李录谈卖出股票的时机:价值投资的动态决策框架
作为最贴近芒格与巴菲特投资理念的中国投资人,李录对卖出时机的思考融合了价值投资的核心逻辑与实战经验。通过其在哥伦比亚大学的多场演讲及访谈(主要集中于2006年、2013年及后续公开内容),我们可以将其观点归纳为以下五个维度:
一、三种核心卖出情景
李录明确提出了触发卖出的三大条件,这些原则贯穿其投资生涯:
-
发现错误时立即止损
• 无论错误源于误判(如高估公司基本面)还是“正确的错误”(即小概率事件发生),均需果断卖出。例如,即使初始分析有90%胜率,若剩余10%的负面可能成为现实,持有将放大风险。 -
估值达到极端水平
• 当价格严重偏离内在价值(如市场狂热推升市盈率至数百倍),即使长期看好的标的也需减持。但李录强调,对“极端”的判断需结合长期视角:若公司未来10年增长能消化当前估值,则无需过早离场。 -
发现更优机会
• 投资本质是机会成本的权衡。若新标的的风险回报比显著优于现有持仓,应置换资产以优化组合。例如,当传统行业增长见顶时,转向新兴科技领域的潜力股。
二、卓越公司的特殊处理:长期主义的坚守
对于具备“圣杯”特质的企业(即持续高资本回报率、宽广护城河、长期增长空间),李录主张“非必要不卖出”:
• 时间维度压倒短期波动:若确信公司未来10年价值将远超当前价格,短期高估反而成为持有理由。典型案例如可口可乐,巴菲特因未在其高估时减持被芒格视为教训,但李录认为这取决于对企业的深层认知。
• 税务策略与复利优势:长期持有可避免资本利得税对复利的侵蚀。以年回报率50%-100%的卓越公司为例,递延纳税相当于获得政府无息贷款,显著提升长期收益。
三、决策中的动态平衡:三大关键变量
李录指出,实际操作中需在以下因素间寻求平衡:
-
当前估值与长期价值的偏离度
• 若现价已透支未来5-10年增长,即使优秀企业也需警惕泡沫。 -
替代机会的确定性
• 卖出后能否立即配置更高回报标的?若缺乏明确目标,盲目减持可能错失复利。 -
再买入的可能性
• 市场波动可能使卖出者永久错失低价回购机会,这对稀缺的卓越公司尤为关键。
四、能力圈与认知深度:卖出的底层逻辑
李录将卖出决策的差异归结于投资者能力圈的差异:
• 认知深度决定持有信心:对公司的理解越透彻(如商业模式、管理层、行业格局),越能抵御短期波动。例如,茅台在2021年2600元时的分歧(唐朝清仓 vs 段永平坚守),本质是不同投资者对其长期价值的判断差异。
• 真实能力圈的验证:经历多次市场极端波动(如个股腰斩)后,才能验证认知是否真实可靠。这种考验是区分“运气”与“能力”的关键。
五、案例启示与实战启示
通过添柏岚(1998-2000年涨7倍后卖出)与茅台等案例,李录揭示了两类操作逻辑:
• 普通公司:估值回归即退出
当市场关注度提升导致估值合理化(如市盈率升至15倍),即使盈利增长也可能选择获利了结。
• 卓越公司:穿越周期的勇气
真正的“复利机器”需要超乎寻常的定力。李录坦言,早年“不买即卖”的原则后来被修正——若十年后的价值远超当前价格,短期高估反而成为继续持有的理由。
结语:没有标准答案的哲学
李录的卖出框架并非机械公式,而是动态演化的认知体系。其核心在于:
- 区分公司质量:卓越企业值得“终身持有”,普通企业需严格纪律;
- 承认认知局限:对错误保持敏感,对机会保持开放;
- 长期视角优先:用十年后的价值反推当前决策,而非被市场情绪牵引。
正如茅台2600元时的分歧,答案可能需十年后才能揭晓。对普通投资者而言,李录的忠告是:找到真正的伟大公司,在未明确三个平衡变量前,坚持持有。这或许是对芒格“坐等投资法”的最佳诠释。
(注:本文综合自李录在哥伦比亚大学演讲实录及公开访谈)
相关文章:
李录谈卖出股票的时机:价值投资的动态决策框架
作为最贴近芒格与巴菲特投资理念的中国投资人,李录对卖出时机的思考融合了价值投资的核心逻辑与实战经验。通过其在哥伦比亚大学的多场演讲及访谈(主要集中于2006年、2013年及后续公开内容),我们可以将其观点归纳为以下五个维度&a…...
