当前位置: 首页 > news >正文

《计算机视觉:瓶颈之辩与未来之路》

一、计算机视觉的崛起

计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。它是一个多学科交叉的领域,与机器视觉、图像处理、人工智能、机器学习等领域密切相关。

计算机视觉行业可分为基础层、技术层和应用层。基础层主要包括芯片、算法、数据集、传感器、镜头等;技术层主要包括生物特征识别技术、物体与场景识别技术、光学字符识别技术、视频对象提取与分析技术等;应用层主要包括智慧安防、智能家居、智慧金融、智慧医疗、无人驾驶、手机等产业。

计算机视觉发展经历了四个阶段。第一阶段是马尔计算视觉,主要讨论计算理论和表达与算法,认为视觉的主要功能是从视网膜成像的二维图像来恢复空间物体的可见三维表面形状;第二阶段是主动和目的视觉;第三阶段是多视几何与分层三维重建;第四阶段是当代计算机视觉阶段。

从技术路线发展来看,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。

计算机视觉的核心技术主要包括视觉感知和视觉生成两大维度。视觉感知包含识别分类、目标检测、图像分割、表示学习等重要任务,视觉生成主要包括图像与视频的生成、视觉与文字结合等。

二、计算机视觉的发展现状

市场规模与政策支持

  1. 市场规模不断增长,2023 年中国计算机视觉行业市场规模约为 571.9 亿元,预计未来几年持续扩大。

近年来,我国计算机视觉行业市场规模呈现增长态势。数据显示,2023 年中国计算机视觉行业市场规模约为 571.9 亿元。随着人工智能市场需求的增长以及大数据、云计算等技术的进一步融合,计算机视觉市场规模有望持续扩大。

地方政府相继出台政策支持,如江苏省、吉林省推动计算机视觉在政务、数字地球等领域的应用。

2023 年 10 月,江苏省人民政府办公厅印发《江苏省政务 “一朵云” 建设总体方案》,提出人工智能服务提供自然语言处理、计算机视觉、自动程序设计、智能数据挖掘等服务,提升业务应用系统智能化水平。2024 年 2 月,吉林省科学技术厅印发《关于发布核心光电子器件和高端芯片等 3 个重大科技专项项目申报指南的通知》,提出要利用计算机视觉和机器学习技术,自动识别数字地球上的地物、地貌、水文等信息,并进行标注,提高数字地球中地物信息的自动化获取和处理效率,为数字地球的应用和发展提供更好的支持。

广泛的应用领域

  1. 自动驾驶,实现车道保持、自动刹车等功能。

计算机视觉在自动驾驶汽车中起着至关重要的作用。通过摄像头等设备进行图像采集,利用特征提取、目标检测等技术,识别道路上的物体、交通标志和行人等,实现车道检测、障碍物检测、交通信号识别和行为预测等功能,从而帮助车辆保持在正确的车道上,避免碰撞,遵守交通规则并提前做出反应。常用的目标检测算法包括 YOLO、Faster R-CNN 和 SSD 等,车道检测方法包括基于边缘检测和基于深度学习的方法。交通信号识别可采用基于模板匹配或基于深度学习的方法,行为预测则有基于规则和基于机器学习的方法。

  1. 安防监控,进行人脸识别、行为分析等。

在安防监控领域,计算机视觉技术凭借其高效、精准的特点展现出巨大的应用前景。可应用于人脸识别、行为分析、异常检测等多个关键功能。例如,通过对监控影像中的人员、车辆等目标进行检测、识别和跟踪,及时发现异常情况并进行处理。同时,随着 AI 人工智能技术的发展,安防监控系统正从传统安防时代转向注重数据采集、应用和管理的人工智能化安防时代。多特征识别技术可让电脑从大量监控影像中自动识别出嫌疑人,分析其个人特征并快速筛选。姿态识别技术作为一种非接触性、非侵入性的生物行为特征技术,可在远距离感知个体人物的走路姿势,用于门禁系统、安全监控等领域具有广泛的应用和经济价值。

