当前位置: 首页 > news >正文

序列化和反序列化(hadoop)

1.先将上一个博客的Student复制粘贴后面加上H

在StudentH中敲下面代码

package com.example.sei;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
//学生类,姓名,年龄
//支持hadoop序列化
//1.要实现Writable接口
//2.补充一个空参构造
public class StudentH implements Writable {
   String name;
   int age;

   //空参构造
   public StudentH() {}
    public StudentH(String name, int age) {
        this.name = name;
        this.age = age;
    }
 
    //write:在序列化的时候,调用。把对象写到文件
    @Override
    public void write(DataOutput dataOutput) throws IOException {
        //dataOutput.write(字段);
        dataOutput.writeUTF(name);
        dataOutput.writeInt(age);
    }
 
    //readFields:在反序列化的时候,调用。从文件中读取数据,还原这个对象
    //字段的顺序要与write中的顺序一致
    @Override
    public void readFields(DataInput dataInput) throws IOException {
        //字段=dataInput.read();
        name=dataInput.readUTF();
        age=dataInput.readInt();
    }
}

2.然后将TestStudent复制粘贴后面加上H

在TestStudentH中敲下面代码

package com.example.sei;
 
import java.io.*;
 
public class TestStudentH {
    public static void main(String[] args) throws IOException, ClassNotFoundException {
        StudentH student = new StudentH("John", 20);
        System.out.println(student.name + "  " + student.age );
 
        //hadoop序列化:把对象保存到一个文件中
        DataOutputStream dos = new DataOutputStream(new FileOutputStream("student_hadoop.ser"));
      student.write(dos);
 
    }
}
这个是序列化

package com.example.sei;
 
import java.io.*;
 
public class TestStudentH {
    public static void main(String[] args) throws IOException, ClassNotFoundException {
//        StudentH student = new StudentH("John", 20);
//        System.out.println(student.name + "  " + student.age );
//
//        //hadoop序列化:把对象保存到一个文件中
//        DataOutputStream dos = new DataOutputStream(new FileOutputStream("student_hadoop.ser"));
//        student.write(dos);
        //hadoop反序列化:从文件中读取对象
        DataInputStream dis = new DataInputStream(new FileInputStream("student_hadoop.ser"));
        StudentH student1 = new StudentH();
        student1.readFields(dis);
        System.out.println(student1.name + "  " + student1.age );
    }
}

 这个是反序列化。(()

相关文章:

序列化和反序列化(hadoop)

1.先将上一个博客的Student复制粘贴后面加上H 在StudentH中敲下面代码 package com.example.sei; import org.apache.hadoop.io.Writable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; //学生类,姓名,年龄 //支…...

大模型MCP_MCP从流式SSE到流式HTTP_1.8.0支持流式HTTP交互_介绍_从应用到最优--人工智能工作笔记0245

从最开始的大模型时代,到现在MCP,大模型技术,人工智能技术迭代真的非常快 之前的大模型更像一个大脑,能帮大家出点子,然后告诉你思路,你去解决问题,但是 一直不能自己解决问题,后来出来了通用的manus智能体,声称可以解决很多问题.直接操作 一个自带的电脑,但是也有局限性,还…...

docker大镜像优化实战

在 Docker 镜像优化方面,有许多实战技巧可以显著减小镜像体积、提高构建效率和运行时性能。以下是一些实用的优化策略和具体操作方法: 1. 选择合适的基础镜像 策略 使用 Alpine 版本:Alpine 镜像通常只有 5-10MB,比 Ubuntu/Deb…...

【25软考网工】第六章(5)应用层安全协议

博客主页:christine-rr-CSDN博客 ​​专栏主页:软考中级网络工程师笔记 ​​​ 大家好,我是christine-rr !目前《软考中级网络工程师》专栏已经更新三十篇文章了,每篇笔记都包含详细的知识点,希望能帮助到你&#xff…...

RevIN(Reversible Instance Normalization)及其在时间序列中的应用

详细介绍 RevIN(Reversible Instance Normalization)及其在时间序列中的应用 1. RevIN 的定义与背景 RevIN(可逆实例归一化)是一种专门为时间序列预测设计的归一化方法,旨在处理非平稳数据(non-stationar…...

JSON 和 cJSON 库入门教程

第一部分:了解 JSON (JavaScript Object Notation) 什么是 JSON? JSON 是一种轻量级的数据交换格式。它易于人阅读和编写,同时也易于机器解析和生成。 JSON 基于 JavaScript 编程语言的一个子集,但它是一种独立于语言的文本格式…...