Docker的简单使用(不全)
Docker Hello World Docker 允许在容器内运行应用程序,使用docker run命令来在容器内运行一个应用程序 输出Hello World runoobrunoob:~$ docker run ubuntu:15.10 /bin/echo "Hello world"Hello world docker:Docker的二进制执行文件 run…...
A2A与MCP:理解它们的区别以及何时使用
随着AI不断深入到商业工作流中,多个AI代理(Agent)之间的无缝协作成为了一个主要挑战。 为了解决这个问题,Google Cloud推出了一种名为Agent2Agent(A2A)的开放协议,旨在使不同平台和系统中的AI代…...
AI Agent开源技术栈
构建和编排Agent的框架 如果您是从头开始构建,请从这里开始。这些工具可以帮助您构建Agent的逻辑——做什么、何时做以及如何处理工具。您可以将其视为将原始语言模型转化为更自主的模型的核心大脑。 2. 计算机和浏览器的使用 一旦你的Agent能够规划,…...
判断用户选择的Excel单元格区域是否跨页?
VBA应用程序开发过程中,经常需要处理用户选中的单元格区域,有的应用场景中,需要限制用户选中区域位于同一页中(以打印预览显示的分页划分),但是VBA对象模型中并没有提供相应的接口,用于快速查询…...
驱动开发硬核特训 · Day 24(上篇):走进Linux内核时钟子系统 —— 硬件基础全解析
一、前言 在 SoC(System on Chip)设计中,“时钟(Clock)”不仅是信号同步的基石,也是各个模块协调运作的前提。没有合理的时钟体系,CPU无法运行,外设无法通信,存储器无法…...
【GPU 微架构技术】Pending Request Table(PRT)技术详解
PRT(Pending Request Table)是 GPU 中用于管理 未完成内存请求(outstanding memory requests)的一种硬件结构,旨在高效处理大规模并行线程的内存访问需求。与传统的 MSHR(Miss Status Handling Registers&a…...
角度(degrees)和弧度(radians)转换关系
目录 1.从角度转换到弧度: 2.从弧度转换到角度: 示例 将90度转换为弧度: 将π/3弧度转换为角度: 角度(degrees)和弧度(radians)之间的转换关系可以通过以下公式来实现ÿ…...
【大语言模型DeepSeek+ChatGPT+GIS+Python】AI大语言模型驱动的地质灾害全流程智能防治:风险评估、易发性分析与灾后重建多技术融合应用
地质灾害是指全球地壳自然地质演化过程中,由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。在降水、地震等自然诱因的作用下,地质灾害在全球范围内频繁发生。我国不仅常见滑坡灾害,还包括崩塌、泥石流…...
第十六届蓝桥杯 2025 C/C++组 25之和
目录 题目: 题目描述: 题目链接: 思路: 思路详解: 代码: 代码详解: 题目: 题目描述: 题目链接: P12339 [蓝桥杯 2025 省 B/Python B 第二场] 25 之和…...
万界星空科技QMS质量管理系统几大核心功能详解
QMS质量管理系统(Quality Management System)是一款专为现代企业设计的、全面且高效的质量管理工具,融合了现代质量管理理念与前沿的信息技术,旨在帮助企业构建完善的质量管理体系,确保产品和服务质量。以下为你详细介…...
