当前位置: 首页 > news >正文

C++学习之路,从0到精通的征途:继承

目录

一.继承的概念及定义

1.继承的概念

2.继承的定义

(1)继承的定义格式

(2)继承基类成员访问方式的变化

二.基类与派生类间的转换

1.派生类对象赋值给基类的引用/指针

2. 派生类对象直接赋值给基类对象

三.继承的作用域

四.派生类的默认成员函数

1.构造函数

2.拷贝构造函数

3.赋值重载 

4.析构函数

基类与派生类的行为总结:

​编辑实现一个不能被继承的类

五.继承与友元

六.继承与静态成员

七.多继承与菱形继承问题

1.继承模型

2.虚继承

八.继承与组合


一.继承的概念及定义

1.继承的概念

        继承(inheritance)机制是面向对象程序设计使代码可以复⽤的最重要的手段,它允许我们在保持原有类特性的基础上进行扩展,增加方法(成员函数)和属性(成员变量),这样产生新的类,称派生类。

        继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的函数层次的复用,继承是类设计层次的复用。

        举例:

        如果一个人具有名字,性别,年龄等属性,我们将这个集合定义为Person类,当我们还想要定义一个Student类时,由于Student与Person属于“has-a”的关系,即除了Student自身的特性外,其也具有Person的所有特性时,我们可以将Student定义为Person的派生类,即Student类继承Person类,在理解上,可以认为Student就是一个Person。

2.继承的定义

(1)继承的定义格式

        下面我们看到Person是基类,也称作父类。Student是派生类,也称作子类:

        举例:

class Person
{
public:// 进入校园/图书馆/实验室刷二维码等身份认证void identity(){cout << "void identity()" << _name << endl;}
protected:string _name = "张三"; // 姓名string _address; // 地址string _tel; // 电话int _age = 18; // 年龄
};class Student : public Person
{
public:// 学习void study(){// ...}
protected:int _stuid; // 学号
};int main()
{Person p;Student s;return 0;
}

        在监视窗口中可以看到Student类继承了Person类的成员变量与成员函数。 

(2)继承基类成员访问方式的变化

        三种继承方式与三种访问限定符对应着9种访问方式:

类成员/继承方式public继承protected继承private继承
基类的public成员派生类的public成员派生类的protected成员派生类的private成员
基类的protected成员派生类的protected成员派生类的protected成员派生类的private成员
基类的private成员在派生类种不可见在派生类种不可见在派生类种不可见

<1>基类private成员在派生类中无论以什么方式继承都是不可见的。这里的不可见是指基类的私有成员还是被继承到了派生类对象中,但是语法上限制派生类对象不管在类里面还是类外面都不能去访问它。

<2>基类private成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected。可以看出保护成员限定符是因继承才出现的。

<3>实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == Min(成员在基类的访问限定符,继承方式),public > protected > private。

<4>使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public,不过 最好显示的写出继承方式。

<5>在实际运用中一般使用都是public继承,几乎很少使用protetced/private继承,也不提倡使用protetced/private继承,因为protetced/private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强。

二.基类与派生类间的转换

1.派生类对象赋值给基类的引用/指针

        public继承的派生类对象可以赋值给基类的指针/基类的引⽤。这里有个形象的说法叫切片或者切割。寓意把派生类中基类那部分切出来,基类指针或引用指向的是派生类中切出来的基类那部分。

class Person
{
protected:string _name; // 姓名string _sex; // 性别int _age; // 年龄
};class Student : public Person
{
public:int _No; // 学号
};int main()
{Student sobj;// 派生类对象可以赋值给基类的指针/引用Person* pp = &sobj;Person& rp = sobj;return 0;
}

2. 派生类对象直接赋值给基类对象

        这里是基类的赋值重载实现的,本质还是进行了切片,但是基类对象不能赋值给派生类对象。

Person pobj = sobj;

三.继承的作用域

<1>在继承体系中基类和派生类都有独立的作用域。

<2>派生类和基类中有同名成员,派生类成员将屏蔽基类对同名成员的直接访问,这种情况叫隐藏。(在派生类成员函数中,可以使用基类::基类成员显式访问)

class Person
{
protected:string _name = "⼩李"; // 姓名int _num = 111; // 身份证号
};class Student : public Person
{
public:void Print(){cout << " 姓名:" << _name << endl;cout << " 身份证号:" << Person::_num << endl; // 显式访问cout << " 学号:" << _num << endl; // 构成隐藏}
protected:int _num = 999; // 学号
};int main()
{Student s1;s1.Print();return 0;
};

<3>需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏。

class A
{
public:void fun(){cout << "func()" << endl;}
};class B : public A
{
public:void fun(int i){cout << "func(int i)" << i << endl;}
};int main()
{B b;b.fun(10); // 调用fun(int i)//b.fun(); // 基类与派生类的函数名相同,fun构成隐藏,由于没有传参,直接报错return 0;
};

<4>注意在实际中在继承体系里面最好不要定义同名的成员。

四.派生类的默认成员函数

        6个默认成员函数,默认的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类中,这几个成员函数是如何生成的呢?

