当前位置: 首页 > news >正文

互联网协议的多路复用、Linux系统的I/O模式

目录

1. 互联网协议栈-多路复用

1.1. 应用层的多路复用

2.2. 传输层的多路复用

3.3. 网络层的多路复用

2. Linux系统的I/O模式

2.1. I/O

2.2. Socket

2.3. 从网卡到操作系统

2.4. Socket 编程模型

2.5. I/O多路复用

2.6. 阻塞/非阻塞、同步/异步

2.7. Question


1. 互联网协议栈-多路复用

在上述的分层模型当中,一台机器上的应用可以有很多。但是实际的出口设备,比如说网卡、网线通常只有一份。因此这里需要用到一个叫作多路复用(Multiplex)的技术。多路复用,就是多个信号,复用一个信道。

多路复用的意义

多路复用让多个信号(例如:请求/返回等)共用一个信道(例如:一个 TCP 连接),那么在这个信道上,信息密度就会增加。在密度增加的同时,通过并行发送信号的方式,可以减少阻塞。

比如说应用层的 HTTP 协议,浏览器打开的时候就会往服务器发送很多个请求,多个请求混合在一起,复用相同连接,数据紧密且互相隔离(不互相阻塞)。同理,服务之间的远程调用、消息队列,这些也经常需要多路复用。

1.1. 应用层的多路复用

应用层机制

HTTP/2 在 单个 TCP 连接 上通过 流(Stream) 和 帧(Frame) 的机制,实现多个 HTTP 请求和响应的并行传输。

流(Stream):每个请求/响应分配一个唯一的流 ID,标识独立的逻辑通道。

帧(Frame):数据被拆分为更小的帧,不同流的帧可以穿插发送,接收端按流 ID 重组。

核心目标

解决 HTTP/1.1 的队头阻塞(Head-of-Line Blocking)问题,提升传输效率。

减少 TCP 连接数(从多个连接变为单连接),降低握手和资源开销。

示例:

浏览器通过一个 TCP 连接同时加载网页中的 HTML、CSS、JS 和图片资源,无需按顺序等待。

HTTP/2 引入多路复用机制:

  • 单连接多流(Streams):每个请求/响应分配一个唯一的流 ID,在同一个 TCP 连接上并行传输。
  • 帧(Frame)机制:将数据拆分为更小的帧,不同流的帧可穿插发送,接收方按流 ID 重组。
  • 优先级与依赖:可设置请求优先级(如优先加载 CSS/JS),优化资源加载顺序。

优势:

  • 消除队头阻塞:单个流的阻塞不影响其他流(但 TCP 层丢包仍可能导致 HOL)。
  • 减少连接数:无需多个 TCP 连接,降低延迟和资源消耗。
  • 头部压缩(HPACK):进一步减少冗余数据传输。

HTTP/3 的进一步优化:

HTTP/3 基于 QUIC 协议(运行在 UDP 上),彻底解决 TCP 层队头阻塞:

  • 独立流的多路复用:每个流的传输独立于其他流,即使 UDP 包丢失,只影响当前流。
  • 0-RTT 连接:减少握手延迟,提升性能。

多路复用和 HTTP 并发连接都用于提升 HTTP 请求的并发处理能力,但实现方式不同:

多路复用(如 HTTP/2):

在 单 TCP 连接 上并行传输多个请求/响应,通过流(Stream)和帧(Frame)机制实现。

优势:减少连接开销,解决队头阻塞,高效利用带宽。

HTTP 并发连接(如 HTTP/1.1):

通过 多个 TCP 连接 并行发送请求,绕过单连接的顺序限制。

缺点:资源消耗大,无法根治队头阻塞。

核心区别:

多路复用是协议层的优化,而并发连接是客户端的补救措施。HTTP/2/3 的多路复用显著降低了延迟和资源消耗,成为现代 Web 性能的核心机制。

2.2. 传输层的多路复用

传输层机制

通过 端口号(Port) 区分不同应用或服务的数据流。

TCP/UDP 端口:确保数据包被正确路由到目标应用程序(如 HTTP 用 80 端口,DNS 用 53 端口)。

IP 协议号:在 IP 层区分传输层协议类型(如 TCP=6,UDP=17)。

核心目标

在设备间实现多应用共享网络资源,确保数据包正确分发。

示例:

一台服务器同时运行 Web 服务(80 端口)和 FTP 服务(21 端口),TCP 层通过端口号将数据分发给对应的服务。

HTTP/2 多路复用是应用层优化:在单 TCP 连接上实现逻辑并发的 HTTP 请求/响应。

传输层多路复用是基础设施:通过端口号和协议号确保数据正确路由到应用。

两者协作关系:

HTTP/2 依赖传输层的 TCP 连接(单连接),并在应用层实现更高效率的并发处理。

传输层多路复用则是 HTTP/2 多路复用的基础(通过端口号绑定服务)。

关键记忆点:

HTTP/2 多路复用是“单车道上的多辆车交替通行”(应用层逻辑并发)。

传输层多路复用是“不同车道对应不同目的地”(物理端口区分应用)。

3.3. 网络层的多路复用

传输层是一个虚拟的概念,但是网络层是实实在在的。两个应用之间的传输,可以建立无穷多个传输层连接,前提是你的资源足够。但是两个应用之间的线路、设备,需要跨越的网络往往是固定的。在我们的互联网上,每时每刻都有大量的应用在互发消息。而这些应用要复用同样的基础建设——网线、路由器、网关、基站等。

应用层的多路复用,如多个请求使用同一个信道并行的传输,实际上是传输层提供的多路复用能力。传输层的多路复用,比如多个 TCP 连接复用一条线路,实际上是网络层在提供多路复用能力。

网络层没有连接这个概念。你可以把网络层理解成是一个巨大的物流公司。不断从传输层接收数据,然后进行打包,每一个包是一个 IP 封包。然后这个物流公司,负责 IP 封包的收发。所以,是很多很多的传输层在共用底下同一个网络层,这就是网络层的多路复用。

2. Linux系统的I/O模式

2.1. I/O

I/O的定义:

I/O(Input/Output,输入/输出) 指的是计算机系统中数据在内存与外部设备(或网络)之间的传输操作。

I/O的常见类型:

1. 网络 I/O

输入(Input):从网络接收数据(如客户端请求、文件下载)。

例如:服务器读取客户端发送的 HTTP 请求。

输出(Output):向网络发送数据(如响应结果、文件上传)。

例如:服务器向客户端返回 HTML 页面。

2. 磁盘 I/O

输入(Input):从硬盘读取数据到内存(如加载配置文件)。

输出(Output):将内存数据写入硬盘(如保存日志文件)。

3. 用户交互 I/O

输入:用户通过键盘、鼠标输入指令。

输出:程序向屏幕、打印机输出结果。

在 网络编程 中讨论 I/O 多路复用时,I/O 特指网络 I/O,即:

输入:从 Socket 接收客户端发送的数据。

输出:通过 Socket 向客户端返回数据。

2.2. Socket

Socket(套接字)是在应用层和传输层之间的一个抽象层,它把 TCP/IP 层复杂的操作抽象为几个简单的接口,供应用层调用实现进程在网络中的通信。

2.3. 从网卡到操作系统

网络数据到达网卡之后,首先需要把数据拷贝到内存。拷贝到内存的工作往往不需要消耗 CPU 资源,而是通过 DMA 模块直接进行内存映射。

Linux 中用一个双向链表作为缓冲区,下图中的 Buffer看上去像一个有很多个凹槽的线性结构,每个凹槽(节点)可以存储一个封包,这个封包可以从网络层看(IP 封包),也可以从传输层看(TCP 封包)。操作系统不断地从 Buffer 中取出数据,数据通过一个协议栈,你可以把它理解成很多个协议的集合。协议栈中数据封包找到对应的协议程序处理完之后,就会形成 Socket 文件

如果高并发的请求量级实在太大,有可能把 Buffer 占满,此时,操作系统就会拒绝服务。网络上有一种著名的攻击叫作拒绝服务攻击,就是利用的这个原理。操作系统拒绝服务,实际上是一种保护策略。通过拒绝服务,避免系统内部应用因为并发量太大而雪崩

操作系统和网络接口交互:

如上图所示,传入网卡的数据被称为 Frames。一个 Frame 是数据链路层的传输单位(或封包)。现代的网卡通常使用 DMA 技术,将 Frame 写入缓冲区(Buffer),然后在触发 CPU 中断交给操作系统处理。操作系统从缓冲区中不断取出 Frame,通过协进栈(具体的协议)进行还原。

在 UNIX 系的操作系统中,一个 Socket 文件内部类似一个双向的管道。因此,非常适用于进程间通信。在网络当中,本质上并没有发生变化。网络中的 Socket 一端连接 Buffer, 一端连接应用——也就是进程。网卡的数据会进入 Buffer,Buffer 经过协议栈的处理形成 Socket 结构。通过这样的设计,进程读取 Socket 文件,可以从 Buffer 中对应节点读走数据。

对于 TCP 协议,Socket 文件可以用源端口、目标端口、源 IP、目标 IP 进行区别。不同的 Socket 文件,对应着 Buffer 中的不同节点。进程们读取数据的时候从 Buffer 中读取,写入数据的时候向 Buffer 中写入。通过这样一种结构,无论是读和写,进程都可以快速定位到自己对应的节点。

