当前位置: 首页 > news >正文

基于单应性矩阵变换的图像拼接融合

单应性矩阵变换

单应性矩阵是一个 3x3 的可逆矩阵,它描述了两个平面之间的投影变换关系。在图像领域,单应性矩阵可以将一幅图像中的点映射到另一幅图像中的对应点,前提是这两幅图像是从不同视角拍摄的同一平面场景。

常见的应用场景:

  • 图像拼接 :将多幅有重叠区域的图像拼接成一幅全景图像。
  • 增强现实 :将虚拟物体正确地投影到现实场景中。
  • 相机位姿估计 :通过已知的三维点和对应的图像点,估计相机的位置和姿态。

在 OpenCV 中,可以使用 cv2.findHomography 函数来计算单应性矩阵。该函数通常结合特征点检测和匹配算法使用,步骤如下:

  1. 特征点检测 :使用 SIFT、SURF、ORB 等算法在两幅图像中检测特征点。
  2. 特征点匹配 :通过特征描述子匹配两幅图像中的特征点,找到对应的点对。
  3. 计算单应性矩阵 :使用匹配的点对调用 cv2.findHomography 函数计算单应性矩阵。

代码示例

import cv2
import numpy as npdef stitch_images(img1, img2):# 1. 特征检测与匹配detector = cv2.SIFT_create()kp1, des1 = detector.detectAndCompute(img1, None)kp2, des2 = detector.detectAndCompute(img2, None)matcher = cv2.BFMatcher()matches = matcher.knnMatch(des1, des2, k=2)# 筛选优质匹配good = []for m, n in matches:if m.distance < 0.75 * n.distance:good.append(m)# 2. 计算单应性矩阵if len(good) >= 4:src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)H, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)else:print("匹配点不足,无法计算单应性矩阵")return None# 计算变换后图像的四个角点h1, w1 = img1.shape[:2]h2, w2 = img2.shape[:2]pts1 = np.float32([[0, 0], [0, h1], [w1, h1], [w1, 0]]).reshape(-1, 1, 2)pts2 = np.float32([[0, 0], [0, h2], [w2, h2], [w2, 0]]).reshape(-1, 1, 2)pts1_transformed = cv2.perspectiveTransform(pts1, H)# 合并所有角点pts = np.concatenate((pts2, pts1_transformed), axis=0)# 找到新图像的边界[x_min, y_min] = np.int32(pts.min(axis=0).ravel() - 0.5)[x_max, y_max] = np.int32(pts.max(axis=0).ravel() + 0.5)# 调整单应性矩阵以补偿偏移translation = np.array([[1, 0, -x_min], [0, 1, -y_min], [0, 0, 1]], dtype=np.float32)H = translation.dot(H)# 3. 透视变换result = cv2.warpPerspective(img1, H, (x_max - x_min, y_max - y_min))result[-y_min:h2 - y_min, -x_min:w2 - x_min] = img2# 6. 裁剪黑色边缘gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)_, thresh = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY)contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)if len(contours) > 0:x, y, w, h = cv2.boundingRect(contours[0])result = result[y:y + h, x:x + w]return result# 使用示例
if __name__ == "__main__":img1 = cv2.imread("left.jpg")img2 = cv2.imread("right.jpg")if img1 is not None and img2 is not None:panorama = stitch_images(img1, img2)if panorama is not None:cv2.imwrite("result.jpg", panorama)else:print("图像读取失败,请检查文件路径和完整性。")

左侧图片:
1

右侧图片:
2

拼接效果:
3

相关文章:

基于单应性矩阵变换的图像拼接融合

单应性矩阵变换 单应性矩阵是一个 3x3 的可逆矩阵&#xff0c;它描述了两个平面之间的投影变换关系。在图像领域&#xff0c;单应性矩阵可以将一幅图像中的点映射到另一幅图像中的对应点&#xff0c;前提是这两幅图像是从不同视角拍摄的同一平面场景。 常见的应用场景&#x…...