  1. 医学图像分析,辅助诊断和治疗方案设计。

计算机视觉技术在医学影像分析领域取得了显著进展,为医疗诊断和治疗提供了强大的支持。在图像处理与分析方面,包括图像预处理(如噪声去除、对比度调整等)、图像增强(如直方图均衡化等)、图像分割(如阈值分割等)和图像分类(如基于特征的分类等)。在诊断支持方面,可通过病灶检测(如阈值检测等)和诊断预测(如支持向量机等)为医生提供诊断建议。在治疗监控方面,可通过目标跟踪实现心率监测、运动分析等功能。

  1. 零售、制造、农业、智能交通、智能制造等领域也有广泛应用。

在零售领域,计算机视觉可用于商品识别、库存管理等;在制造领域,可进行质量检测、产品分类等;在农业领域,可通过对农田图像的识别实现对植物生长状况、病虫害情况的监测;在智能交通领域,除了自动驾驶外,还可实现智能交通信号控制、车辆违规监测等功能;在智能制造领域,可与机器人等技术结合,提高生产效率和质量。

三、计算机视觉面临的挑战

技术层面的难题

  1. 复杂性,涉及大量图像数据和复杂算法。

计算机视觉任务通常涉及大量的图像数据和复杂的算法。一方面,大量的数据需要占用大量的存储空间,处理这些数据也耗费大量的计算资源,如计算机的 CPU 和 GPU 等,还会导致数据处理速度变慢,不利于实时处理。另一方面,复杂的算法需要不断优化和改进,以提高处理效率和准确性。

  1. 数据质量影响大,需解决采集、标注和清洗问题。

数据质量对计算机视觉的准确度和精度有很大影响。在实际应用中,图片数据可能会存在很多问题,如噪声、模糊、失真、曝光不足、图像遮挡等,这些问题会影响图片的质量,进而影响计算机视觉算法的准确性。提高数据集质量是一项持续的任务,常见的数据错误和质量问题包括标签不准确、图像标签错误、缺少标签以及数据和相应标签不平衡等。可以通过使用复杂的本体结构作为标签、人工智能辅助标签、识别标签错误的数据、改进注释者管理等方法提高标记数据质量。

  1. 对光照、角度等环境变化敏感。

计算机视觉技术对光照、角度等环境变化比较敏感。例如,多变和非均匀的光照场景,如逆光场景,会影响计算机视觉的效果;不同清晰度的相机拍出来的照片质量不同,成像质量差异也会对计算机视觉产生影响;复杂易混淆的背景,如雪地里的一只白猫,以及不同场景存在干扰和遮挡、失焦、透视变形等问题,都会给计算机视觉带来挑战。

  1. 存在一定误识别率,尤其在复杂情况下。

目标检测中误检率可能较高,在实际应用中,如果误检率太高,即系统错误地将背景区域或不相关的物体识别为目标,会严重影响系统的性能和可靠性。为降低误检率,可以尝试数据增强、使用更先进的深度学习模型、调整正负样本比重、优化网络结构、应用后处理过滤、采用集成学习、运用领域自适应技术等方法。

隐私和伦理问题

计算机视觉涉及大量个人和隐私数据,保护个人隐私和数据安全成为挑战。一些计算机视觉应用,如人脸识别、人体检测等,涉及到个人隐私的保护问题。如果这些技术被用于非法或不当用途,可能会侵犯个人隐私权。同时,计算机视觉技术的训练数据可能存在偏差,导致算法产生歧视性结果。例如,人脸识别算法可能无法正确识别不同肤色的人,从而导致不公平的结果。此外,人脸识别技术可以被用于欺诈、身份盗窃等犯罪活动中,存在安全问题。由于计算机视觉技术本身的局限性,对光线、姿态、遮挡等情况的敏感度较高,算法可能会对真实情况进行误判。因此,对于计算机视觉技术的应用,需要考虑伦理和安全问题,并采取相应的措施来减少潜在的风险和危害。

四、计算机视觉是否进入瓶颈期?