2.4. Socket 编程模型

对于进程而言,Socket 更多是一种编程的模型。

Socket 连接了应用和协议,如果应用层的程序想要传输数据,就创建一个 Socket。应用向 Socket 中写入数据,相当于将数据发送给了另一个应用。应用从 Socket 中读取数据,相当于接收另一个应用发送的数据。而具体的操作就是由 Socket 进行封装。具体来说,对于 UNIX 系的操作系统,是利用 Socket 文件系统,Socket 是一种特殊的文件——每个都是一个双向的管道。一端是应用,一端是缓冲区

如上图所示,当有客户端连接服务端时,服务端 Socket 文件中会写入这个客户端 Socket 的文件描述符(FD)。进程可以通过 accept() 方法,从服务端 Socket 文件中读出客户端的 Socket 文件描述符,从而拿到客户端的 Socket 文件。

程序员实现一个网络服务器的时候,会先手动去创建一个服务端 Socket 文件。服务端的 Socket 文件依然会存在操作系统内核之中,并且会绑定到某个 IP 地址和端口上。以后凡是发送到这台机器、目标 IP 地址和端口号的连接请求,在形成了客户端 Socket 文件之后,文件的文件描述符都会被写入到服务端的 Socket 文件中。应用只要调用 accept 方法,就可以拿到这些客户端的 Socket 文件描述符,这样服务端的应用就可以方便地知道有哪些客户端连接了进来。

每个客户端对这个应用而言,都是一个Socket文件描述符。如果需要读取某个客户端的数据,就读取这个客户端对应的 Socket 文件。如果要向某个特定的客户端发送数据,就写入这个客户端的 Socket 文件。

2.5. I/O多路复用

服务端Socket可以让进程拿到了它关注的所有 Socket,也称作关注的集合(Intersting Set),相当于进程从所有的 Socket 中,筛选出了自己关注的一个子集。

进程如何监听关注集合的状态变化,比如说在有数据进来,如何通知到这个进程?

一个线程需要处理所有关注的 Socket 产生的变化,或者说消息。实际上一个线程要处理很多个文件的 I/O。所有关注的 Socket 状态发生了变化,都由一个线程去处理,构成了 I/O 的多路复用问题。

单线程管理多个 Socket概念图:

服务器应用(1个程序)

|

+-- 监听端口(比如 8080)

|

+-- 单线程管理:

├── socket_fd1(对应客户端 A)

├── socket_fd2(对应客户端 B)

├── socket_fd3(对应客户端 C)

└── ……更多

处理 I/O 多路复用的问题,需要操作系统提供内核级别的支持。Linux 下有三种提供 I/O 多路复用的 API,分别是:

  1. select
  2. poll
  3. epoll

内核知道某个 Socket 文件状态发生了变化。但是内核如何知道该把哪个消息给哪个进程呢?

一个 Socket 文件,可以由多个进程使用;而一个进程,也可以使用多个 Socket 文件。进程和 Socket 之间是多对多的关系。另一方面,一个 Socket 也会有不同的事件类型。

这样在进程内部就需要一个数据结构来描述自己会关注哪些 Socket 文件的哪些事件(读、写、异常等)。通常有两种考虑方向,一种是利用线性结构,比如说数组、链表等,这类结构的查询需要遍历。每次内核产生一种消息,就遍历这个线性结构。看看这个消息是不是进程关注的?另一种是索引结构,内核发生了消息可以通过索引结构马上知道这个消息进程关不关注。

1. select()

select 和 poll 都采用线性结构,select 允许用户传入 3 个集合。

每次 select 操作会阻塞当前线程,在阻塞期间所有操作系统产生的每个消息,都会通过遍历的手段查看是否在 3 个集合当中。上面程序read_fd_set中放入的是当数据可以读取时进程关心的 Socket;write_fd_set是当数据可以写入时进程关心的 Socket;error_fd_set是当发生异常时进程关心的 Socket。

用户程序可以根据不同集合中是否有某个 Socket 判断发生的消息类型。

fd_set read_fd_set, write_fd_set, error_fd_set;while(true) {select(..., &read_fd_set, &write_fd_set, &error_fd_set); for (i = 0; i < FD_SETSIZE; ++i)if (FD_ISSET (i, &read_fd_set)){// Socket可以读取} else if(FD_ISSET(i, &write_fd_set)) {// Socket可以写入} else if(FD_ISSET(i, &error_fd_set)) {// Socket发生错误} }

上面程序中的 FD_SETSIZE 是一个系统的默认设置,通常是 1024。可以看出,select 模式能够一次处理的文件描述符是有上限的,也就是 FD_SETSIZE。当并发请求过多的时候, select 就无能为力了。但是对单台机器而言,1024 个并发已经是一个非常大的流量了。

2. poll()

从写程序的角度来看,select 并不是一个很好的编程模型。一个好的编程模型应该直达本质,当网络请求发生状态变化的时候,核心是会发生事件。一个好的编程模型应该是直接抽象成消息:用户不需要用 select 来设置自己的集合,而是可以通过系统的 API 直接拿到对应的消息,从而处理对应的文件描述符。