《驱动开发硬核特训 · 专题篇》:深入理解 I2C 子系统

关键词&#xff1a;i2c_adapter、i2c_client、i2c_driver、i2c-core、platform_driver、设备树匹配、驱动模型 本文目标&#xff1a;通过实际代码一步步讲清楚 I2C 子系统的结构与运行机制&#xff0c;让你不再混淆 platform_driver 与 i2c_driver 的职责。 &#x1f9e9; 一、…...

Spark缓存-cache

一、RDD持久化 1.什么时候该使用持久化&#xff08;缓存&#xff09; 2. RDD cache & persist 缓存 3. RDD CheckPoint 检查点 4. cache & persist & checkpoint 的特点和区别 特点 区别 二、cache & persist 的持久化级别及策略选择 Spark的几种持久化…...

tails os系统详解

一、起源与发展背景 1. 项目初衷与历史 创立时间&#xff1a;Tails 项目始于 2004 年&#xff0c;最初名为 “Anonymous Live CD”&#xff0c;2009 年正式更名为 “Tails”&#xff08;The Amnesic Incognito Live System&#xff0c;“健忘的匿名实时系统”&#xff09;。核…...

[洛谷刷题9]

P2376 [USACO09OCT] Allowance G&#xff08;贪心&#xff09; https://www.luogu.com.cn/problem/P2376 题目描述 作为创造产奶纪录的回报&#xff0c;Farmer John 决定开始每个星期给Bessie 一点零花钱。 FJ 有一些硬币&#xff0c;一共有 N ( 1 ≤ N ≤ 20 ) N (1 \le …...

数据挖掘入门-二手车交易价格预测

一、二手车交易价格预测 1-1 项目背景 随着二手车市场的快速发展&#xff0c;二手车交易价格的预测成为了一个热门研究领域。精准的价格预测不仅能帮助买卖双方做出更明智的决策&#xff0c;还能促进市场的透明度和公平性。对于买家来说&#xff0c;了解合理的市场价格可以避免…...

【PostgreSQL数据分析实战:从数据清洗到可视化全流程】金融风控分析案例-10.4 模型部署与定期评估

&#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 &#x1f449; 点击关注不迷路 文章大纲 10.4 模型部署与定期评估10.4.1 模型部署架构设计1.1 模型存储方案1.2 实时预测接口 10.4.2 定期评估体系构建2.1 评估指标体系2.2 自动化评估流程2.3 模型衰退预警 10.4.3 …...

构建可信数据空间需要突破技术、规则和生态三大关键

构建可信数据空间需要突破技术、规则和生态三大关键&#xff1a;技术上要解决"可用不可见"的隐私计算难题&#xff0c;规则上要建立动态确权和跨境流动的治理框架&#xff0c;生态上要形成多方协同的标准体系。他强调&#xff0c;只有实现技术可控、规则可信、生态协…...

阳光学院【2020下】计算机网络原理-A卷-试卷-期末考试试卷

一、单选题&#xff08;共25分&#xff0c;每空1分&#xff09; 1.ICMP协议工作在TCP/IP参考模型的 ( ) A.主机-网络 B.网络互联层 C.传输层 D.应用层 2.下列关于交换技术的说法中&#xff0c;错误的是 ( ) A.电路交换适用于突发式通信 B.报文交换不能满足实时通信 C.报文…...

python: union()函数用法

在 Python 中&#xff0c;union() 是集合&#xff08;set&#xff09;类型的内置方法&#xff0c;用于返回两个或多个集合的并集&#xff08;即所有元素的合集&#xff0c;自动去重&#xff09;。以下是它的用法详解&#xff1a; 1. 基本语法 python 复制 下载 set.union(*…...

docker部署WeDataSphere开源大数据平台

GitHub&#xff1a;https://github.com/WeBankFinTech/WeDataSphere **WDS容器化版本是由Docker构建的一个能够让用户在半小时内完成所有组件安装部署并使用的镜像包。**无需再去部署Hadoop等基础组件&#xff0c;也不需要部署WDS的各功能组件&#xff0c;即可让您快速体验 WD…...