SSR同构渲染深度解析
同构渲染(Isomorphic Rendering)是SSR(服务器端渲染)的核心概念,指同一套代码既能在服务器端运行,也能在客户端运行。下面我将从原理到实践全面介绍SSR同构渲染。 一、同构渲染核心原理 1. 基本工作流程 …...
【论文阅读/复现】RT-DETR的网络结构/训练/推理/验证/导出模型
利用ultralytics仓库,复现RT-DETR官方实验环境。 使用基于ResNet50和ResNet101的RT-DETR。 目录 一 RT-DETR的网络结构 1 编码器结构 2 RT-DETR 3 CCFF中的融合块 4 实验结果 二 RT-DETR的安装/训练/推理/验证/导出模型 1 安装 2 配置文件 3 训练 4 推理 …...
KUKA机器人关机时冷启动介绍
KUKA机器人在正常关机时,可以从示教器上操作。在示教器上操作时需要选择“冷启动”方式关闭计算机。等示教器屏幕关闭之后,再把主开关旋钮关闭。 一、先登录【管理员】权限,再在【主菜单】下选择【关机】。 二、在关机的默认中,…...
MCP Java SDK 介绍与使用指南
MCP与MCP Java SDK 概念 MCP 是什么? 模型上下文协议(Model Context Protocol, MCP)是用于标准化AI模型与工具间通信的规范。通过定义通用接口,确保不同AI组件(如模型推理服务、工具插件)能无缝协作。MCP …...
【Java核心】一文理解Java面向对象(超级详细!)
一:概述 1.1Java类及类的成员 属性、方法、构造器、代码块、内部类 1.2 面向对象的特征 封装、继承、多态(抽象) 1.3 其它关键字的使用 This、super、package、import、static、final、interface、abstract 1.4 面向对象和面向过程 &…...
2025年DDoS攻击防御全解析:应对超大流量的实战策略
一、2025年DDoS攻击的新趋势 超大规模攻击常态化:攻击流量突破300Gbps,部分案例甚至达到T级规模,传统单点防御已无法应对。 混合攻击模式盛行:攻击者结合应用层(HTTP Flood、CC攻击)与网络层(U…...
【动态导通电阻】 GaN PiN二极管电导调制对动态 RON 的影响
2020 年,浙江大学电气工程学院的Shaowen Han等人采用实验研究的方法,对垂直 GaN-on-GaN PiN 二极管中电导调制的瞬态行为及其对动态导通电阻(RON)的影响进行了深入探究。他们基于高质量的 GaN 基板开发的垂直 GaN-on-GaN 功率器件具有高电流容量和高击穿电压等优势,而与间…...
第十六届蓝桥杯 2025 C/C++B组第一轮省赛 全部题解(未完结)
目录 前言: 试题A:移动距离 试题C:可分解的正整数 试题D:产值调整 试题E:画展布置 前言: 我参加的是第一轮省赛,说实话第一次参加还是比较紧张的,真到考场上看啥都想打暴力&…...
MySQL 实战 45 讲 笔记 ----来源《极客时间》
01 | 基础架构:一条SQL查询语句是如何执行的? 1. MySQL 可以分为 Server层 和 存储引擎层 两部分。Server 层包括连接器、查询缓存、分析器、优化器、执行器等。存储引擎层支持 InnoDB、MyISAM等. (1) 连接器:管理连接,权限认证…...
海思SD3403边缘计算AI核心设备概述
1、海思SD3403边缘计算AI设备4TOPS算力(SD3403模组) 2、AI训练服务器 (≥60TOPS算力 INT8 算力越高AI训练速度越快) 3、普通监控IPC摄像机(低成本,批量化安装项目) 4、AI数据标定工作终端 (≥10TOPS算力 IN…...
算法设计:回溯法的基础原理与应用
目录 一、基本概念 二、适用问题 三、基本步骤 四、算法模式 递归回溯算法模式(求一个解) 非递归回溯算法模式(求一个解) 非递归回溯算法模式(求所有解) 五、经典应用 1数字组合问题 2数字排列问题…...