1.构造函数

        在初始化属于基类的那一部分成员时,可以将所属于基类的成员整体当作一个自定义类型派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认的构造函数,则必须在派生类构造函数的初始化列表阶段显式调用。

class Person
{
public:Person(const char* name = "peter"): _name(name){cout << "Person()" << endl;}
protected:string _name; // 姓名
};class Student : public Person
{
public:Student(const char* name, int num): Person(name), _num(num){cout << "Student()" << endl;}
protected:int _num; //学号
};int main()
{Student s1("jack", 18);return 0;
}

        同时在监视窗口中也可以看到派生类对象初始化先调用基类构造再调派生类构造。 

        派生类对象构造顺序:

基类成员 > 派生类成员

2.拷贝构造函数

        派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。

class Person
{
public:Person(const char* name = "peter"): _name(name){cout << "Person()" << endl;}Person(const Person& p): _name(p._name){cout << "Person(const Person& p)" << endl;}
protected:string _name; // 姓名
};class Student : public Person
{
public:Student(const char* name, int num): Person(name), _num(num){cout << "Student()" << endl;}Student(const Student& s): Person(s) // 切片,调用基类的拷贝构造, _num(s._num){cout << "Student(const Student& s)" << endl;}
protected:int _num; //学号
};int main()
{Student s1("jack", 18);Student s2(s1);return 0;
}

3.赋值重载 

        派生类的operator=必须要调用基类的operator=完成基类的复制。需要注意的是派生类的 operator=隐藏了基类的operator=,所以显式调用基类的operator=,需要指定基类作用域。

class Person
{
public:Person(const char* name = "peter"): _name(name){cout << "Person()" << endl;}Person(const Person& p): _name(p._name){cout << "Person(const Person& p)" << endl;}Person& operator=(const Person& p){cout << "Person operator=(const Person& p)" << endl;if (this != &p)_name = p._name;return *this;}
protected:string _name; // 姓名
};class Student : public Person
{
public:Student(const char* name, int num): Person(name), _num(num){cout << "Student()" << endl;}Student(const Student& s): Person(s) // 切片,调用基类的拷贝构造, _num(s._num){cout << "Student(const Student& s)" << endl;}Student& operator=(const Student& s){cout << "Student& operator=(const Student& s)" << endl;if (this != &s){// 构成隐藏,所以需要显式调用,若不显式调用则会调用派生类的复制重载,形成死递归Person::operator=(s); // 赋值所属基类的一部分_num = s._num;}return *this;}
protected:int _num; //学号
};int main()
{Student s1("jack", 18);Student s2(s1);Student s3("rose", 17);s1 = s3;return 0;
}

4.析构函数

        派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能保证派生类对象先清理派生类成员再清理基类成员的顺序。

        派生类对象析构清理先调用派生类析构再调基类的析构。

class Person
{
public:Person(const char* name = "peter"): _name(name){cout << "Person()" << endl;}Person(const Person& p): _name(p._name){cout << "Person(const Person& p)" << endl;}Person& operator=(const Person& p){cout << "Person operator=(const Person& p)" << endl;if (this != &p)_name = p._name;return *this;}~Person(){cout << "~Person()" << endl;}
protected:string _name; // 姓名
};class Student : public Person
{
public:Student(const char* name, int num): Person(name), _num(num){cout << "Student()" << endl;}Student(const Student& s): Person(s), _num(s._num){cout << "Student(const Student& s)" << endl;}Student& operator = (const Student& s){cout << "Student& operator= (const Student& s)" << endl;if (this != &s){// 构成隐藏,所以需要显⽰调⽤Person::operator =(s);_num = s._num;}return *this;}~Student(){cout << "~Student()" << endl;}// 自动调用基类的析构函数
protected:int _num; //学号
};int main()
{Student s1("jack", 18);return 0;
}