Unity 2D 行走动画示例工程手动构建教程-AI变成配额前端UI-完美游戏开发流程

🎮 Unity 2D 行走动画示例工程手动构建教程 ✅ 1. 新建 Unity 项目 打开 Unity Hub: 创建一个新项目,模板选择:2D Core项目名:WalkAnimationDemo ✅ 2. 创建文件夹结构 在 Assets/ 目录下新建以下文件夹&#xff1a…...

[Java][Leetcode middle] 45. 跳跃游戏 II

这题没做出来,看的答案解析 可以理解为希望采用最少得跳槽次数跳到最高级别的公司。 下标i为公司本身的职级,每个公司可以提供本身等级nums[i]的职级提升。 每次从这些选择中选择自己能够达到最大职级的公司跳槽。 public int jump(int[] nums) {if(nu…...

leetcode 3335. 字符串转换后的长度 I

给你一个字符串 s 和一个整数 t,表示要执行的 转换 次数。每次 转换 需要根据以下规则替换字符串 s 中的每个字符: 如果字符是 z,则将其替换为字符串 "ab"。否则,将其替换为字母表中的下一个字符。例如,a 替…...

Leetcode 3542. Minimum Operations to Convert All Elements to Zero

Leetcode 3542. Minimum Operations to Convert All Elements to Zero 1. 解题思路2. 代码实现 题目链接:3542. Minimum Operations to Convert All Elements to Zero 1. 解题思路 这一题的处理方法其实还是挺好想明白的,其实就是从小到大依次处理各个…...

如何使用C51的Timer0实现定时功能

在C51单片机中,使用定时器0(Timer0)实现定时功能需要以下步骤: 1. 定时器基础知识 时钟源:C51的定时器时钟来源于晶振(如12MHz)。机器周期:1个机器周期 12个时钟周期(1…...

Day1 时间复杂度

一 概念 在 C 中,时间复杂度是衡量算法运行时间随输入规模增长的趋势的关键指标,用于评估算法的效率。它通过 大 O 表示法(Big O Notation) 描述,关注的是输入规模 n 趋近于无穷大时,算法时间增长的主导因…...

PostgreSQL 配置设置函数

PostgreSQL 配置设置函数 PostgreSQL 提供了一组配置设置函数(Configuration Settings Functions),用于查询和修改数据库服务器的运行时配置参数。这些函数为数据库管理员提供了动态管理数据库配置的能力,无需重启数据库服务。 …...

美学心得(第二百七十六集) 罗国正

美学心得(第二百七十六集) 罗国正 (2025年4月) 3275、人类将迎来真、善、美快速发展的时期,人‐机合一的天人合一(可简称为“天人机合一”)的境界已渐露头角,在优秀的人群中迅猛地…...

描述性统计工具 - AxureMost 落葵网

描述性统计工具是用于汇总和分析数据,以更好地了解数据特征的工具1。以下是一些常见的描述性统计工具简介: 描述性统计工具 Excel 基本统计函数:提供了丰富的函数用于计算描述性统计量。例如,AVERAGE 函数用于计算平均值&#xf…...

mybatis中${}和#{}的区别

先测试&#xff0c;再说结论 userService.selectStudentByClssIds(10000, "wzh or 11");List<StudentEntity> selectStudentByClssIds(Param("stuId") int stuId, Param("field") String field);<select id"selectStudentByClssI…...

【OpenCV】网络模型推理的简单流程分析(readNetFromONNX、setInput和forward等)

目录 1.模型读取&#xff08;readNetFromONNX()&#xff09;1.1 初始化解析函数&#xff08;parseOperatorSet()&#xff09;1.2 提取张量&#xff08;getGraphTensors()&#xff09;1.3 节点处理&#xff08;handleNode()&#xff09; 2.数据准备&#xff08;blobFromImage() …...

代码随想录算法训练营第三十九天

LeetCode题目: 115. 不同的子序列583. 两个字符串的删除操作72. 编辑距离 其他: 今日总结 往期打卡 115. 不同的子序列 跳转: 115. 不同的子序列 学习: 代码随想录公开讲解 问题: 给你两个字符串 s 和 t &#xff0c;统计并返回在 s 的 子序列 中 t 出现的个数。 测试用例保…...