  • poll 是一个阻塞调用,它将某段时间内操作系统内发生的且进程关注的消息告知用户程序;
  • 用户程序通过直接调用 poll 函数拿到消息;
  • poll 函数的第一个参数告知内核 poll 关注哪些 Socket 及消息类型;
  • poll 调用后,经过一段时间的等待(阻塞),就拿到了是一个消息的数组;
  • 通过遍历这个数组中的消息,能够知道关联的文件描述符和消息的类型;
  • 通过消息类型判断接下来该进行读取还是写入操作;
  • 通过文件描述符,可以进行实际地读、写、错误处理。
while(true) {events = poll(fds, ...)for(evt in events) {fd = evt.fd;type = evt.revents;if(type & POLLIN ) {// 有数据需要读,读取fd中的数据} else if(type & POLLOUT) {// 可以写入数据} else ...}}

poll 虽然优化了编程模型,但是从性能角度分析,它和 select 差距不大。因为内核在产生一个消息之后,依然需要遍历 poll 关注的所有文件描述符来确定这条消息是否跟用户程序相关。

3. epoll

为了解决上述问题,epoll 通过更好的方案实现了从操作系统订阅消息。epoll 将进程关注的文件描述符存入一棵二叉搜索树,通常是红黑树的实现。在这棵红黑树当中,Key 是 Socket 的编号,值是这个 Socket 关注的消息。因此,当内核发生了一个事件:比如 Socket 编号 1000 可以读取。这个时候,可以马上从红黑树中找到进程是否关注这个事件。

另外当有关注的事件发生时,epoll 会先放到一个队列当中。当用户调用epoll_wait时候,就会从队列中返回一个消息。epoll 函数本身是一个构造函数,只用来创建红黑树和队列结构。epoll_wait调用后,如果队列中没有消息,也可以马上返回。因此epoll是一个非阻塞模型。

总结一下,select/poll 是阻塞模型,epoll 是非阻塞模型。当然,并不是说非阻塞模型性能就更好。在多数情况下,epoll 性能更好是因为内部有红黑树的实现。

非阻塞模型的核心价值,并不是性能更好。当真的高并发来临的时候,所有的 CPU 资源,所有的网络资源可能都会被用完。这个时候无论是阻塞还是非阻塞,结果都不会相差太大。(前提是程序没有写错)。

epoll有 2 个最大的优势:

  1. 内部使用红黑树减少了内核的比较操作;
  2. 对于程序员而言,非阻塞的模型更容易处理各种各样的情况。程序员习惯了写出每一条语句就可以马上得到结果,这样不容易出 Bug。

2.6. 阻塞/非阻塞、同步/异步

select/poll 是阻塞(Blocking)模型,epoll 是非阻塞(Non-Blocking)模型。阻塞和非阻塞强调的是线程的状态,所以阻塞就是触发了线程的阻塞状态,线程阻塞了就停止执行,并且切换到其他线程去执行,直到触发中断再回来。

还有一组概念是同步(Synchrounous)和异步(Asynchrounous),select/poll/epoll 三者都是同步调用。

select/poll 是同步模型,epoll 是异步模型。

同步强调的是顺序,所谓同步调用,就是可以确定程序执行的顺序的调用。比如说执行一个调用,知道调用返回之前下一行代码不会执行。这种顺序是确定的情况,就是同步。

而异步调用则恰恰相反,异步调用不明确执行顺序。比如说一个回调函数,不知道何时会回来。异步调用会加大程序员的负担,因为我们习惯顺序地思考程序。因此,我们还会发明像协程的 yield 、迭代器等将异步程序转为同步程序。

由此可见,非阻塞不一定是异步,阻塞也未必就是同步。

阻塞 vs 同步:同步通常是阻塞的,但同步本身并不一定意味着阻塞。

非阻塞 vs 异步:非阻塞和异步都能使程序继续执行其他任务,但异步通常有回调机制或某种形式的通知,非阻塞只关注操作本身不会停止程序执行。

2.7. Question

select/poll/epoll 有什么区别?

回答:

这三者都是处理 I/O 多路复用的编程手段。select/poll 模型是一种阻塞模型,epoll 是非阻塞模型。select/poll 内部使用线性结构存储进程关注的 Socket 集合,因此每次内核要判断某个消息是否发送给 select/poll 需要遍历进程关注的 Socket 集合。

而 epoll 不同,epoll 内部使用二叉搜索树(红黑树),用 Socket 编号作为索引,用关注的事件类型作为值,这样内核可以在非常快的速度下就判断某个消息是否需要发送给使用 epoll 的线程。

相关文章:

互联网协议的多路复用、Linux系统的I/O模式

目录 1. 互联网协议栈-多路复用 1.1. 应用层的多路复用 2.2. 传输层的多路复用 3.3. 网络层的多路复用 2. Linux系统的I/O模式 2.1. I/O 2.2. Socket 2.3. 从网卡到操作系统 2.4. Socket 编程模型 2.5. I/O多路复用 2.6. 阻塞/非阻塞、同步/异步 2.7. Question 1. …...

vue中,created和mounted两个钩子之间调用时差值受什么影响

在 Vue 中&#xff0c;created 和 mounted 是两个生命周期钩子&#xff0c;它们之间的调用时差主要受以下几个因素影响&#xff1a; &#x1f7e2; 1. 模板复杂度与渲染耗时&#xff08;最主要因素&#xff09; mounted 的触发时间是在组件的 DOM 被挂载之后&#xff08;也就是…...