瓶颈期观点分析

  1. 以图像分类等基础技术精确度已达产业落地水平,但剩余问题难攻克,如细粒度分类、小目标检测等。

计算机视觉在图像分类、目标检测、图像分割等基础技术方面经过近几年的发展,精确度确实已经达到了产业落地的水平。然而,一些剩余的问题却较为棘手,难以攻克。例如细粒度分类,需要对非常相似的物体进行准确区分,这对算法的精度和鲁棒性提出了更高的要求。在小目标检测方面,由于目标尺寸小、特征不明显,很容易被背景干扰或漏检。此外,在复杂光照变化下,如何保证分割结果的稳定性也是一个难题。就像电子发烧友网报道中提到的,计算机视觉技术在试图攻克这些老难题上虽有一定进展,但不能算是有很大突破。

  1. 落地应用存在同质化问题,多数企业扎堆安防等少数场景。

计算机视觉在落地应用方面存在很大的同质化问题,很多公司扎堆在几个热门场景中,其中安防场景尤为突出。智能安防是计算机视觉最主要的应用场景,且已经持续很多年。众多知名的 AI 初创企业如商汤、旷视、依图、云从等都在这个领域有重要布局,同时安防企业和互联网企业如海康威视、大华、宇视、百度等也在这个领域投入巨大。此外,还有几百家中小计算机视觉企业也纷纷涌入安防领域。虽然除了安防,各企业也在其他领域进行探索并逐渐有所进展,如金融、手机、汽车、工业、医疗、零售等领域,但目前计算机视觉较为成熟的应用场景仍然是安防领域。

非瓶颈期观点分析

  1. 技术仍有新突破,如视觉语言模型、神经辐射场、扩散模型等。

计算机视觉领域不断涌现新的技术突破。例如视觉语言模型,如 LLaVA 和 Qwen-VL-Max 等,可以理解图像并生成描述或回答有关图像的问题,实现了计算机视觉和自然语言处理的交叉融合,为人工智能以更自然的方式与人类互动提供了可能。神经辐射场(NeRFs)仅使用一些 2D 图像,就可以生成照片般逼真的 3D 场景,为虚拟现实(VR)、增强现实(AR)、房地产解决方案以及文化保护等领域带来了重大突破。扩散模型受物理扩散过程启发,能够从看似随机的图案中生成生动的图像,在内容创作、医学成像等领域有广泛应用。

  1. 政策推动技术发展,未来发展趋势多方面,涵盖算法、应用、硬件等。

近年来,我国相继出台了一系列政策文件和规划纲要,支持人工智能中计算机视觉技术的发展,推动产业实现技术突破、应用落地和产业升级。计算机视觉技术的发展趋势是多方面的,涵盖了算法、应用、硬件等多个方面。随着技术的不断进步和应用需求的增加,计算机视觉将会在更多领域发挥重要作用。例如,在算法方面,深度学习、卷积神经网络等技术不断进步,图像理解技术为计算机视觉专利技术布局重点,申请热度和布局广度较高。在应用方面,计算机视觉技术已广泛应用于零售、医疗、安防、智能制造、自动驾驶等多个领域,未来还将在更多新兴领域拓展应用。在硬件方面,随着计算能力的提升和数据资源的丰富,计算机视觉工具的处理速度和处理能力也在不断提高。

五、计算机视觉的未来发展趋势

技术融合与创新

  1. 与深度学习等前沿技术加速融合,提升准确率和处理速度。

计算机视觉与深度学习的融合将持续深化。深度学习模型不断发展,其更加复杂和高效的模型结构以及优秀的训练算法和优化方法,将为计算机视觉带来更高的准确率。同时,随着计算硬件的提升,处理速度也将不断加快。例如,卷积神经网络在图像识别等任务中的应用,通过不断优化网络结构和参数,能够更准确地提取图像特征,从而提高计算机视觉系统的性能。

  1. 多模态计算需求增加,与自然语言处理结合形成更强大系统。

未来,多模态计算在计算机视觉中的需求将显著增加。正如腾讯优图指出,多模态融合是计算机视觉技术发展的重要趋势。计算机视觉将与自然语言处理等技术结合,实现从单模态智能向多模态融合发展。例如,视觉语言模型如 LLaVA 和 Qwen-VL-Max 等,可以理解图像并生成描述或回答有关图像的问题,为人工智能以更自然的方式与人类互动提供了可能。

应用领域拓展

在无人驾驶、智能家居、智能城市等领域进一步扩展和深化应用。

计算机视觉在无人驾驶领域的应用前景广阔。通过物体的识别与跟踪以及车辆本身的定位,无人车能够实现更高效、更安全的自主导航。例如,利用深度学习方法,无人车可以准确识别行人、道路标志、红绿灯等物体,实现对环境的感知和识别。同时,基于拓扑与地标的定位算法以及基于几何的视觉里程计算法,能够实时确定车辆位置。