【计算机视觉】OpenCV项目实战:基于face_recognition库的实时人脸识别系统深度解析

基于face_recognition库的实时人脸识别系统深度解析 1. 项目概述2. 技术原理与算法设计2.1 人脸检测模块2.2 特征编码2.3 相似度计算 3. 实战部署指南3.1 环境配置3.2 数据准备3.3 实时识别流程 4. 常见问题与解决方案4.1 dlib安装失败4.2 人脸检测性能差4.3 误识别率高 5. 关键…...

uni-app学习笔记五-vue3响应式基础

一.使用ref定义响应式变量 在组合式 API 中&#xff0c;推荐使用 ref() 函数来声明响应式状态&#xff0c;ref() 接收参数&#xff0c;并将其包裹在一个带有 .value 属性的 ref 对象中返回 示例代码&#xff1a; <template> <view>{{ num1 }}</view><vi…...

阿克曼-幻宇机器人系列教程2- 机器人交互实践(Topic)

在上一篇文章中&#xff0c;我们介绍了两种登录机器人的方式&#xff0c;接下来我们介绍登录机器人之后&#xff0c;我们如何通过topic操作命令实现与机器人的交互。 1. 启动 & 获取topic 在一个终端登录树莓派后&#xff0c;执行下列命令运行机器人 roslaunch huanyu_r…...

Windows系统事件查看器管理单元不可用

报错&#xff1a;Windows系统事件查看器管理单元不可用 现象原因&#xff1a;为误触关闭管理单元或者该模块卡死 解决办法&#xff1a;重启Windows server服务&#xff0c;若不行&#xff0c;则重启服务器即可...

milvus+flask山寨《从零构建向量数据库》第7章case2

继续流水账完这本书&#xff0c;这个案例是打造文字形式的个人知识库雏形。 create_context_db: # Milvus Setup Arguments COLLECTION_NAME text_content_search DIMENSION 2048 MILVUS_HOST "localhost" MILVUS_PORT "19530"# Inference Arguments…...

前端如何应对精确数字运算?用BigNumber.js解决JavaScript原生Number类型在处理大数或高精度计算时的局限性

目录 前端如何应对精确数字运算&#xff1f;用BigNumber.js解决JavaScript原生Number类型在处理大数或高精度计算时的局限性 一、BigNumber.js介绍 1、什么是 BigNumber.js&#xff1f; 2、作用领域 3、核心特性 二、安装配置与基础用法 1、引入 BigNumber.js 2、配置 …...

多目应用:三目相机在汽车智能驾驶领域的应用与技术创新

随着汽车智能驾驶技术不断完善&#xff0c;智能汽车也不断加速向全民普惠迈进&#xff0c;其中智驾“眼睛”三目视觉方案凭借低成本、高精度、强适配性成为众多汽车品牌关注的焦点。三目相机在汽车智能驾驶领域的创新应用&#xff0c;主要依托其多视角覆盖、高动态范围&#xf…...

webpack重构优化

好的&#xff0c;以下是一个关于如何通过重构 Webpack 构建策略来优化性能的示例。这个过程包括分析现有构建策略的问题、优化策略的制定以及具体的代码实现。 --- ### 项目背景 在参与公司的性能专项优化过程中&#xff0c;我发现现有的 Webpack 构建策略存在一些问题&#…...

MySQL 8.0 OCP(1Z0-908)英文题库(31-40)

目录 第31题题目分析正确答案 第32题题目分析正确答案 第33题题目分析正确答案&#xff1a; 第34题题目解析正确答案 第35题题目分析正确答案 第36题题目分析正确答案 第37题题目分析正确答案 第38题题目分析正确答案 第39题题目分析正确答案 第40题题目分析正确答案 第31题 Y…...

aardio - 虚表 —— vlistEx.listbar2 多层菜单演示

在 近我者赤 修改版的基础上&#xff0c;做了些许优化。 请升级到最新版本。 import win.ui; import godking.vlistEx.listbar2; import fonts.fontAwesome; /*DSG{{*/ mainForm win.form(text"多层折叠菜单";right1233;bottom713) mainForm.add({ custom{cls"…...