软件设计师考试《综合知识》计算机编码考点分析——会更新软设所有知识点的考情分析,求个三连

2019-2023年真题深度解析与备考策略 分值占比分析 75分中编码相关分值分布与核心考点 年份编码相关题量分值占总分比例核心考点20232题2分2.67%补码表示范围、IEEE 754偏移量20223题3分4.00%原码/反码比较、浮点数规格化20211题1分1.33%补码表示-1的能力20202题2分2.67%移码…...

剖析提示词工程中的递归提示

递归提示:解码AI交互的本质,构建复杂推理链 递归提示的核心思想,正如示例所示,是将一个复杂任务分解为一系列更小、更易于管理、逻辑上前后关联的子任务。每个子任务由一个独立的提示来驱动,而前一个提示的输出(经过必要的解析和转换)则成为下一个提示的关键输入。这种…...

【SSL证书系列】https双向认证中客户端认证的原理

HTTPS双向认证&#xff08;也称为双向SSL/TLS认证&#xff09;是一种增强安全性的机制&#xff0c;其中客户端和服务器都需要验证彼此的数字证书&#xff0c;以确保双方身份的真实性。以下是其核心原理和步骤的详细解析&#xff1a; 一、双向认证的核心目标 双向身份验证&#…...

map格式可以接收返回 fastjson2格式的数据 而不需要显示的转换

Fastjson2 JSONObject 与 Map 的关系 Fastjson2 的 JSONObject 类定义如下&#xff1a; public class JSONObject extends JSON implements Map<String, Object>, Cloneable {// 实现了 Map 接口的所有方法&#xff08;put、get、keySet 等&#xff09; }解释&#xff…...

NHANES稀有指标推荐:PWI

文章题目&#xff1a;Association between plain water intake and the risk of osteoporosis among middle-aged and elderly people in the United States: a cross-sectional study DOI&#xff1a;10.3389/fnut.2025.1527771 中文标题&#xff1a;美国中老年人白开水摄入与…...

CN 第二章 应用层-单选题

非并行TCP连接 HTTP非持续连接 假定在同一Web服务器上的某HTML文件引用了3个非常小的对象&#xff08;例如图片&#xff09;。忽略传输时延&#xff0c;往返时延为RTT&#xff0c;不考虑连接释放时间&#xff0c;采用非并行TCP连接的HTTP非持续连接方式将该页面完整接收下来需…...

游戏引擎学习第279天:将实体存储移入世界区块

黑板讲解&#xff1a;为什么使用SOA&#xff08;结构体数组&#xff09;而不是AOS&#xff08;数组结构体&#xff09;来构建实体系统 我们在构建游戏实体系统时&#xff0c;探讨了使用结构体数组&#xff08;SOA, Struct of Arrays&#xff09;而不是结构体组成的数组&#x…...

zabbix7.2最新版本 nginx自定义监控(三) 设置触发器

安装zabbix-get服务 在zabbix-server端口安装zabbix-get服务 [rootlocalhost ~]# dnf install -y zabbix-get Last metadata expiration check: 1:55:49 ago on Wed 14 May 2025 09:24:49 AM CST. Dependencies resolved. Package Architectur…...

解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs- OpenAI AGI 五阶段

解密企业级大模型智能体Agentic AI 关键技术:MCP、A2A、Reasoning LLMs- OpenAI AGI 五阶段 然后第三个阶段就是agent,注意这里面的agent和我们说应用程序开发的这个agent是一个不同的概念。AI just can take actions autonomously自动的去执行一些动作。但大家像今天我们看到…...

Flink实时统计任务CPU异常排查与解决方案

一、核心原因分析 ‌资源配置不合理‌ ‌CPU核数与并行度不匹配‌:TaskManager的taskmanager.numberOfTaskSlots设置过高,导致单个节点负载过载(如32核节点设置2个slot被多个任务占用,总需求超过物理CPU核数)。‌内存与CPU分配不均‌:内存不足引发频繁GC,间接导致CPU利…...

Vue3指令(二)--v-text、v-html数据渲染,计算属性

目录 &#xff08;一&#xff09;数据渲染 1.插值表达式渲染数据 1.1实战案例 1.1.1代码&#xff1a; 1.1.2实现截图&#xff1a; 2.使用v-text和v-html来渲染数据 2.1实战案例&#xff1a; 2.1.1代码&#xff1a; 2.1.2实现截图&#xff1a; &#xff08;二&#xff…...