在智能家居领域,计算机视觉技术也发挥着重要作用。通过场景理解与建模,智能家居系统可以实现人脸识别与认证、物体识别与跟踪、活动识别等功能。例如,通过对人脸图像进行预处理、分割、提取特征,得到的特征向量作为人脸的唯一标识,实现安全、便捷的家庭访问控制。

在智能城市领域,计算机视觉可以应用于交通管理、安防监控等方面。例如,在交通管理中,通过对道路图像的分析,可以实现智能交通信号控制、车辆违规监测等功能;在安防监控中,可应用于人脸识别、行为分析、异常检测等多个关键功能。

对数据隐私和安全的重视

成为技术发展重要方向,提出更完善可靠的数据保护机制。

随着计算机视觉应用的不断扩展,对数据隐私和安全的重视程度越来越高。在医疗诊断中,计算机视觉技术需要保护患者的敏感信息,如采取数据脱敏、加密技术、访问控制等措施。在图像识别领域,也需要考虑数据安全和隐私保护问题,如采用数据匿名化、聚合分析等方法。同时,法规监管也在加强,各国政府和监管机构制定法律法规,如欧盟的通用数据保护条例(GDPR),为个人信息

为进一步贯彻落实中共中央印发《关于深化人才发展体制机制改革的意见》和国务院印发《关于“十四五”数字经济发展规划》等有关工作的部署求,深入实施人才强国战略和创新驱动发展战略,加强全国数字化人才队伍建设,持续推进人工智能专业人员能力培养和评价,工业和信息化部电子工业标准化研究院牵头研制的SJ/T11805-2022《人工智能从业人员能力要求》已经于2022年7月1日发布实施。依据该标准,工业和信息化部电子工业标准化研究院联合业界企事业单位开发了人工智能专业人员培训项目,并将于昆明举办以下证书培训安排:

《计算机视觉设计开发工程师》证书,学习日期:2025年1月16日至20日 昆明

考试时间:1月20日17:00-19:00

2.证书颁发单位:

工业与信息化部电子工业标准化研究院

3.培训对象:

计算机视觉设计工程师:从事计算机视觉应用场景的需求分析,模型构建及验证,实现相应的计算机视觉产品设计、交付及运维,并对人工智能系统进行设计、优化、运维、管理和应用的专业人员。

三、授课方式:理论学习+实操

培训结束后由专业部门组织结业考试。

四、培训老师:

北京理工大学老师,博士,教授,博士生导师。目前主要从事机器学习、数据挖掘及分布式系统方面的研究。

五、培训证书:

本次培训通过结业考试的学员将获得工业和信息化部电子工业标准化研究院颁发的“人工智能专业人员”(中级)认证证书,证书可在官方网站进行查询。

证书样式:

相关文章:

《计算机视觉:瓶颈之辩与未来之路》

一、计算机视觉的崛起 计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。它是一个多学科交叉的领域,与机器视觉、图像处理、人工智能、机器学习等领域密切相关。 计算机视觉行业可分为…...

黑皮书-计算机科学导论02

目录 第二部分:计算机硬件 第5章计算机组成 5.1中央处理单元 Ⅰ.算数逻辑单元 Ⅱ.控制单元 Ⅲ.寄存器 5.2主存储器 Ⅰ.随机存取存储器(RAM) Ⅱ.只读存储器(ROM) 高速缓冲存储器(Cache) 5.3输入/输出子系统 Ⅰ.非存储设备 Ⅱ.存储设备(辅助存…...

React--》如何高效管理前端环境变量:开发与生产环境配置详解

在前端开发中,如何让项目在不同环境下表现得更为灵活与高效,是每个开发者必须面对的挑战,从开发阶段的调试到生产环境的优化,环境变量配置无疑是其中的关键。 env配置文件:通常用于管理项目的环境变量,环境…...

初始Python篇(6)—— 字符串

找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程(ಥ_ಥ)-CSDN博客 所属专栏: Python 目录 字符串的常见操作 格式化字符串 占位符 f-string 字符串的 format 方法 字符串的编码与解码 与数据验证相关的方法 …...

【数字花园】个人知识库网站搭建:⑤本地构建+云服务器部署数字花园plus

目录 写在前面:数字花园的定义[[数字花园]]网站的构建原理包括三个步骤:[[我的数字花园搭建笔记]] 现在的部署流程一、本地操作详细教程-2.前置步骤(前面的文章都提过)-1.创建github中转库0. 本地环境配置基础环境:git…...