22.【.NET8 实战--孢子记账--从单体到微服务--转向微服务】--单体转微服务--增加公共代码

在拆分服务之前&#xff0c;我们需要先提取一些公共代码。本篇将重点新增日志记录、异常处理以及Redis的通用代码。这些组件将被整合到一个共享类库中&#xff0c;便于在微服务架构中高效复用。 Tip&#xff1a;在后续的教程中我们会穿插多篇提取公共代码的文章&#xff0c;帮助…...

EasyOps®5月热力焕新:三大核心模块重构效能边界

在应用系统管理中&#xff0c;我们将管理对象从「服务实例」优化为「部署实例」&#xff0c;这一改变旨在提升管理效率与数据展示清晰度。 此前&#xff0c;系统以 “IP Port” 组合定义服务实例。当同一 IP 下启用多个进程或端口时&#xff0c;会产生多个服务实例。比如一台…...

基于深度学习的工业OCR数字识别系统架构解析

一、项目场景 春晖数字识别视觉检测系统专注于工业自动化生产监控、设备运行数据记录等关键领域。系统通过高精度OCR算法&#xff0c;能够实时识别设备上显示的关键数据&#xff08;如温度、压力、计数等&#xff09;&#xff0c;并定时存储至Excel文件中。这些数据对于生产过…...

R语言绘图 | 渐变火山图

客户要求绘制类似文章中的这种颜色渐变火山图&#xff0c;感觉挺好看的。网上找了一圈&#xff0c;发现有别人已经实现的类似代码&#xff0c;拿来修改后即可使用&#xff0c;这里做下记录&#xff0c;以便后期查找。 简单实现 library(tidyverse)library(ggrepel)library(ggf…...

Go语言——docker-compose部署etcd以及go使用其服务注册

一、docker-compsoe.yml文件如下 version: "3.5"services:etcd:hostname: etcdimage: bitnami/etcd:latestdeploy:replicas: 1restart_policy:condition: on-failureprivileged: truevolumes:# 持久化 etcd 数据到宿主机- "/app/apisix/etcd/data:/bitnami/etc…...

Tomcat的调优

目录 一. JVM 1.1 JVM的组成 1.2 运行时数据区域的组成 二. 垃圾回收 2.1 如何确认垃圾 1. 引用计数法 2. 根搜索算法 2.2 垃圾回收基本算法 1. 标记-清除算法&#xff08;Mark-Sweep&#xff09; 2. 标记-压缩算法&#xff08;Mark-Compact&#xff09; 3. 复制算法…...

Tomcat和Nginx的主要区别

1、功能定位 Nginx&#xff1a;核心是高并发HTTP服务器和反向代理服务器&#xff0c;擅长处理静态资源&#xff08;如HTML、图片&#xff09;和负载均衡。Tomcat&#xff1a;是Java应用服务器&#xff0c;主要用于运行动态内容&#xff08;如JSP、Servlet&#xff09;&#xf…...

Python训练营打卡——DAY24(2025.5.13)

目录 一、元组 1. 通俗解释 2. 元组的特点 3. 元组的创建 4. 元组的常见用法 二、可迭代对象 1. 定义 2. 示例 3. 通俗解释 三、OS 模块 1. 通俗解释 2. 目录树 四、作业 1. 准备工作 2. 实战代码示例​ 3. 重要概念解析 一、元组 是什么​​&#xff1a;一种…...

【TDengine源码阅读】DLL_EXPORT

2025年5月13日&#xff0c;周二清晨 #ifdef WINDOWS #define DLL_EXPORT __declspec(dllexport) #else #define DLL_EXPORT #endif为啥Linux和MacOS平台时宏为空&#xff0c;难道Linux和mac不用定义导出函数吗&#xff1f; 这段代码是一个跨平台的宏定义&#xff0c;用于处理不…...

电子科技浪潮下的华秋电子:慕尼黑上海电子展精彩回顾

为期3天的2025慕尼黑上海电子展&#xff08;electronica China 2025&#xff09;于17日在上海新国际博览中心落下帷幕。 展会那规模&#xff0c;真不是吹的&#xff01;本届展会汇聚了1,794家国内外行业知名品牌企业的展商来 “摆摊”&#xff0c;展览面积大得像个超级大迷宫&…...

