模型text-to-Mesh的比较 3、通用语境的评估 一、概述 该论文首…...
golang实现TCP服务器与客户端的断线自动重连功能
1.服务端 2.客户端 生成服务端口程序: 生成客户端程序: 测试断线重连: 初始连接成功...
项目实战:基于深度学习的人脸表情识别系统设计与实现
大家好,人脸表情识别是计算机视觉领域中的一个重要研究方向,它涉及到对人类情感状态的理解和分析。随着深度学习技术的发展,基于深度学习的人脸表情识别系统因其高精度和强大的特征学习能力而受到广泛关注。本文旨在探讨基于深度学习的人脸表…...
【mongodb】社区版8:改变配置bindip和授权
更改配置 sudo systemctl restart mongod (base) root@k8s-master-pfsrv:/home/zhangbin# sudo tail -n 20 /var/log/mongodb/mongod.log 日志感觉是成功了:{"t":{"$date":"2024-11-19T19:57:47.076+08:00"...
python入门9-函数基础
函数介绍 <1>什么是函数 请看如下代码: print(" _ooOoo_ ") print(" o8888888o ") print(" 88 . 88 ") print(" …...
AMD(Xilinx) FPGA配置Flash大小选择
目录 1 FPGA配置Flash大小的决定因素2 为什么选择的Flash容量大小为最小保证能够完成整个FPGA的配置呢? 1 FPGA配置Flash大小的决定因素 在进行FPGA硬件设计时,选择合适的配置Flash是我们进行硬件设计必须考虑的,那么配置Flash大小的选择由什…...
TypeScript学习笔记(二)
接一 四、类型声明 使用 : 来对变量或函数形参,进行类型声明: let a: string //变量a只能存储字符串 let b: number //变量b只能存储数值 let c: boolean //变量c只能存储布尔值 a hello a 100 //警告:不能将类型“number”分配给类型“…...
Centos Stream 9安装Jenkins-2.485 构建自动化项目步骤
官网:https://www.jenkins.io/ 1 下载 环境准备: 版本支持查询:https://pkg.jenkins.io/redhat-stable/ 安装JDK17:https://blog.csdn.net/qq_44870331/article/details/140784297 yum -y install epel-release wget upgradew…...
多目标粒子群优化(Multi-Objective Particle Swarm Optimization, MOPSO)算法
概述 多目标粒子群优化(MOPSO) 是粒子群优化(PSO)的一种扩展,用于解决具有多个目标函数的优化问题。MOPSO的目标是找到一组非支配解(Pareto最优解),这些解在不同目标之间达到平衡。…...
【网络系统管理】2023年全国职业院校技能大赛:组策略--10套题组合--1
1、限制访问C盘; (1)搜索《我的电脑》 (2)用户配置\策略\管理模板\Windows组件\文件资源管理器 2、禁止运行run.exe; (1)搜索《应用程序》 (2)用户配置\策略\管理模板\系统...
【Golang】——Gin 框架中的 API 请求处理与 JSON 数据绑定
在现代 Web 开发中,API(特别是 RESTful API)是前后端分离架构的核心。Gin 框架提供了丰富的功能来处理 API 请求和 JSON 数据,使得开发者可以快速构建高效的接口服务。本篇博客将从基础到深入,全面讲解如何使用 Gin 框…...
在Linux下配置gitee与Github的远程仓库
目录 前言 云服务器下载git 检测是否下载成功git Linux下配置gitee远程仓库 代码提交演示 git三板斧 Linux下配置Github远程仓库 最后的提醒 前言 那么本篇文章将是在,你已经创建了本地仓库的基础上,在Linux下配置gitee的远程仓库的步骤ÿ…...
自动化测试过程操作细节
一、软件与框架介绍 1. Postman 读音:[pəʊstmən](剖斯特曼) 介绍:API开发与测试的得力助手,通过直观界面发送HTTP请求,查看响应数据。支持环境变量、集合、脚本等功能。 主要特点:易于使用…...
iic协议
IIC(Inter-Integrated Circuit)协议,也被称为I2C协议,是一种由荷兰的PHILIPS公司(现为NXP半导体公司)开发的简单、高效的通信协议。以下是关于IIC协议的详细介绍: 一、IIC协议概述 定义&#…...
uniapp、js判断输入的内容是整数
清奇的思路 通过取余运算符 % 来检查 输入的内容是否为整数 for (var i 0; i < this.list.length; i) {if (this.list[i].times % 1 ! 0) { // 使用取余运算符检查是否为整数uni.showToast({icon: none,title: 请输入整数的套餐次数,})return;}}...