力扣题目 - 3264.K 次乘运算后的最终数组I

题目 还需要你前往力扣官网查看详细的题目要求 地址 1.给你一个整数数组 nums ,一个整数 k 和一个整数 multiplier 。2.你需要对 nums 执行 k 次操作,每次操作中:找到 nums 中的 最小 值 x ,如果存在多个最小值,选择最…...

Java常用 Date 时间格式化、Calender日历、正则表达式的用法

目录 1. SimpleDateFormat 日期格式化类 1.1 Date 类型转 String 1.2 String 类型转 Date 2. Calendar 日历类 3. 正则表达式 3.1 正则表达式的组成部分 3.2 手机号正则表达式 3.3 常用密码校验正则表达式 1. SimpleDateFormat 日期格式化类 SimpleDateFormat 是Java中…...

网页爬虫技术全解析:从基础到实战

引言 在当今信息爆炸的时代,互联网上的数据量每天都在以惊人的速度增长。网页爬虫(Web Scraping),作为数据采集的重要手段之一,已经成为数据科学家、研究人员和开发者不可或缺的工具。本文将全面解析网页爬虫技术&…...

细说STM32F407单片机SPI基础知识

目录 一、 SPI接口和通信协议 1、 SPI硬件接口 (1)MOSI(Master Output Slave Input) (2)MISO(Master Input Slave Output) (3)SCK 2、SPI传输协议 (1)CPHA0时的数据传输时序 …...

【OJ题解】面试题三步问题

个人主页: 起名字真南的CSDN博客 个人专栏: 【数据结构初阶】 📘 基础数据结构【C语言】 💻 C语言编程技巧【C】 🚀 进阶C【OJ题解】 📝 题解精讲 目录 **题目链接****解题思路****1. 问题分析****2. 递归思路****3. 优化方案&a…...

Linux vi/vim 编辑器使用教程

Linux vi/vim 编辑器使用教程 引言 Linux 系统中的 vi 和 vim 是非常强大的文本编辑器,它们以其高效性和灵活性而闻名。vim 是 vi 的增强版,提供了更多的功能和改进的用户界面。本文将详细介绍 vi/vim 的基本用法,包括打开文件、编辑文本、…...

长安大学《2024年812自动控制原理真题》 (完整版)

本文内容,全部选自自动化考研联盟的:《长安大学812自控考研资料》的真题篇。后续会持续更新更多学校,更多年份的真题,记得关注哦~ 目录 2024年真题 Part1:2024年完整版真题 2024年真题...

服务器一般装什么系统?

在服务器管理中,操作系统的选择是一个关键因素,它直接影响到服务器的稳定性、性能和可维护性。那么为什么有些服务器选择Linux,而不是Windows?选择合适的操作系统对服务器的性能和安全性有多么重要? 在众多操作系统中…...

Gitlab ci/cd 从0-1持续集成持续发布前端

关于gitlab ci/cd,就是实现DevOps的能力,即Development &Operations的缩写,也就是开发&运维。CI/CD 指的是软件开发的持续集成方法,我们可以持续构建、测试和部署软件。通过持续方法的迭代能使得我们减少在错误代码或者错…...

#GC4049. GC.2017---. GC.2016.六年级

这套题包含了历年真题,包含了前面我写的博客中的题目,十分重要!!!!要考试的同学可以参考一下!! 此套题限时3小时。 #GC4049. GC.2017.六年级.01.更多闰年 题目描述 在 smoj 网站上…...

UE5中实现Billboard公告板渲染

公告板(Billboard)通常指永远面向摄像机的面片,游戏中许多技术都基于公告板,例如提示拾取图标、敌人血槽信息等,本文将使用UE5和材质节点制作一个公告板。 Gif效果: 网格效果: 1.思路 通过…...

Android系统(android app和系统架构)

文章目录 AndroidAndroid Apps四大组件 Android系统Platform API之下:一个微笑内核adb(Android Debug Bridge) Android包管理机制Android的Intent机制参考 Android LinuxFrameworkJVM 在Linux/Java上做了个二次开发?并不完全是:Android定义…...

docker设置容器自动启动

说起开机自动启动应该很多人都遇到过,我们公司做的系统很多的中间件都没有设置开机自动启动然后中间修改问题又设置了一些临时生效的文件,开始的时候大家都不以为意,知道公司陆续有人离职入职管理交接一塌糊涂,项目成了历史遗留问…...