TDengine编译成功后的bin目录下的文件的作用

2025年5月13日&#xff0c;周二清晨 以下是TDengine工具集中各工具的功能说明&#xff1a; 核心工具 taosd • TDengine的核心服务进程&#xff0c;负责数据存储、查询和集群管理。 taos • 命令行客户端工具&#xff0c;用于连接TDengine服务器并执行SQL操作。 taosBenchma…...

spark sql基本操作

Spark SQL 是 Apache Spark 的一个模块&#xff0c;用于处理结构化数据。它允许用户使用标准的 SQL 语法来查询数据&#xff0c;并且可以无缝地与 Spark 的其他功能&#xff08;如 DataFrame、Dataset 和 RDD&#xff09;结合使用。以下是 Spark SQL 的基本使用方法和一些常见操…...

采购流程规范化如何实现?日事清流程自动化助力需求、采购、财务高效协作

采购审批流程全靠人推进&#xff0c;内耗严重&#xff0c;效率低下&#xff1f; 花重金上了OA&#xff0c;结果功能有局限、不灵活&#xff1f; 问题出在哪里&#xff1f;是我们的要求太多、太苛刻吗&#xff1f;NO&#xff01; 流程名称&#xff1a; 采购审批管理 流程功能…...

影刀RPA开发-CSS选择器介绍

影刀RPA网页自动化开发&#xff0c;很多时候需要我们查看页面源码&#xff0c;查找相关的元素属性&#xff0c;这就需要我们有必要了解CSS选择器。本文做了些简单的介绍。希望对大家有帮助&#xff01; 1. CSS选择器概述 1.1 定义与作用 CSS选择器是CSS&#xff08;层叠样式…...

DeepSeek、B(不是百度)AT、科大讯飞靠什么坐上中国Ai牌桌?

在国产AI舞台上&#xff0c;DeepSeek、阿里、字节、腾讯、讯飞群雄逐鹿&#xff0c;好不热闹。 这场堪称“军备竞赛”的激烈角逐&#xff0c;绝非简单的市场竞争&#xff0c;而是一场关乎技术、创新与未来布局的深度博弈。在竞赛中&#xff0c;五大模型各显神通&#xff0c;以…...

MySQL全局优化

目录 1 硬件层面优化 1.1 CPU优化 1.2 内存优化 1.3 存储优化 1.4 网络优化 2 系统配置优化 2.1 操作系统配置 2.2 MySQL服务配置 3 库表结构优化 4 SQL及索引优化 mysql可以从四个层面考虑优化&#xff0c;分别是 硬件系统配置库表结构SQL及索引 从成本和优化效果来看&#xf…...

【github】主页显示star和fork

数据收集&#xff1a;定期&#xff08;例如每天&#xff09;获取你所有仓库的 Star 和 Fork 总数。数据存储&#xff1a;将收集到的数据&#xff08;时间戳、总 Star 数、总 Fork 数&#xff09;存储起来。图表生成&#xff1a;根据存储的数据生成变化曲线图&#xff08;通常是…...

网站遭受扫描攻击,大量爬虫应对策略

网站的日志里突然有很多访问路径不存在的&#xff0c;有些ip地址也是国外的&#xff0c;而且访问是在深夜且次数非常频繁紧密。判定就是不怀好意的扫描网站寻找漏洞。也有些是爬虫&#xff0c;且是国外的爬虫&#xff0c;有的也是不知道的爬虫爬取网站。网站的真实流量不多&…...

【 Redis | 实战篇 秒杀实现 】

目录 前言&#xff1a; 1.全局ID生成器 2.秒杀优惠券 2.1.秒杀优惠券的基本实现 2.2.超卖问题 2.3.解决超卖问题的方案 2.4.基于乐观锁来解决超卖问题 3.秒杀一人一单 3.1.秒杀一人一单的基本实现 3.2.单机模式下的线程安全问题 3.3.集群模式下的线程安全问题 前言&…...