InternVL3: 利用AI处理文本、图像、视频、OCR和数据分析

InternVL3推动了视觉-语言理解、推理和感知的边界。 在其前身InternVL 2.5的基础上,这个新版本引入了工具使用、GUI代理操作、3D视觉和工业图像分析方面的突破性能力。 让我们来分析一下是什么让InternVL3成为游戏规则的改变者 — 以及今天你如何开始尝试使用它。 InternVL…...

力扣刷题Day 48:盛最多水的容器(283)

1.题目描述 2.思路 学习了Krahets佬的双指针思路&#xff0c;初始化两个边界作为容器边界&#xff0c;然后逐个向数组内遍历&#xff0c;直到左右两指针相遇。 3.代码&#xff08;Python3&#xff09; class Solution:def maxArea(self, height: List[int]) -> int:left,…...

基于单应性矩阵变换的图像拼接融合

单应性矩阵变换 单应性矩阵是一个 3x3 的可逆矩阵&#xff0c;它描述了两个平面之间的投影变换关系。在图像领域&#xff0c;单应性矩阵可以将一幅图像中的点映射到另一幅图像中的对应点&#xff0c;前提是这两幅图像是从不同视角拍摄的同一平面场景。 常见的应用场景&#x…...

《驱动开发硬核特训 · 专题篇》:深入理解 I2C 子系统

关键词&#xff1a;i2c_adapter、i2c_client、i2c_driver、i2c-core、platform_driver、设备树匹配、驱动模型 本文目标&#xff1a;通过实际代码一步步讲清楚 I2C 子系统的结构与运行机制&#xff0c;让你不再混淆 platform_driver 与 i2c_driver 的职责。 &#x1f9e9; 一、…...

Spark缓存-cache

一、RDD持久化 1.什么时候该使用持久化&#xff08;缓存&#xff09; 2. RDD cache & persist 缓存 3. RDD CheckPoint 检查点 4. cache & persist & checkpoint 的特点和区别 特点 区别 二、cache & persist 的持久化级别及策略选择 Spark的几种持久化…...

tails os系统详解

一、起源与发展背景 1. 项目初衷与历史 创立时间&#xff1a;Tails 项目始于 2004 年&#xff0c;最初名为 “Anonymous Live CD”&#xff0c;2009 年正式更名为 “Tails”&#xff08;The Amnesic Incognito Live System&#xff0c;“健忘的匿名实时系统”&#xff09;。核…...

[洛谷刷题9]

P2376 [USACO09OCT] Allowance G&#xff08;贪心&#xff09; https://www.luogu.com.cn/problem/P2376 题目描述 作为创造产奶纪录的回报&#xff0c;Farmer John 决定开始每个星期给Bessie 一点零花钱。 FJ 有一些硬币&#xff0c;一共有 N ( 1 ≤ N ≤ 20 ) N (1 \le …...

数据挖掘入门-二手车交易价格预测

一、二手车交易价格预测 1-1 项目背景 随着二手车市场的快速发展&#xff0c;二手车交易价格的预测成为了一个热门研究领域。精准的价格预测不仅能帮助买卖双方做出更明智的决策&#xff0c;还能促进市场的透明度和公平性。对于买家来说&#xff0c;了解合理的市场价格可以避免…...

【PostgreSQL数据分析实战:从数据清洗到可视化全流程】金融风控分析案例-10.4 模型部署与定期评估

&#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 文章大纲 10.4 模型部署与定期评估10.4.1 模型部署架构设计1.1 模型存储方案1.2 实时预测接口 10.4.2 定期评估体系构建2.1 评估指标体系2.2 自动化评估流程2.3 模型衰退预警 10.4.3 …...

构建可信数据空间需要突破技术、规则和生态三大关键

构建可信数据空间需要突破技术、规则和生态三大关键&#xff1a;技术上要解决"可用不可见"的隐私计算难题&#xff0c;规则上要建立动态确权和跨境流动的治理框架&#xff0c;生态上要形成多方协同的标准体系。他强调&#xff0c;只有实现技术可控、规则可信、生态协…...