【深入Spring系列】源码级深入剖析SpringBoot如何实现自动装载

1. SpringBoot自动装载 Spring Boot 实现“自动装载”&#xff08;Auto Configuration&#xff09;是其最核心、最强大的功能之一&#xff0c;使得开发者可以快速搭建项目而无需进行复杂的 XML 配置。这一机制的底层实现主要依赖于 Spring Framework 的条件注解机制 和 Spring…...

【AI News | 20250514】每日AI进展

AI Repos 1、ocr-workbench OCR Workbench 是一款使用 AI&#xff08;Gemini 或 Tesseract&#xff09;进行文档光学字符识别&#xff08;OCR&#xff09;并生成 Markdown 或 HTML 转录的开源 Web 应用。它专为处理需要大量编辑的 OCR 文本而设计&#xff0c;特别是老旧文档。…...

嵌入式设计模式基础--C语言的继承封装与多态

继承&#xff0c;封装和多态是OOP的三大核心特性&#xff0c;它们共同构了面向对象的基础.但嵌入式开发中大量的使用到的却是C语言这种面向过程的语言&#xff0c;那么我们就需要了解如何在C中使用设计模式的思想做功能开发。要了解设计模式&#xff0c;我们就需要先搞清楚 继承…...

【python爬虫】python+selenium实现Google Play Store应用信息爬虫+apk下载

实验要求&#xff1a;利用pythonselenium实现Google Play Store应用信息爬虫apk下载。 其中&#xff1a; 1、热门应用列表包含200个app&#xff0c;需要点击右侧按钮滑动产生下一页数据&#xff0c;所以需要Selenium来控制页面操作。 2、每个应用的爬虫信息包括&#xff1a;ap…...

RPC协议及库介绍

一.RPC介绍 RPC(Remote Procedure Call)&#xff0c;远程过程调用协议&#xff0c;客户端在不知道调用细节的情况下&#xff0c;调用存在于远程计算机上的某个对象&#xff0c;就像调用本地应用程序中的对象一样&#xff0c;即允许像调用本地服务一样调用远程服务。 RPC框架的…...

【教程】Docker更换存储位置

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 目录 背景说明 更换教程 1. 停止 Docker 服务 2. 创建新的存储目录 3. 编辑 Docker 配置文件 4. 迁移已有数据到新位置 5. 启动 Docker 服务 6…...

vue3实现JSON格式化和JSONPath提取功能

功能简介 1、JSON数据的格式化 2、通过JSONPath语法对格式化后的数据匹配提取 基础环境参考 vue3flasksqlite前后端项目实战 包安装 npm install jsonpath src/views/JsonFormat.vue <template><div class"json-formatter-container"><el-card cla…...

【springcloud学习(dalston.sr1)】服务消费者通过restTemplate来访问服务提供者(含源代码)(五)

该系列项目整体介绍及源代码请参照前面写的一篇文章​​​​​​【springcloud学习(dalston.sr1)】项目整体介绍&#xff08;含源代码&#xff09;&#xff08;一&#xff09; 一般情况下&#xff0c;我们远程调用服务&#xff0c;可以用restTemplate来进行http请求的访问。接…...

在 Angular 中, `if...else if...else`

在 Angular 中&#xff0c;模板语法本身并不直接支持 if...else if...else 这样的多条件分支结构。不过&#xff0c;你可以通过使用 *ngIf 指令结合其else模板功能来实现类似的效果。下面是如何模拟if...else if...else逻辑的方法&#xff1a; 示例&#xff1a;实现if...else …...

深入掌握 Python 切片操作:解锁数据处理的高效密码

在 Python 的编程宇宙中&#xff0c;每一个开发者都在不断探索各种强大且实用的工具&#xff0c;以提升代码的效率与灵活性。其中&#xff0c;切片操作作为 Python 数据处理领域的核心技能之一&#xff0c;就像是一把精巧的瑞士军刀&#xff0c;无论是处理文本信息、分析数据列…...

基于 Kubernetes 部署容器平台kubesphere

一 前言&#xff1a; k8s 大家都已经非常熟悉了&#xff0c;网上流传着非常多的搭建部署文档&#xff0c;有kubeadmin的有二进制的&#xff0c;还有基于第三方的部署工具的&#xff0c;反正是各种部署方法都有&#xff0c;k8s部署技术热门可见一斑。但是不管哪种部署都需要了解…...

lua 作为嵌入式设备的配置语言

从lua的脚本中获取数据 lua中栈的索引 3 | -1 2 | -2 1 | -3 可以在lua的解释器中加入自己自定的一些功能,其实没啥必要,就是为了可以练习下lua...