        在输出中可以看到,在派生类的析构函数执行完后会自动调用基类的析构函数,所以在派生类的析构函数中不需要再对基类的那一部分资源进行析构,否则会导致同一块资源二次释放,只需要释放派生类自己申请的资源即可。 

派生类对象析构顺序:

派生类成员 > 基类成员

基类与派生类的行为总结:



实现一个不能被继承的类

方法1:基类的构造函数私有,派生类的构成必须调用基类的构造函数,但是基类的构成函数私有化以后,派生类看不见就不能调用了,那么派生类就无法实例化出对象。

方法2:C++11新增了⼀个final关键字,final修改基类,派生类就不能继承了。

// C++11的方法
class Base final
{
public:void func5() { cout << "Base::func5" << endl; }
protected:int a = 1;
private:// C++98的方法/*Base(){}*/
};class Derive :public Base
{void func4() { cout << "Derive::func4" << endl; }
protected:int b = 2;
};int main()
{Base b;Derive d;return 0;
}

五.继承与友元

        友元关系不能继承,也就是说基类友元不能访问派生类私有和保护成员 。

class Student; // 前置声明class Person
{
public:friend void Display(const Person& p, const Student& s);
protected:string _name; // 姓名
};class Student : public Person
{
protected:int _stuNum; // 学号
};void Display(const Person& p, const Student& s)
{cout << p._name << endl;cout << s._stuNum << endl; 
}int main()
{Person p;Student s;// 编译报错:error C2248: “Student::_stuNum”: 无法访问 protected 成员// 解决方案:Display也变成Student 的友元即可Display(p, s);return 0;
}

六.继承与静态成员

        基类定义了static静态成员,则整个继承体系里面只有一个这样的成员。无论派生出多少个派生类,都只有一个static成员实例。

class Person
{
public:string _name;static int _count; // 在类内声明
};// 在类外定义
int Person::_count = 0;class Student : public Person
{
protected:int _stuNum;
};int main()
{Person p;Student s;// 这里的运行结果可以看到非静态成员_name的地址是不⼀样的// 说明派生类继承下来了,父类与派生类对象各有⼀份cout << &p._name << endl;cout << &s._name << endl;// 这里的运行结果可以看到静态成员_count的地址是⼀样的// 说明派生类和基类共用同一份静态成员cout << &p._count << endl;cout << &s._count << endl;// 公有的情况下,⽗派生类指定类域都可以访问静态成员cout << Person::_count << endl;cout << Student::_count << endl;return 0;
}

七.多继承与菱形继承问题

1.继承模型

<1>单继承:一个派生类只有一个直接基类时称这个继承关系为单继承。

<2>多继承:一个派生类有两个或以上直接基类时称这个继承关系为多继承,多继承对象在内存中的模型是,先继承的基类在前面,后面继承的基类在后面,派生类成员在放到最后面。

<3>菱形继承:菱形继承是多继承的⼀种特殊情况。菱形继承的问题,从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题,在Assistant的对象中Person成员会有两份。支持多继承就一定会有菱形继承,像Java就直接不支持多继承,规避掉了这里的问题,所以实践中也是不建议设计出菱形继承这样的模型的。

 

class Person
{
public:string _name; // 姓名
};class Student : public Person
{
protected:int _num; //学号
};class Teacher : public Person
{
protected:int _id; // 职工编号
};class Assistant : public Student, public Teacher
{
protected:string _majorCourse; // 主修课程
};int main()
{// 编译报错:error C2385: 对“_name”的访问不明确Assistant a;a._name = "peter";// 需要显式指定访问哪个基类的成员可以解决二义性问题,但是数据冗余问题无法解决a.Student::_name = "xxx";a.Teacher::_name = "yyy";return 0;
}

         那么如何让解决菱形继承中存在的数据冗余二义性的问题呢,这里可以通过虚继承来进行解决。

2.虚继承

        实现虚继承的方式就是在派生类的继承方式前加一个关键字virtual。

class Person
{
public:string _name; // 姓名/*int _tel;int _age;string _gender;string _address;*/// ...
};// 使用虚继承Person类
class Student : virtual public Person
{
protected:int _num; //学号
};// 使用虚继承Person类
class Teacher : virtual public Person
{
protected:int _id; // 职工编号
};class Assistant : public Student, public Teacher
{
protected:string _majorCourse; // 主修课程
};int main()
{// 使用虚继承,可以解决数据冗余和二义性Assistant a;a._name = "peter";return 0;
}