PyTorch 深度学习实战(23):多任务强化学习(Multi-Task RL)之扩展
之前的PyTorch 深度学习实战(23):多任务强化学习(Multi-Task RL)总结扩展运用代码如下: import torch import torch.nn as nn import torch.optim as optim import numpy as np from torch.distributions import Norm…...
音视频开发---视频编码基础
一、视频编码的必要性 1. 存储与传输成本高 未经编码压缩的原始视频的数据量极大,例如:一般电影的亮度信号采样频率为13.5MHz;色度信号的频带通常为亮度信号的一半或更少,为6.75MHz或3.375MHz。以4:2:2的采样频率为例,Y信号采用13.5MHz,色度信号U和V采用6.75MHz采样,…...
深入蜂窝物联网 第四章 Cat-1 与 5G RedCap:带宽、低时延与未来趋势
1. 前言与应用场景 随着物联网对带宽与时延的需求不断增长,LTE Cat-1 和 5G RedCap(Reduced Capability)应运而生: Cat-1:在传统 LTE 网络上提供最高 10 Mbps 下行、5 Mbps 上行,兼容性佳; 5G RedCap:在 5G NSA/SA 网络中提供 1–20 Mbps,时延可降至 10 ms 级,且模组…...
FPGA 39 ,FPGA 网络通信协议栈进阶,RGMII、ARP 与 UDP 协议与模块设计( RGMII、ARP、UDP原理与模块设计 )
目录 目录 一、核心原理 1.1 RGMII 接口:高效数据传输的物理桥梁 1.2 ARP 协议:IP 与 MAC 地址的动态映射引擎 1.3 UDP 协议:轻量级数据传输的高效选择 1.4 FPGA 实现流程 二、时序约束 2.1 时序约束理论…...
《系统分析师-第三阶段—总结(七)》
背景 采用三遍读书法进行阅读,此阶段是第三遍。 过程 本篇总结第13章第14章的内容 第13章 第14章 总结 系统设计分为概要设计与详细设计,然后重点讲解了处理流程设计,输入输出原型设计,面向对象设计、人机交互设计࿱…...
Lightroom 2025手机版:专业编辑,轻松上手
在摄影和图像编辑的世界里,Adobe Lightroom一直是一个不可或缺的工具。无论是专业摄影师还是摄影爱好者,都依赖它来提升照片的质量和视觉效果。今天,我们要介绍的 Lightroom 2025手机版,是Adobe公司为移动设备量身定制的照片编辑器…...
Cursor:AI时代的智能编辑器
在开发者社区掀起热潮的Cursor,正以破竹之势重塑编程工具格局。这款基于VS Code的AI优先编辑器,不仅延续了经典IDE的稳定基因,更通过深度集成的智能能力,将开发效率推向全新维度。2023年Anysphere公司获得的6000万美元A轮融资&…...
x86架构-k8s设置openebs的hostpath作为默认存储类的部署记录
文章目录 前言一、openebs是什么?二、准备步骤1.下载yaml文件2.准备一个新的单点k8s用于测试2.将openebs-operator.yaml中的镜像修改成使用国内加速源的 三、执行yaml1.openebs-operator.yaml2.local-hostpath-pvc.yaml和local-hostpath-pod.yaml 四、关于默认存储路…...
废品回收小程序:全链路数字化解决方案,赋能绿色未来
用户端:一键触达,便捷回收新体验 废品百科与估价指南:分类标准与实时价格一目了然,用户轻松掌握废品价值。一键预约,轻松回收:指尖轻点即可完成预约,上门服务省时省力。精准定位,导…...
Kotlin和JavaScript的对比
Kotlin和JavaScript有一些相似之处,但也存在显著的差异,下面从多个方面为你详细分析: 相似点 1. 语法灵活性 变量声明:二者在变量声明上都较为灵活。在JavaScript里,借助var、let和const可以声明变量。其中…...
蓝桥杯 5. 拼数
拼数 原题目链接 题目描述 给定 n 个正整数 a1, a2, …, an,你可以将它们任意排序。 现要将这 n 个数字连接成一排,即令相邻数字收尾相接,组成一个数。 问,这个数最大可以是多少。 输入格式 第一行输入一个正整数 n&#x…...