阳光学院【2020下】计算机网络原理-A卷-试卷-期末考试试卷

一、单选题&#xff08;共25分&#xff0c;每空1分&#xff09; 1.ICMP协议工作在TCP/IP参考模型的 ( ) A.主机-网络 B.网络互联层 C.传输层 D.应用层 2.下列关于交换技术的说法中&#xff0c;错误的是 ( ) A.电路交换适用于突发式通信 B.报文交换不能满足实时通信 C.报文…...

python: union()函数用法

在 Python 中&#xff0c;union() 是集合&#xff08;set&#xff09;类型的内置方法&#xff0c;用于返回两个或多个集合的并集&#xff08;即所有元素的合集&#xff0c;自动去重&#xff09;。以下是它的用法详解&#xff1a; 1. 基本语法 python 复制 下载 set.union(*…...

docker部署WeDataSphere开源大数据平台

GitHub&#xff1a;https://github.com/WeBankFinTech/WeDataSphere **WDS容器化版本是由Docker构建的一个能够让用户在半小时内完成所有组件安装部署并使用的镜像包。**无需再去部署Hadoop等基础组件&#xff0c;也不需要部署WDS的各功能组件&#xff0c;即可让您快速体验 WD…...

【计算机视觉】OpenCV项目实战:基于face_recognition库的实时人脸识别系统深度解析

基于face_recognition库的实时人脸识别系统深度解析 1. 项目概述2. 技术原理与算法设计2.1 人脸检测模块2.2 特征编码2.3 相似度计算 3. 实战部署指南3.1 环境配置3.2 数据准备3.3 实时识别流程 4. 常见问题与解决方案4.1 dlib安装失败4.2 人脸检测性能差4.3 误识别率高 5. 关键…...

uni-app学习笔记五-vue3响应式基础

一.使用ref定义响应式变量 在组合式 API 中&#xff0c;推荐使用 ref() 函数来声明响应式状态&#xff0c;ref() 接收参数&#xff0c;并将其包裹在一个带有 .value 属性的 ref 对象中返回 示例代码&#xff1a; <template> <view>{{ num1 }}</view><vi…...

阿克曼-幻宇机器人系列教程2- 机器人交互实践(Topic)

在上一篇文章中&#xff0c;我们介绍了两种登录机器人的方式&#xff0c;接下来我们介绍登录机器人之后&#xff0c;我们如何通过topic操作命令实现与机器人的交互。 1. 启动 & 获取topic 在一个终端登录树莓派后&#xff0c;执行下列命令运行机器人 roslaunch huanyu_r…...

Windows系统事件查看器管理单元不可用

报错&#xff1a;Windows系统事件查看器管理单元不可用 现象原因&#xff1a;为误触关闭管理单元或者该模块卡死 解决办法&#xff1a;重启Windows server服务&#xff0c;若不行&#xff0c;则重启服务器即可...

milvus+flask山寨《从零构建向量数据库》第7章case2

继续流水账完这本书&#xff0c;这个案例是打造文字形式的个人知识库雏形。 create_context_db: # Milvus Setup Arguments COLLECTION_NAME text_content_search DIMENSION 2048 MILVUS_HOST "localhost" MILVUS_PORT "19530"# Inference Arguments…...

前端如何应对精确数字运算?用BigNumber.js解决JavaScript原生Number类型在处理大数或高精度计算时的局限性

目录 前端如何应对精确数字运算&#xff1f;用BigNumber.js解决JavaScript原生Number类型在处理大数或高精度计算时的局限性 一、BigNumber.js介绍 1、什么是 BigNumber.js&#xff1f; 2、作用领域 3、核心特性 二、安装配置与基础用法 1、引入 BigNumber.js 2、配置 …...

多目应用:三目相机在汽车智能驾驶领域的应用与技术创新

随着汽车智能驾驶技术不断完善&#xff0c;智能汽车也不断加速向全民普惠迈进&#xff0c;其中智驾“眼睛”三目视觉方案凭借低成本、高精度、强适配性成为众多汽车品牌关注的焦点。三目相机在汽车智能驾驶领域的创新应用&#xff0c;主要依托其多视角覆盖、高动态范围&#xf…...

webpack重构优化

好的&#xff0c;以下是一个关于如何通过重构 Webpack 构建策略来优化性能的示例。这个过程包括分析现有构建策略的问题、优化策略的制定以及具体的代码实现。 --- ### 项目背景 在参与公司的性能专项优化过程中&#xff0c;我发现现有的 Webpack 构建策略存在一些问题&#…...