八.继承与组合

<1> public继承是一种is-a的关系。也就是说每个派生类对象都是一个基类对象。

<2>组合是一种has-a的关系。假设B组合了A,每个B对象中都有一个A对象。

<3>继承允许你根据基类的实现来定义派生类的实现。这种通过生成派生类的复用通常被称为白箱复用 (white-box reuse)。术语“白箱”是相对可视性而言:在继承方式中,基类的内部细节对派生类可见 。继承一定程度破坏了基类的封装,基类的改变,对派生类有很大的影响。派生类和基类间的依赖关系很强,耦合度高。

<4>对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象来获得。对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为黑箱复用(black-box reuse),因为对象的内部细节是不可见的。对象只以“黑箱”的形式出现。 组合类之间没有很强的依赖关系,耦合度低。优先使用对象组合有助于你保持每个类被封装。

<5>优先使用组合,而不是继承。实际尽量多去用组合,组合的耦合度低,代码维护性好。不过也不太那么绝对,类之间的关系就适合继承(is-a)那就用继承,另外要实现多态,也必须要继承。类之间的关系既适合用继承(is-a)也适合组合(has-a),就用组合。

// Tire(轮胎)和Car(车)更符合has-a的关系
class Tire {
protected:string _brand = "Michelin"; // 品牌size_t _size = 17; // 尺寸
};class Car {
protected:string _colour = "白色"; // 颜色string _num = "ABIT00"; // 车牌号Tire _t1; // 轮胎Tire _t2; // 轮胎Tire _t3; // 轮胎Tire _t4; // 轮胎
};class BMW : public Car {
public:void Drive() { cout << "好开-操控" << endl; }
};// Car和BMW/Benz更符合is-a的关系
class Benz : public Car {
public:void Drive() { cout << "好坐-舒适" << endl; }
};template<class T>
class vector
{};// stack和vector的关系,既符合is-a,也符合has-a
template<class T>
class stack : public vector<T>
{};template<class T>
class stack
{
public:vector<T> _v;
};int main()
{return 0;
}

相关文章:

C++学习之路,从0到精通的征途:继承

目录 一.继承的概念及定义 1.继承的概念 2.继承的定义 (1)继承的定义格式 (2)继承基类成员访问方式的变化 二.基类与派生类间的转换 1.派生类对象赋值给基类的引用/指针 2. 派生类对象直接赋值给基类对象 三.继承的作用域 四.派生类的默认成员函数 1.构造函数 2.拷…...

从零开始掌握FreeRTOS(2)链表之节点的定义

目录 节点 节点定义 节点实现 根节点 根节点定义 精简节点定义 根节点实现 在上篇文章,我们完成了 FreeRTOS 的移植。在创建任务之前,我们需要先了解FreeRTOS的运转机制。 FreeRTOS是一个多任务系统,由操作系统来管理执行每个任务。这些任务全都挂载到一个双向循…...

C 语言_常见排序算法全解析

排序算法是计算机科学中的基础内容,本文将介绍 C 语言中几种常见的排序算法,包括实现代码、时间复杂度分析、适用场景和详细解析。 一、冒泡排序(Bubble Sort) 基本思想:重复遍历数组,比较相邻元素,将较大元素交换到右侧。 代码实现: void bubbleSort(int arr[], i…...

LamaIndex rag(增强检索)入门

LamaIndex RAG 搭建 lamaindex rag 的简单是例 from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings,SimpleDirectoryReader,VectorStoreIndex from llama_index.llms.huggingface import HuggingFaceLLM#初始化一个…...

七、深入 Hive DDL:管理表、分区与洞察元数据

作者&#xff1a;IvanCodes 日期&#xff1a;2025年5月13日 专栏&#xff1a;Hive教程 内容导航 一、表的 DDL 操作 (非创建)二、分区的 DDL 操作三、洞察元数据&#xff1a;SHOW 命令的威力结语&#xff1a;DDL 与 SHOW&#xff0c;Hive 管理的双翼练习题一、选择题二、代码题…...

SQLMesh信号机制详解:如何精准控制模型评估时机

SQLMesh的信号机制为数据工程师提供了更精细的模型评估控制能力。本文深入解析信号机制的工作原理&#xff0c;通过简单和高级示例展示如何自定义信号&#xff0c;并提供实用的使用技巧和测试方法&#xff0c;帮助读者优化数据管道的调度效率。 一、为什么需要信号机制&#xf…...