在 React 中,创建和嵌套组件、添加标签和样式、显示数据、渲染条件和列表、对事件做出响应并更新界面以及在组件间共享数据是常见的任务

文章目录 1. 创建和嵌套组件创建组件嵌套组件 2. 添加标签和样式添加标签添加样式 3. 显示数据显示静态数据显示动态数据 4. 渲染条件和列表条件渲染列表渲染 5. 对事件做出响应并更新界面处理事件 6. 在组件间共享数据使用 Context API react 如何创建和嵌套组件 如何添加标签…...

Android命令行工具--dumpsys

dumpsys 是一种在 Android 设备上运行的工具,可提供有关系统服务的信息。可以使用 Android 调试桥 (adb) 从命令行调用 dumpsys,获取在连接的设备上运行的所有系统服务的诊断输出。 此输出通常比您想要的更详细,因此请使用此页面上的命令行选…...

设计模式-访问者模式

背景 做一个对歌手的评价系统,观众分为男人和女人,分别对歌手做出自己的评价。 传统思路: 做一个person父类,Man 和 Woman分别继承自这个父类,在这两个类中执行各自操作。 问题: 可拓展性差&#xff0…...

Vue集成阿里云点播实现视频上传

实现方式有多种&#xff0c;如下是我的实现方式&#xff1a; 一、下载点播插件&#xff0c;在 public 下的 index.html 中引入阿里云点播需要的 js 插件&#xff0c;js 文件最好放在 cdn 上,&#xff0c;这里以放在 public 文件夹下的 static 文件夹中为例&#xff1a; <s…...

ByteByteGo-Forward/Reverse Proxy正/反向代理

原文链接 EP137: Proxy Vs Reverse proxy - ByteByteGo Newsletter 参考链接 Forward proxy vs. reverse proxy: Whats the difference? | TheServerSide 正向代理 &#xff08;Forward Proxy&#xff09; 位置&#xff1a;用户设备 和 互联网 之间 用途&#xff1a;保护客…...

[论文阅读] |智能体长期记忆与反思

写在前面&#xff1a;10月份的时候&#xff0c;联发科天玑9400发布&#xff0c;搭载这款旗舰 5G 智能体 AI 芯片的荣耀MagicOS9.0实现了一句话让手机自动操作美团点咖啡。很快商场实体店里便能看到很多品牌手机已经升级为智能体语音助手。下一步&#xff0c;这些智能体或许便能…...

Elasticsearch Kibana (windows版本) 安装和启动

目录 1.安装 2.启动 elasticsearch 3.启动 kibana 1.安装 elasticsearch下载&#xff0c;官网链接&#xff1a; Download Elasticsearch | Elastichttps://www.elastic.co/downloads/elasticsearch kibana下载&#xff0c;官网链接&#xff1a; Download Kibana Free | G…...

CSS系列(9)-- Transform 变换详解

前端技术探索系列&#xff1a;CSS Transform 变换详解 &#x1f504; 致读者&#xff1a;探索 CSS 变换的魔力 &#x1f44b; 前端开发者们&#xff0c; 今天我们将深入探讨 CSS Transform&#xff0c;学习如何创建引人注目的 2D 和 3D 变换效果。 2D 变换基础 &#x1f68…...

bs4基本运用

1. bs4基本使用 1.1. 简介 bs4的全称为 BeautifulSoup。和lxml一样&#xff0c;是一个html的解析器&#xff0c;主要功能也是解析数据和提取数据 。 本模块作为了解模块&#xff0c;实际开发中很少用这个模块去解析数据&#xff0c;大家可能会想为什么这个模块会逐渐被淘汰&…...

skywalking 搭建 备忘录

基础环境 apache-skywalking-apm-9.6.0.tar.gz apache-skywalking-java-agent-9.1.0.tgz elasticsearch 7.14.1 采用dockers搭建 或者手动部署 kibana 可视化 应用 微服务版 consumer.jar eureka.jar 注册中心 provider.jar skywalking 地址 https://skywalkin…...