《Qt Creator:人工智能时代的跨平台开发利器》
《Qt Creator:人工智能时代的跨平台开发利器》 一、Qt Creator 简介(一)功能和优势(二)快捷键与效率提升(三)跨平台支持(四)工具介绍与使用主要特性:使用步骤…...
The Yarn application application_xxx_xxx doesn‘t exist in RM
本文主要解决flink在standalone模式下,flink run却一直使用yarn-session模式的问题。 问题 有个客户找到笔者,问题是报错如下: 分析 笔者先从环境入手,首先要确定的是flink是使用了什么模式。确认过后是使用standalone模式。 那就很奇怪&a…...
爬虫实战:采集知乎XXX话题数据
目录 反爬虫的本意和其带来的挑战目标实战开发准备代码开发发现问题1. 发现问题[01]2. 发现问题[02] 解决问题1. 解决问题[01]2. 解决问题[02] 最终结果 结语 反爬虫的本意和其带来的挑战 在这个数字化时代社交媒体已经成为人们表达观点的重要渠道,对企业来说&…...
【C++篇】像解谜一样转换字符串:stoi 带你走向整数的世界
文章目录 前言 在现代 C 编程中,字符串与数字之间的转换是非常常见的需求。随着编程语言的发展,C 提供了多种方式来处理这种转换。stoi(string to integer)函数正是为了简化这一任务而被引入的。 在 C 的早期版本中,字…...
小U数数问题
问题描述 小U正在数偶数,从 0,2,4,6,8,10,12,…0,2,4,6,8,10,12,… 开始,依次将这些数连在一起,形成一个无穷长的字符串,例如:"0246810121416..."。小U想知道这个字符串中的第 nn 个字符是什么。 测试样例 …...
Rocky Linux 系统安装/部署 Docker
1、下载docker-ce的repo文件 [rootlocalhost ~]# curl https://download.docker.com/linux/centos/docker-ce.repo -o /etc/yum.repos.d/docker.repo % Total % Received % Xferd Average Speed Time Time Time Current Dloa…...
程序语言语法上手题目合集
程序语言语法上手题目合集 1跑步2猜年龄3Vigenre 密码 1跑步 2.跑步 - 蓝桥云课 枚举日期,判断是否符合条件即可。 参考程序: #include<stdio.h> int y2022,m1,d1; int week6; int month[13]{0,31,28,31,30,31,30,31,31,30,31,30,31};int judg…...
MCU通过APB总线与FPGA 数据交互(实现JATG 模块的控制)
问题出发点: 通过MCU 的APB 将数据发送到fpga 端;fpga 端实现 jtag 模块功能,支持状态机TAP的移动主要是:从IDLE 移动到 shirft-IR 发送指令数据然后再回到 IDLE ,从 IDLE 移动到shirft-DR 发送用户数据再回到IDLE;从而可以 通过 mcu端实现jtag 协议控制。 为了实现 MC…...
Mysql的UPDATE(更新数据)详解
MySQL的UPDATE语句是用于修改数据库表中已存在的记录,本文将详细介绍UPDATE语句的基本语法、高级用法、性能优化策略以及注意事项,帮助您更好地理解和应用这一重要的SQL命令。 1. 基本语法 单表更新 单表更新的基本语法如下: UPDATE [LOW…...
【AI最前线】DP双像素sensor相关的AI算法全集:深度估计、图像去模糊去雨去雾恢复、图像重建、自动对焦
Dual Pixel 简介 双像素是成像系统的感光元器件中单帧同时生成的图像:通过双像素可以实现:深度估计、图像去模糊去雨去雾恢复、图像重建 成像原理来源如上,也有遮罩等方式的pd生成,如图双像素视图可以看到光圈的不同一半&#x…...
如何使用AWS Lambda构建一个云端工具(超详细)
首发地址(欢迎大家访问):如何使用AWS Lambda构建一个云端工具(超详细) 1 前言 1.1 无服务器架构 无服务器架构(Serverless Computing)是一种云计算服务模型,它允许开发者构建和运行…...