STM32 __main汇编分析

在STM32的启动流程中&#xff0c;__main是一个由编译器自动生成的C标准库函数&#xff0c;其汇编级调用逻辑可通过启动文件&#xff08;如startup_stm32fxxx.s&#xff09;观察到&#xff0c;但具体实现细节被封装在编译器的运行时库中。以下是其核心逻辑解析&#xff1a; 一、…...

Google Earth Engine(GEE) 代码详解:批量计算_年 NDVI 并导出(附 Landsat 8 数据处理全流程)

一、代码整体目标 基于 Landsat 8 卫星数据,批量计算 2013-2020 年研究区的 NDVI(归一化植被指数),实现去云处理、数据合成、可视化及批量导出为 GeoTIFF 格式,适用于植被动态监测、生态环境评估等场景。 二、代码分步解析(含核心原理与易错点) 1. 加载并显示研究区边…...

【漫话机器学习系列】257.填补缺失值(Imputing Missing Values)

数据科学必备技能&#xff1a;填补缺失值&#xff08;Imputing Missing Values&#xff09; 在数据分析和机器学习项目中&#xff0c;缺失值&#xff08;Missing Values&#xff09; 是非常常见的问题。缺失的数据如果处理不当&#xff0c;会严重影响模型的训练效果&#xff0…...

c 中的哈希表

哈希是一种可以接受各种类型、大小的输入&#xff0c;输出一个固定长度整数的过程。你可以将哈希理解成一种特殊的映射&#xff0c;哈希映射&#xff0c;将一个理论无限的集合A映射到有限整数集合B上。 哈希函数&#xff1a;哈希函数是哈希过程的核心&#xff0c;它决定了哈希映…...

AI空域调度系统的社会角色与伦理边界

当AI空域调度系统成为城市运行不可或缺的一部分&#xff0c;其角色已不再是单纯的技术工具&#xff0c;而逐步具备了社会属性。平台既作为智能基础设施的调度中枢&#xff0c;也承担起数据治理、行为规训和公共资源分配等功能。本章聚焦AI调度系统的“类政府性”角色崛起&#…...

pringboot3+vue3融合项目实战-大事件文章管理系统-文章分类列表

GetMappingpublic Result <List<Category>>list(){List<Category> list categoryService.list();return Result.success(list);}然后在categoryservice接口新增 List list(); 然后再categoryserviceimpl实现类里面加入 Overridepublic List<Category&g…...

关于cleanRL Q-learning

内置变量 内置变量是由编程语言解释器或运行时环境预定义的变量。它们通常用于提供程序的元信息&#xff08;如文件路径、模块名称&#xff09;或控制程序行为。在 Python 中&#xff0c;内置变量通常以双下划线开头和结尾&#xff0c;例如 __file__、__name__。 以下是一些常…...

Electron-Vue3、Electron-React、Electron-Angular打造舆情监控系统项目

Electron是一个跨平台的桌面应用开发框架&#xff0c;可以让我们用html css js的技术开发跨平台桌面上可以安装的软件。视频详解: Electron教程 ElectronVue跨平台桌面软件开发教程-2024年更新&#xff08;大地老师&#xff09; 从Electron环境搭建开始到手把手教你调试、Elect…...

STM32 修炼手册

第一章 计算机体系结构(了解) 后续在板子上开发的时候&#xff0c;需要考虑是否有操作系统 方式一&#xff1a;有操作系统&#xff0c;通过c库通过os api操作硬件方式二&#xff1a;无操作系统&#xff0c; 通过c库通过固件库操作硬件 第二章 STM32开发板概述 板子/开发板&…...

React vs Vue:点击外部事件处理的对比与实现

React vs Vue&#xff1a;点击外部事件处理的对比与实现 在 Web 应用中&#xff0c;“点击外部事件监听”是一种常见需求&#xff0c;典型应用如&#xff1a;点击弹窗外部关闭弹窗、点击下拉菜单外关闭菜单。虽然在 React 和 Vue 中实现的原理类似——都是通过监听 document 的…...

rk3576--- HDMI CEC唤醒

文章目录 一、CEC唤醒的相关概念二、CEC唤醒实现&#xff08;一&#xff09;内核配置&#xff08;二&#xff09;设备树dts&#xff08;三&#xff09;驱动注册中断&#xff08;四&#xff09;休眠后开启MCU&#xff08;五&#xff09;验证 一、CEC唤醒的相关概念 CEC 是一种在…...