手搓传染病模型(SEIARW)

在传染病传播的研究中&#xff0c;水传播途径是一个重要的考量因素。SEAIRW 模型&#xff08;易感者 S - 暴露者 E - 感染者 I - 无症状感染者 A - 康复者 R - 水中病原体 W&#xff09;综合考虑了人与人接触传播以及水传播的双重机制&#xff0c;为分析此类传染病提供了全面的…...

【C++】深入理解 unordered 容器、布隆过滤器与分布式一致性哈希

【C】深入理解 unordered 容器、布隆过滤器与分布式一致性哈希 在日常开发中&#xff0c;无论是数据结构优化、缓存设计&#xff0c;还是分布式架构搭建&#xff0c;unordered_map、布隆过滤器和一致性哈希都是绕不开的关键工具。它们高效、轻量&#xff0c;在性能与扩展性方面…...

第五天——贪心算法——射气球

1.题目 有一些球形气球贴在一个表示 XY 平面的平坦墙壁上。气球用一个二维整数数组 points 表示&#xff0c;其中 points[i] [xstart, xend] 表示第 i 个气球的水平直径范围从 xstart 到 xend。你并不知道这些气球的具体 y 坐标。 可以从 x 轴上的不同位置垂直向上&#xff0…...

麦肯锡110页PPT企业组织效能提升调研与诊断分析指南

“战略清晰、团队拼命、资源充足&#xff0c;但业绩就是卡在瓶颈期上不去……”这是许多中国企业面临的真实困境。表面看似健康的企业&#xff0c;往往隐藏着“组织亚健康”问题——跨部门扯皮、人才流失、决策迟缓、市场反应滞后……麦肯锡最新研究揭示&#xff1a;组织健康度…...

BFS算法篇——从晨曦到星辰,BFS算法在多源最短路径问题中的诗意航行(上)

文章目录 引言一、多源BFS的概述二、应用场景三、算法步骤四、代码实现五、代码解释六、总结 引言 在浩渺的图论宇宙中&#xff0c;图的每一条边、每一个节点都是故事的组成部分。每当我们站在一个复杂的迷宫前&#xff0c;开始感受它的深邃时&#xff0c;我们往往不再局限于从…...

理解 C# 中的各类指针

前言 变量可以理解成是一块内存位置的别名&#xff0c;访问变量也就是访问对应内存中的数据。 指针是一种特殊的变量&#xff0c;它存储了一个内存地址&#xff0c;这个内存地址代表了另一块内存的位置。 指针指向的可以是一个变量、一个数组元素、一个对象实例、一块非托管内存…...

MySQL 事务(二)

文章目录 事务隔离性理论理解隔离性隔离级别 事务隔离级别的设置和查看事务隔离级别读未提交读提交&#xff08;不可重复读&#xff09; 事务隔离性理论 理解隔离性 MySQL服务可能会同时被多个客户端进程(线程)访问&#xff0c;访问的方式以事务方式进行一个事务可能由多条SQL…...

【HarmonyOS】ArkTS开发应用的横竖屏切换

文章目录 1、简介2、静态 — 横竖屏切换2.1、效果2.2、实现原理2.3、module.json5 源码 3、动态 — 横竖屏切换3.1、应用随系统旋转切换横竖屏3.2、setPreferredOrientation 原理配置3.3、锁定旋转的情况下&#xff0c;手动设置横屏状态 1、简介 在完成全屏网页嵌套应用开发后…...

Linux中find命令用法核心要点提炼

大家好&#xff0c;欢迎来到程序视点&#xff01;我是你们的老朋友.小二&#xff01; 以下是针对Linux中find命令用法的核心要点提炼&#xff1a; 基础语法结构 find [路径] [选项] [操作]路径&#xff1a;查找目录&#xff08;.表当前目录&#xff0c;/表根目录&#xff09;…...

专栏项目框架介绍

项目整体实现框图 如下图所示&#xff0c;是该项目的整体框图&#xff0c;项目的功能概括为&#xff1a;PC端下发数据文件&#xff0c;FPGA板卡接收数据文件&#xff0c;缓存至DDR中&#xff0c;待数据文件发送完毕&#xff0c;循环读取DDR有效写区域数据&#xff0c;将DDR数据…...