Scala—数组(数组定义、数组常用方法等)— 用法详解
Scala Scala-数组-用法详解 Scala一、数组的定义1. new 关键字2. Array 对象的 apply 方法3. 创建多维数组 二、数组常用方法1. length:获取数组的长度。2. apply:通过索引获取数组中的元素。3. update:通过索引更新数组中的元素。4. foreach…...
使用 Elastic 收集 Windows 遥测数据:ETW Filebeat 输入简介
作者:来自 Elastic Chema Martinez 在安全领域,能够使用 Windows 主机的系统遥测数据为监控、故障排除和保护 IT 环境开辟了新的可能性。意识到这一点,Elastic 推出了专注于 Windows 事件跟踪 (ETW) 的新功能 - 这是一种强大的 Windows 原生机…...
二分排序
二分问题之前遇到很多次了,不过一直是手写完整二分,现在转变一下想法,直接使用函数lower_bound和upper_bound更方便 lower_bound 有序数组中 查找第一个不小于指定值的位置。 本质二分代码: int lower_bound_custom(int* arr, i…...
数据库---HSQLDB使用教程详解
本学校期末的课程设计要求使用HSQLDB数据库,作为一个小众且轻量的数据库,很少人接触过,再加上同学们都问这个方面,所以就出教程,展示怎么使用HSQLDB。 第一步:启动HSQLDB 下载HSQLDB的jar包,因…...
Makefile基础应用
1 使用场景 在Linux环境下,我们通常需要通过命令行来编译代码。例如,在使用gcc编译C语言代码时,需要使用以下命令。 gcc -o main main.c 使用这种方式编译代码非常吃力,每次调试代码都需要重新在命令行下重新编译,重复…...
一个点绕任意点旋转后的点的坐标
在平面坐标上,任意点P(x1,y1),绕一个坐标点Q(x2,y2)逆时针旋转θ角度后,新的坐标设为(x, y)的计算公式: x (x1 - x2)*cos(θ) - (y1 - y2)*sin(θ) x2 ; y (x1 - x2)*sin(θ) (y1 - y2)*cos(θ) y2 ; 另一个场景应用,坐标轴绕…...
嵌入式硬件杂谈(二)-芯片输入接入0.1uf电容的本质(退耦电容)
引言:对于嵌入式硬件这个庞大的知识体系而言,太多离散的知识点很容易疏漏,因此对于这些容易忘记甚至不明白的知识点做成一个梳理,供大家参考以及学习,本文主要针对芯片输入接入0.1uf电容的本质的知识点的进行学习。 目…...
算力100问☞第16问:什么是TPU?
TPU全称是Tensor Processing Unit芯片,中文全称是张量处理单元芯片,是谷歌开发的一种特殊类型的芯片,用于加速人工智能(AI)和机器学习(ML)工作负载。TPU主要针对张量(tensor…...
Level DB --- SkipList
class SkipList class SkipList 是Level DB中的重要数据结构,存储在memtable中的数据通过SkipList来存储和检索数据,它有优秀的读写性能,且和红黑树相比,更适合多线程的操作。 SkipList SkipList还是一个比较简单的数据结构&a…...
全面解析 JMeter 后置处理器:概念、工作原理与应用场景
在性能测试中,Apache JMeter是一个非常流行的工具,它不仅能够模拟大量用户进行并发访问,还提供了丰富的扩展机制来满足各种复杂的测试需求。后置处理器(Post-Processor)是JMeter中非常重要的组件之一,用于在…...
【视频】二维码识别:libzbar-dev、zbar-tools(zbarimg )
1、简介 ZBar可以使用多个方式识别各种条形码和二维码。 支持的格式有:EAN-13/UPC-A、UPC-E、EAN-8、Code 128、Code 93、Code 39、Codabar、Interleaved 2 of 5、QR Code和SQ Code 支持的来源有:视频流、图像文件等 libzbar-dev:二维码识别开发库 zbar-tools(zbarimg …...
EasyExcel: 结合springboot实现表格导出入(单/多sheet), 全字段校验,批次等操作(全)
全文目录,一步到位 1.前言简介1.1 链接传送门1.1.1 easyExcel传送门 2. Excel表格导入过程2.1 easyExcel的使用准备工作2.1.1 导入maven依赖2.1.2 建立一个util包2.1.3 ExcelUtils统一功能封装(单/多sheet导入)2.1.4 ExcelDataListener数据监听器2.1.5 ResponseHelper响应值处理…...