NVMe简介2

共分2部分&#xff0c;这里是第2部分。 NVMe数据结构 NVMe协议中规定每个提交命令的大小为64字节&#xff0c;完成命令大小为16字节&#xff0c;NVMe命令分为Admin和IO两类&#xff0c;NVMe的数据块组织方式有PRP和SGL两种。提交命令的格式如图5所示。 图5 提交命令数据格 N…...

具身智能梳理以及展望

具身智能相关技术与发展历程 具身智能概念 具身智能指具有自身体验、改变物理世界的智能。 过去 5.4 亿年&#xff0c;地球所有生物智能由身体作用于世界的行为塑造。 1950 年&#xff0c;图灵在《Computing Machinery and Intelligence》论文中首次提出具身智能&#xff0…...

【Redis实战篇】秒杀优化

1. 秒杀优化-异步秒杀思路 我们来回顾一下下单流程 当用户发起请求&#xff0c;此时会请求nginx&#xff0c;nginx会访问到tomcat&#xff0c;而tomcat中的程序&#xff0c;会进行串行操作&#xff0c;分成如下几个步骤 1、查询优惠卷 2、判断秒杀库存是否足够 3、查询订单…...

【​​HTTPS基础概念与原理​】TLS握手过程详解​​

以下是 TLS握手过程的详细拆解&#xff0c;涵盖客户端与服务器之间的关键交互步骤&#xff0c;包括ClientHello、ServerHello、证书验证、密钥交换等核心阶段&#xff0c;并对比TLS 1.2与TLS 1.3的差异&#xff1a; 一、TLS握手的核心目标 协商协议版本&#xff1a;确定双方支…...

libmemcached库api接口讲解三

前言&#xff1a;讲解一下如何删除数据 &#x1f5d1;️ libmemcached 删除键操作教程&#xff1a;memcached_delete() / memcached_delete_by_key() &#x1f4d8; 1. 函数作用 用于从 Memcached 中删除指定的 key&#xff0c;包括&#xff1a; memcached_delete()&#xff…...

注解和 XML 两种方式有什么区别?

注解和 XML 是两种常见的配置方式&#xff08;尤其在 Java 开发中&#xff0c;如 Spring 框架&#xff09;&#xff0c;它们的主要区别体现在配置方式、代码耦合性、可读性、维护性等方面。以下是两者的对比&#xff1a; 1. 配置方式 注解&#xff08;Annotation&#xff09; 在…...

[论文阅读]Formalizing and Benchmarking Prompt Injection Attacks and Defenses

Formalizing and Benchmarking Prompt Injection Attacks and Defenses Formalizing and Benchmarking Prompt Injection Attacks and Defenses | USENIX 33rd USENIX Security Symposium (USENIX Security 24) 提出了一个框架来形式化提示注入攻击&#xff0c;对提示注入攻击…...

分布式2(限流算法、分布式一致性算法、Zookeeper )

目录 限流算法 固定窗口计数器&#xff08;Fixed Window Counter&#xff09; 滑动窗口计数器&#xff08;Sliding Window Counter&#xff09; 漏桶算法&#xff08;Leaky Bucket&#xff09; 令牌桶算法&#xff08;Token Bucket&#xff09; 令牌桶与漏桶的对比 分布式…...

阿里端到端多模态语音对话开源模型论文速读:Qwen2.5-Omni

Qwen2.5-Omni 技术报告 1. 介绍 Qwen2.5-Omni 技术报告介绍了一个先进的端到端多模态模型 Qwen2.5-Omni&#xff0c;该模型能够感知包括文本、图像、音频和视频在内的多种模态&#xff0c;并能同时以流式方式生成文本和自然语音响应。该模型解决了统一不同理解模态、管理不同…...

React 第四十节 React Router 中 useBeforeUnload的使用详细解析及案例说明

useBeforeUnload 是 React Router 提供的一个自定义钩子&#xff0c;用于在用户尝试关闭页面、刷新页面或导航到外部网站时触发浏览器原生的确认提示。 它的核心用途是防止用户意外离开页面导致数据丢失&#xff08;例如未保存的表单内容&#xff09;。 一、useBeforeUnload 核…...

c++STL——哈希表封装:实现高效unordered_map与unordered_set

文章目录 用哈希表封装unordered_map和unordered_set改进底层框架迭代器实现实现思路迭代器框架迭代器重载operator哈希表中获取迭代器位置 哈希表的默认成员函数修改后的哈希表的代码封装至上层容器 用哈希表封装unordered_map和unordered_set 在前面我们已经学过如何实现哈希…...

通过迁移学习改进深度学习模型

在 ArcGIS Living Atlas of the World &#xff08;Browse | ArcGIS Living Atlas of the World&#xff09;中&#xff0c;可以下载能够分类或检测影像中要素的预训练深度学习模型。 深度学习模型在与用于训练模型的原始影像十分相似的影像上运行效果最好。 如果您所拥有的影像…...

SpringAI更新:废弃tools方法、正式支持DeepSeek!