C# 和 go 关于can通信得 整理

在C#中开发CAN&#xff08;Controller Area Network&#xff09;通信接口时&#xff0c;确实有一些现成的NuGet包可以简化你的开发工作。这些库通常提供了与CAN硬件接口通信所需的基本功能&#xff0c;如发送和接收CAN消息。下面是一些常用的NuGet包&#xff1a; PCANBasic.NET…...

Unity类银河战士恶魔城学习总结(P179 Enemy Archer 弓箭手)

教程源地址&#xff1a;https://www.udemy.com/course/2d-rpg-alexdev/ 本章节实现了敌人弓箭手的制作 Enemy_Archer.cs 核心功能 状态机管理敌人的行为 定义了多个状态对象&#xff08;如 idleState、moveState、attackState 等&#xff09;&#xff0c;通过状态机管理敌人的…...

一、LRU缓存

LRU缓存 1.LRU缓存介绍2.LRU缓存实现3.LRU缓存总结3.1 LRU 缓存的应用3.2 LRU 缓存的优缺点 1.LRU缓存介绍 LRU是Least Recently Used 的缩写&#xff0c;意为“最近最少使用”。它是一种常见的缓存淘汰策略&#xff0c;用于在缓存容量有限时&#xff0c;决定哪些数据需要被删…...

基于python绘制数据表(上)

利用python绘制各种数据图表 绘制柱形图-源码 from openpyxl import Workbook from openpyxl.chart import BarChart, Reference# 创建工作薄 wb Workbook(write_onlyTrue) # 创建工作表 ws wb.create_sheet(月收入)# 准备数据 rows [(月份, 销售额),(1, 23),(2, 43),(3, …...

Python Segmentation fault错误定位办法

1. 说明 Python3执行某一个程序时&#xff0c;报Segmentation fault (core dumped)错&#xff0c;但没有告知到底哪里出错&#xff0c;无法查问题&#xff0c;这时就需要一个库faulthandler来帮助分析。 2. 安装faulthandler faulthandler在Python3.3之后成为标准库&#xf…...

快速在远程服务器执行命令、批量在多个服务器执行命令(基于sshpass的自定义脚本fastsh)

在日常服务器操作中&#xff0c;很多时候我们需要同时操作多个服务器。特别对于那些每个服务器都需要操作相同命令的场景&#xff0c;不断的切换命令会话窗口会比较麻烦。基于此&#xff0c;编写了本文中的 fastsh 脚本用于轻度解决这种问题&#xff0c;提高一定的便利性。 使…...

Java基于SpringBoot的企业OA管理系统,附源码

博主介绍&#xff1a;✌Java老徐、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&…...

SSM 垃圾分类系统——环保领域的创新引擎

第1章 概述 1.1 研究背景 随着现代网络技术发展&#xff0c;对于垃圾分类系统现在正处于网络发展的阶段&#xff0c;所以对它的要求也是比较严格的&#xff0c;要从这个系统的功能和用户实际需求来进行对系统制定开发的发展方式&#xff0c;依靠网络技术的的快速发展和现代通讯…...

websocker的java集成过程

第一步&#xff1a;引入依赖包 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency> 第二步设置配置类&#xff1a; // 需要注入Bean的话必须声明为配置类 Co…...

如何对小型固定翼无人机进行最优的路径跟随控制?

控制架构 文章继续采用的是 ULTRA-Extra无人机&#xff0c;相关参数如下&#xff1a; 这里用于guidance law的无人机运动学模型为&#xff1a; { x ˙ p V a cos ⁡ γ cos ⁡ χ V w cos ⁡ γ w cos ⁡ χ w y ˙ p V a cos ⁡ γ sin ⁡ χ V w cos ⁡ γ w sin ⁡ χ…...

03、对象的内存布局以及分配方式

在通过前面的文章了解到当一个程序启动的时候&#xff0c;会把一个java文件通过编译成class文件&#xff0c;然后把class字节码加载到JVM内存中&#xff0c;并初始化各种变量和对象实例&#xff0c;同时建立起具体的内存模型进行线程间的数据交换&#xff0c;在这之间对象的实例…...