榕壹云搭子系统技术解析:基于Spring Boot+MySQL+UniApp的同城社交平台开发实践

一、引言 本文将分享一款基于Spring Boot、MySQL和UniApp开发的同城社交平台的技术实现细节,重点探讨其架构设计、核心功能及开发过程中的技术考量。该项目旨在为开发者提供可扩展的社交平台解决方案,支持快速二次开发与独立部署。 二、技术选型与架构设计 1. 技术栈概览 …...

Node.js事件循环中的FIFO原则

1. Node.js事件循环中的FIFO原则 Node.js的事件循环确实遵循先进先出&#xff08;FIFO&#xff09;原则&#xff0c;但这个原则的适用范围需要明确。具体来说&#xff1a; FIFO原则的适用范围&#xff1a;FIFO原则主要适用于每个阶段内部的任务队列&#xff0c;而不是跨越不同…...

基于javaweb的SpringBoot爱游旅行平台设计和实现(源码+文档+部署讲解)

技术范围&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容&#xff1a;免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文…...

服务器相关

虚拟机服务器搭建 virtualbox安装 下载地址&#xff1a;Downloads – Oracle VirtualBox centos镜像下载地址 centos-7-isos-x86_64安装包下载_开源镜像站-阿里云 阿里巴巴开源镜像站-OPSX镜像站-阿里云开发者社区 清华大学开源软件镜像站 | Tsinghua Open Source Mirror…...

Linux的文件查找与压缩

查找文件 find命令 # 命令&#xff1a;find 路径范围 选项1 选项1的值 \[选项2 选项2 的值…]# 作用&#xff1a;用于查找文档&#xff08;其选项有55 个之多&#xff09;# 选项&#xff1a;# -name&#xff1a;按照文档名称进行搜索&#xff08;支持模糊搜索&#xff0c;\* &…...

Q1财报持续向好,腾讯音乐如何在不确定中寻找确定性?

最近一段时间&#xff0c;各家上市公司的财报都备受关注&#xff0c;腾讯音乐娱乐集团作为文娱类的头部企业也是备受市场关注的&#xff0c;今日腾讯音乐第一季度财报已公布&#xff0c;业绩持续向好。在这个不确定性的大环境下&#xff0c;腾讯音乐是如何寻找自己的确定性的&a…...

window 显示驱动开发-报告图形内存(一)

计算图形内存 在 VidMm 能够向客户端报告准确的帐户之前&#xff0c;它必须首先计算图形内存的总量。 VidMm 使用以下内存类型和公式来计算图形内存&#xff1a; 系统总内存 此值是操作系统可访问的系统内存总量。 BIOS 分配的内存不会出现在此数字中。 例如&#xff0c;一台…...

DELL R770 服务器,更换RAID卡教程!

今天的任务&#xff0c;是帮客户的一台戴尔DELL PowerEdge R770 服务器&#xff0c;更换RAID卡&#xff08;也可以称之为PERC模块、阵列卡、RAID控制器等&#xff09;。 根据我的个传统习惯&#xff0c;依然是顺便做一个教程&#xff0c;分享给有需要的粉丝们。如果看完教程&am…...

【Java】网络编程(Socket)

网络编程 Socket 我们开发的网络应用程序位于应用层&#xff0c;TCP和UDP属于传输层协议&#xff0c;在应用层如何使用传输层的服务呢&#xff1f;在应用层和传输层之间&#xff0c;则使用套接字Socket来进行分离 套接字就像是传输层为应用层开的一个小口&#xff0c;应用程…...

力扣-226.翻转二叉树

题目描述 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 class Solution { public:TreeNode *invertTree(TreeNode *root) {if (!root) {return NULL;}TreeNode *temp root->right;root->right root->left;root->left …...

数据结构——例题1

eg1&#xff1a;求解 S 1! 2! 3! ... n! #include<stdio.h> #include<stdlib.h>long sum(int n){long s 0,t,i,j;for(i1;i<n;i){t1;for(j1;j<i;j){t*j;}st;}return s; }int main(){int n;printf("请输入一个整数&#xff1a;");scanf("…...

INT202 Complexity of Algroithms 算法的复杂度 Pt.7 NP-Completeness NP完全性

文章目录 1.P与NP问题1.1 计算上难以解决的问题&#xff08;Hard Computational Problems&#xff09;1.2 决策问题和优化问题&#xff08;Decision/Optimization problems&#xff09;1.3 计算问题的正式定义1.4 复杂性类1.4.1 复杂性类 P P P1.4.2 证明&#xff08;Certifica…...