MySQL 8.0 OCP(1Z0-908)英文题库(31-40)

目录 第31题题目分析正确答案 第32题题目分析正确答案 第33题题目分析正确答案&#xff1a; 第34题题目解析正确答案 第35题题目分析正确答案 第36题题目分析正确答案 第37题题目分析正确答案 第38题题目分析正确答案 第39题题目分析正确答案 第40题题目分析正确答案 第31题 Y…...

aardio - 虚表 —— vlistEx.listbar2 多层菜单演示

在 近我者赤 修改版的基础上&#xff0c;做了些许优化。 请升级到最新版本。 import win.ui; import godking.vlistEx.listbar2; import fonts.fontAwesome; /*DSG{{*/ mainForm win.form(text"多层折叠菜单";right1233;bottom713) mainForm.add({ custom{cls"…...

22.【.NET8 实战--孢子记账--从单体到微服务--转向微服务】--单体转微服务--增加公共代码

在拆分服务之前&#xff0c;我们需要先提取一些公共代码。本篇将重点新增日志记录、异常处理以及Redis的通用代码。这些组件将被整合到一个共享类库中&#xff0c;便于在微服务架构中高效复用。 Tip&#xff1a;在后续的教程中我们会穿插多篇提取公共代码的文章&#xff0c;帮助…...

EasyOps®5月热力焕新:三大核心模块重构效能边界

在应用系统管理中&#xff0c;我们将管理对象从「服务实例」优化为「部署实例」&#xff0c;这一改变旨在提升管理效率与数据展示清晰度。 此前&#xff0c;系统以 “IP Port” 组合定义服务实例。当同一 IP 下启用多个进程或端口时&#xff0c;会产生多个服务实例。比如一台…...

基于深度学习的工业OCR数字识别系统架构解析

一、项目场景 春晖数字识别视觉检测系统专注于工业自动化生产监控、设备运行数据记录等关键领域。系统通过高精度OCR算法&#xff0c;能够实时识别设备上显示的关键数据&#xff08;如温度、压力、计数等&#xff09;&#xff0c;并定时存储至Excel文件中。这些数据对于生产过…...

R语言绘图 | 渐变火山图

客户要求绘制类似文章中的这种颜色渐变火山图&#xff0c;感觉挺好看的。网上找了一圈&#xff0c;发现有别人已经实现的类似代码&#xff0c;拿来修改后即可使用&#xff0c;这里做下记录&#xff0c;以便后期查找。 简单实现 library(tidyverse)library(ggrepel)library(ggf…...

Go语言——docker-compose部署etcd以及go使用其服务注册

一、docker-compsoe.yml文件如下 version: "3.5"services:etcd:hostname: etcdimage: bitnami/etcd:latestdeploy:replicas: 1restart_policy:condition: on-failureprivileged: truevolumes:# 持久化 etcd 数据到宿主机- "/app/apisix/etcd/data:/bitnami/etc…...

Tomcat的调优

目录 一. JVM 1.1 JVM的组成 1.2 运行时数据区域的组成 二. 垃圾回收 2.1 如何确认垃圾 1. 引用计数法 2. 根搜索算法 2.2 垃圾回收基本算法 1. 标记-清除算法&#xff08;Mark-Sweep&#xff09; 2. 标记-压缩算法&#xff08;Mark-Compact&#xff09; 3. 复制算法…...

Tomcat和Nginx的主要区别

1、功能定位 Nginx&#xff1a;核心是高并发HTTP服务器和反向代理服务器&#xff0c;擅长处理静态资源&#xff08;如HTML、图片&#xff09;和负载均衡。Tomcat&#xff1a;是Java应用服务器&#xff0c;主要用于运行动态内容&#xff08;如JSP、Servlet&#xff09;&#xf…...

Python训练营打卡——DAY24(2025.5.13)

目录 一、元组 1. 通俗解释 2. 元组的特点 3. 元组的创建 4. 元组的常见用法 二、可迭代对象 1. 定义 2. 示例 3. 通俗解释 三、OS 模块 1. 通俗解释 2. 目录树 四、作业 1. 准备工作 2. 实战代码示例​ 3. 重要概念解析 一、元组 是什么​​&#xff1a;一种…...

【TDengine源码阅读】DLL_EXPORT

2025年5月13日&#xff0c;周二清晨 #ifdef WINDOWS #define DLL_EXPORT __declspec(dllexport) #else #define DLL_EXPORT #endif为啥Linux和MacOS平台时宏为空&#xff0c;难道Linux和mac不用定义导出函数吗&#xff1f; 这段代码是一个跨平台的宏定义&#xff0c;用于处理不…...