AI 技术发展很快&#xff0c;同样 AI 配套的相关技术发展也很快。这不今天刚打开 Spring AI 的官网就发现它又又又又更新了&#xff0c;而这次更新距离上次更新 M7 版本才不过半个月的时间&#xff0c;那这次 Spring AI 给我们带来了哪些惊喜呢&#xff1f;一起来看。 重点升级…...

输入一个正整数,将其各位数字倒序输出(如输入123,输出321)

之前的解法&#xff1a; 这种方法仅支持三位数。 学了while之后&#xff0c;可以利用循环解决。 这种方法动态构建逆序数&#xff0c;支持任意长度的正整数。...

react+html2canvas+jspdf将页面导出pdf

主要使用html2canvasjspdf 1.将前端页面导出为pdf 2.处理导出后图表的截断问题 export default function AIReport() {const handleExport async () > {try {// 需要导出的内容idconst element document.querySelector(#AI-REPORT-CONTAINER);if (!element) {message.err…...

Spring Boot 自动装配技术方案书

Spring Boot 自动装配技术方案书(增强版) 一、Spring Boot 自动装配体系全景解析 1.1 核心设计理念 “约定优于配置”:通过合理的默认配置减少开发工作量“即插即用”:通过标准化扩展机制实现组件自动集成“分层解耦”:业务代码与基础设施分离,通过SPI机制实现扩展二、组…...

面试--HTML

1.src和href的区别 总结来说&#xff1a; <font style"color:rgb(238, 39, 70);background-color:rgb(249, 241, 219);">src</font>用于替换当前元素&#xff0c;指向的资源会嵌入到文档中&#xff0c;例如脚本、图像、框架等。<font style"co…...

(3)python开发经验

文章目录 1 sender返回对象找不到函数2 获取绝对路径3 指定翻译字符 更多精彩内容&#x1f449;内容导航 &#x1f448;&#x1f449;Qt开发 &#x1f448;&#x1f449;python开发 &#x1f448; 1 sender返回对象找不到函数 在PySide6中多个信号绑定一个槽函数&#xff0c;使…...

机密虚拟机的威胁模型

本文将介绍近年兴起的机密虚拟机&#xff08;Confidential Virtual Machine&#xff09;技术所旨在抵御的威胁模型&#xff0c;主要关注内存机密性&#xff08;confidentiality&#xff09;和内存完整性&#xff08;integrity&#xff09;两个方面。在解释该威胁可能造成的问题…...

LLM笔记(一)基本概念

LLMs from scratch Developing an LLM: Building, Training, Finetuning LLM 的基本概念与定义: LLM是深度神经网络模型&#xff0c;能够理解、生成和解释类似人类的语言。“大型”指的是模型参数数量巨大以及训练数据集的规模庞大。LLM通常基于Transformer架构&#xff0c;并通…...

嵌入式(c语言篇)Day9

嵌入式Day9 C语言字符串标准库函数笔记 一、概述 C语言提供了一系列字符串标准库函数用于处理字符串&#xff0c;使用这些函数需要包含头文件 <string.h>。主要函数包括求字符串长度、字符串复制、字符串拼接和字符串比较等。我们不仅要理解这些函数的行为&#xff0c…...

006-nlohmann/json 结构转换-C++开源库108杰

绝大多数情况下&#xff0c;程序和外部交换的数据&#xff0c;都是结构化的数据。 1. 手工实现——必须掌握的基本功 在的业务类型的同一名字空间下&#xff0c;实现 from_json 和 to_json 两个自由函数&#xff08;必要时&#xff0c;也可定义为类型的友元函数&#xff09;&a…...

b站视频如何下载到电脑——Best Video下载器

你是不是也经常在B站刷到超赞的视频&#xff0c;想保存到电脑慢慢看&#xff0c;却发现下载不了&#xff1f;别急&#xff0c;今天教你一个超简单的方法&#xff0c;轻松下载B站视频到电脑&#xff0c;高清画质&#xff0c;随时随地想看就看&#xff01; 为什么需要下载B站视频…...

【行为型之模板方法模式】游戏开发实战——Unity标准化流程与可扩展架构的核心实现

文章目录 &#x1f9e9; 模板方法模式&#xff08;Template Method Pattern&#xff09;深度解析一、模式本质与核心价值二、经典UML结构三、Unity实战代码&#xff08;关卡流程系统&#xff09;1. 定义抽象模板类2. 实现具体子类3. 客户端使用 四、模式进阶技巧1. 钩子方法&am…...

每日算法-250514

每日算法学习记录 (2024-05-14) 今天记录三道 LeetCode 算法题的解题思路和代码。 1. 两数之和 题目截图: 解题思路 这道题要求我们从一个整数数组中找出两个数&#xff0c;使它们的和等于一个给定的目标值 target&#xff0c;并返回这两个数的下标。 核心思路是使用 哈希…...