K8s 图形界面管理kubesphere

1. 概述 KubeSphere 是一个开源的、基于 Kubernetes 的容器平台&#xff0c;旨在简化企业级 Kubernetes 集群的部署、管理和运维。KubeSphere 提供了丰富的功能&#xff0c;包括多租户管理、DevOps 流水线、应用商店、监控与日志、服务网格、网络策略等&#xff0c;帮助企业快…...

MCU程序加密保护(一)闪存读写保护法 加密与解密

MCU&#xff08;微控制器单元&#xff09;的加密方法可以从硬件、软件和通信协议三个层面来理解。以下是常见的MCU加密手段&#xff0c;按类型分类说明&#xff1a; 针对目前 STM32 系列微控制器在程序加密保护方面手段单一、保护效果有限的问题&#xff0c;本文介绍并分析了四…...

Windows下安装mysql8.0

一、下载安装离线安装包 &#xff08;下载过了&#xff0c;可以跳过&#xff09; 下载网站&#xff1a;MySQL :: Download MySQL Installerhttps://dev.mysql.com/downloads/installer/ 二、安装mysql 三、安装完成验证...

ubuntu----100,常用命令2

目录 文件与目录管理系统信息与管理用户与权限管理网络配置与管理软件包管理打包与压缩系统服务与任务调度硬件信息查看系统操作高级工具开发相关其他实用命令 在 Ubuntu 系统中&#xff0c;掌握常用命令可以大幅提升操作效率。以下是一些常用的命令&#xff0c;涵盖了文件管理…...

PYTHON训练营DAY24

# SO代码我们的感情好像跳楼机 # 元组创建时&#xff0c;可以省略括号&#xff1a;my_tuple4 10, 20, thirty # 字符串要加“ ” 元组 一、创建 my_tuple1 (1, 2, 3) my_tuple2 (a, b, c) my_tuple3 (1, hello, 3.14, [4, 5]) # 可以包含不同类型的元素 print(my_tupl…...

‌Element UI 双击事件(@cell-dblclick 与 @row-dblclick)

‌Element UI 双击事件&#xff08;cell-dblclick 与 row-dblclick&#xff09; 一、核心双击事件绑定‌ 表格单元格双击‌ ‌事件绑定‌&#xff1a; 通过 cell-dblclick 监听单元格双击&#xff0c;接收四个参数&#xff08;row, column, cell, event&#xff09;。 ‌示…...

云原生|kubernetes|kubernetes的etcd集群备份策略

简介&#xff1a; 云原生|kubernetes|kubernetes的etcd集群备份策略 前言&#xff1a; etcd作为集群的关键组件之一&#xff0c;还是非常有必要进行定期备份的&#xff0c;本例将会就如何更快更好的备份etcd以及应该有哪些策略做一解析。&#xff08;二进制部署的etcd集群&…...

永不收费的软件,离线可用

上次在推荐PC端证件照软件时&#xff0c;有小伙伴问是否有安卓端的版本。当时我说有&#xff0c;只是需要测试一下再给大家推荐。 今天就为大家带来一款安卓端的证件照软件&#xff0c;有需要的小伙伴可以赶紧收藏起来&#xff01; 底色证件照&#xff08;安卓&#xff09; 之…...

解锁课程编辑器之独特风姿

&#xff08;一&#xff09;强大的编辑功能​ 课程编辑器的编辑功能堪称一绝&#xff0c;就像是一位全能的艺术大师。在文字编辑方面&#xff0c;它提供了丰富的字体、字号选择&#xff0c;还能对文字进行加粗、倾斜、下划线等格式设置&#xff0c;让重点知识一目了然。比如教师…...

在企业级智能体浪潮中,商业数据分析之王SAS或将王者归来

继LLM大模型与GenAI生成式AI应用之后&#xff0c;智能体正在成为下一个风口。与基于LLM的GenAI应用不同&#xff0c;智能体将LLM的智能涌现能力与智能决策的能力相结合&#xff0c;让智能体不仅能够认知、分析和总结&#xff0c;还能够进行决策和执行决策&#xff0c;将知识与智…...

WPF自定义控件开发全指南:多内容切换与动画集成

WPF自定义控件开发全指南&#xff1a;多内容切换与动画集成 一、控件基础架构设计1.1 选择控件基类1.2 定义关键属性 二、动画系统集成2.1 淡入淡出动画实现2.2 滑动动画实现 三、视觉状态管理四、完整使用示例4.1 XAML声明4.2 动画触发逻辑 五、扩展与优化5.1 性能优化建议5.2…...