「Mac玩转仓颉内测版50」小学奥数篇13 - 动态规划入门

本篇将通过 Python 和 Cangjie 双语介绍动态规划的基本概念&#xff0c;并解决一个经典问题&#xff1a;斐波那契数列。学生将学习如何使用动态规划优化递归计算&#xff0c;并掌握编程中的重要算法思想。 关键词 小学奥数Python Cangjie动态规划斐波那契数列 一、题目描述 …...

ADB在浏览器中:ya-webadb项目安装与配置完全指南

ADB在浏览器中&#xff1a;ya-webadb项目安装与配置完全指南 ya-webadb ADB in your browser [这里是图片001] 项目地址: https://gitcode.com/gh_mirrors/ya/ya-webadb 项目基础介绍与编程语言 ya-webadb 是一个由 Yume-chan 开发的开源项目&#xff0c;它实现了ADB&#x…...

通过ros2启动gazebo

ros2_integration3.使用gazebo加载URDF 在老版本中&#xff0c;我们使用 gazebo --verbose -s libgazebo_ros_init.so -s libgazebo_ros_factory.so来启动gazebo和ros2与gazebo的桥。 但在新版本中&#xff0c;libazebo_ros_init.so和libazebo_ros_factory.so不再被支持 你…...

WPF 消息循环(二)

们已经知道&#xff0c;win32/MFC/WinForm/WPF 都依靠消息循环驱动&#xff0c;让程序跑起来。 这里就介绍 WPF 中是如何使用消息循环来驱动程序的。 1. 背景 只听说过 Dispatcher &#xff0c;哪里来的消息循环&#xff1f; WPF 启动运行堆栈&#xff1a; > WpfApp1.…...

基于stm32的红外测温系统设计(论文+源码)

1总体方案设计 本课题为基于STM32的红外测温系统设计&#xff0c;在此将系统架构设计如图3.1所示&#xff0c; 整个系统包括STM32F103单片机&#xff0c;红外测温模块MLX90614&#xff0c;显示模块OLED12864&#xff0c;蜂鸣器以及按键等构成&#xff0c;在功能上&#xff0c;…...

分布式 Paxos算法 总结

前言 相关系列 《分布式 & 目录》《分布式 & Paxos算法 & 总结》《分布式 & Paxos算法 & 问题》 参考文献 《图解超难理解的 Paxos 算法&#xff08;含伪代码&#xff09;》《【超详细】分布式一致性协议 - Paxos》 Basic-Paxos 基础帕克索斯算法…...

ubuntu 使用 Times New Roman 字体在 Matplotlib 中绘图并调整字体大小

ubuntu 使用 Times New Roman 字体在 Matplotlib 中绘图并调整字体大小 文章目录 ubuntu 使用 Times New Roman 字体在 Matplotlib 中绘图并调整字体大小1. 安装 Times New Roman 字体验证字体是否安装成功 2. 在 Matplotlib 中加载 Times New Roman 字体3. 在 Matplotlib 中使…...

[网络] UDP协议16位校验和

16位校验和是udp报头中的一个字段,绝大多数的教材和网课都会忽略这个字段,不去细究,我闲的蛋疼问了问ai,得到了一个答案,故作此文,以证明我爱学习之心惊天地泣鬼神(狗头 ai的回答 仅从作用来说,它会根据整个应用层报文进行运算,生成一个准确的数字,这个数字不能保证唯一性,但根…...

【总结·反思·汇报·思考02】裸辞后,我的一些感想和感悟。

Hello&#xff0c;大家好&#xff01; 首先&#xff0c;我需要向大家道个歉&#xff0c;对不起&#xff01;因为最近发生了一些事情&#xff0c;博客文章一直没有更新。&#xff08;90度鞠躬道歉&#xff09; 那么&#xff0c;最近到底发生了什么呢&#xff1f;相信大家已经从…...

【前端开发】HTML+CSS网页,可以拿来当作业(免费开源)

HTML代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content_lizhongyu"widthdevice-width, initial-scale1.0"><title>小兔鲜儿-新鲜、惠民、快捷<…...

java 导出word锁定且部分内容解锁可编辑

使用 Apache POI 创建带编辑限制的 Word 文档 在日常工作中&#xff0c;我们可能需要生成一些带有编辑限制的 Word 文档&#xff0c;例如某些段落只能被查看&#xff0c;而其他段落可以自由编辑。本文介绍如何使用 Apache POI 创建这样的文档&#xff0c;并通过代码实现相应的…...