二维差分(主要看原数组与差分数组的关系)

#include<stdio.h> #include<windows.h> int main() { int n, m; scanf("%d%d", &n, &m); int d[n 2][n 2]; // 差分数组 int a[n 2][n 2]; // 原数组 // 初始化数组 for (int i 0; i < n 1; i) { for (int j 0; j < n 1; j) { d…...

AI+企业应用级PPT生成(实战)

使用DeepSeek生成PPT框架Kimi PPT助手生成PPT全流程教学 目录 工具简介操作步骤 2.1 DeepSeek生成PPT框架2.2 Kimi PPT助手生成PPT 案例演示注意事项与优化建议扩展应用场景 1. 工具简介 DeepSeek&#xff1a;国内领先的AI大模型&#xff0c;擅长生成结构化文本内容&#xff…...

EXCEL Python 实现绘制柱状线型组合图和树状图(包含数据透视表)

1、组合图、数据透视表 &#xff08;1&#xff09;数据预处理 知识点 日期函数 year() month()数据透视表操作 同比计算公式 环比计算公式 &#xff08;2&#xff09;excel 数据透视表插入组合图 a.2015~2017数据集处理方式&#xff1a; 操作&#xff1a; 结果 b.2020~20…...

OpenCV的CUDA模块进行图像处理

本文介绍了使用OpenCV和CUDA加速的四种图像处理技术&#xff1a;灰度化、高斯模糊、Sobel边缘检测和直方图均衡化。每种技术都通过将图像数据上传到GPU&#xff0c;利用CUDA进行加速处理&#xff0c;最后将结果下载回CPU。灰度化通过cv::cuda::cvtColor实现&#xff0c;高斯模糊…...

电路研究9.3.5——合宙Air780EP中的AT开发指南:MQTT 应用指南

应用概述 4G 模块支持 MQTT 和 MQTT SSl 协议&#xff0c; MQTT 应用的基本流程如下&#xff1a; 1、如果要支持 SSL &#xff0c;配置 SSL 参数 2、通过 TCP 连接到 MQTT 服务器 3、发送 MQTT CONNECT 到服务器&#xff0c;打开会话连接 4、订阅或者发布消息…...

每日算法刷题计划Day5 5.13:leetcode数组3道题,用时1h

11. 26. 删除有序数组中的重复项(简单&#xff0c;双指针) 26. 删除有序数组中的重复项 - 力扣&#xff08;LeetCode&#xff09; 思想: 1.我的思想: 双指针遍历集合储存已有元素 2.官方思想&#xff1a; 题目条件有序数组删除重复元素&#xff0c;所以重复元素都是连续存在…...

常见排序算法及复杂度分析

冒泡排序 (Bubble Sort) 基本思想 相邻元素比较&#xff0c;大的元素后移 每轮将最大元素"冒泡"到末尾 代码实现 void bubbleSort(int arr[], int n) {for (int i 0; i < n-1; i) {for (int j 0; j < n-i-1; j) {if (arr[j] > arr[j1]) {swap(arr[j]…...

git 怎么更改本地的存储的密码

目录 找到控制面板---用户账户---凭证管理器 点击【windows凭据】&#xff0c;选择普通凭据&#xff0c;点击你要修改的地址。点击【编辑】 修改完&#xff0c;点击【保存】​编辑 找到控制面板---用户账户---凭证管理器 点击【windows凭据】&#xff0c;选择普通凭据&#x…...

数据分析预备篇---Pandas的Series

Pandas优势 Pandas优势在于它是构建在NumPy之上的,继承了NumPy高性能的数组计算功能,同时还提供了更多复杂精细的数据处理功能(如缺失值处理、时间序列分析),支持表格型数据(DataFrame)和带标签的一维数据(Series) 安装Pandas Windows操作系统,在菜单栏搜索cmd,进入…...

Kaamel隐私合规洞察:Facebook美容定向广告事件分析

Kaamel隐私合规与数据安全团队分析报告 I. 引言&#xff1a;基于情绪的定向广告指控 A. 事件概述 近期&#xff0c;一则关于Meta&#xff08;前身为Facebook&#xff09;的指控引发了公众对数字隐私和广告伦理的广泛关注。该指控核心内容为&#xff0c;Meta公司涉嫌利用其平台…...