(即插即用模块-特征处理部分) 四十四、(2024 TGRS) FEM 特征增强模块
文章目录 1、Feature Enhancement Module2、代码实现 paper:FFCA-YOLO for Small Object Detection in Remote Sensing Images Code:https://github.com/yemu1138178251/FFCA-YOLO 1、Feature Enhancement Module 遥感图像中,小目标的特征通…...
“情况说明“以后,Unity XR 开发者如何选择?
Unity自4月7日发布了一系列“情况说明”,点进来的朋友应该都是看过的,此处不再赘述。此后引发了开发者社区的广泛关注和讨论。作为细分领域的XR开发者,此时也会面临着工具和版本的抉择或迷茫。笔者同样面临这些问题,因为要确定未来…...
c#版yolo可视化标注和一键免环境训练系统0429更新介绍
yolo免环境一键训练工具c#版yolo标注工具 ## 更新日志 - 2025.4.1: 1、软件上线 - 2025.4.6 1、调整界面,修复用户在1920*1080不能全部显示问题 2、修复 刷新当前目录 无法加载新增图片问题 3、新增 下一张图片快捷键 Enter或者ctrl↓&…...
Leetcode 3533. Concatenated Divisibility
Leetcode 3533. Concatenated Divisibility 1. 解题思路2. 代码实现 题目链接:3533. Concatenated Divisibility 1. 解题思路 这一题的话事实上如果我们原始的数组有序排列一下,然后依次考察每个元素是否可以被选用,此时,我们得…...
CosyVoice、F5-TTS、GPT-SoVITS、Fish-Speech声音模型项目深度对比:选型指南
在数字人、虚拟助手、智能客服等应用快速发展的背景下,文本转语音(TTS)和语音克隆技术已成为AI领域的核心技术之一。本文将对目前主流的四个开源语音合成项目——CosyVoice、F5-TTS、GPT-SoVITS 和 Fish-Speech进行全方位对比分析,…...
什么是DNS缓存?怎么清理DNS缓存?
在网络世界中,当我们输入一个网址想要访问某个网站时,计算机并不能直接识别“www.example.com”这样的网址,而是需要将其转换为对应的IP地址才能进行通信。这个转换过程由域名系统(DomainNameSystem,简称DNS࿰…...
基于STM32、HAL库的ATECC508A安全验证及加密芯片驱动程序设计
一、简介: ATECC508A是Microchip公司生产的一款加密认证芯片,提供以下主要特性: 基于硬件的ECDSA (Elliptic Curve Digital Signature Algorithm) 加密 支持SHA-256哈希算法 内置真随机数生成器(TRNG) 16个密钥存储槽位,可配置多种用途 支持I2C接口,最高1MHz时钟频率 超低…...
初中九年级学生体测准考证照片采集软件使用说明
随着中考体育测试的临近,各校陆续开始组织学生进行准考证照片、中考报名照片的采集工作。为方便学校集中采集和学生自主完成照片拍摄,本文将详细介绍使用"校园证件照采集平台"进行手机拍照线上采集的操作方法,帮助学校轻松完成体测…...
提供一些其他常见的字符串处理算法的Java示例
以下为你提供几种常见字符串处理算法的 Java 示例: 1. 字符串反转 反转字符串即把字符串中的字符顺序颠倒。 public class RemoveSpaces {public static String removeSpaces(String str) {return str.replaceAll("\\s", "");}public static…...
软件设计师-软考知识复习(2)
PERT图详解 PERT(Program Evaluation and Review Technique,计划评审技术)是一种用于项目管理的图形化工具,主要用于分析任务的时间安排、识别关键路径和优化资源分配。它特别适用于复杂项目,其中任务之间存在依赖关系…...
Qwen3快速部署 Qwen3-0.6B、Qwen3-8B、Qwen3-14B,Think Deeper
文章目录 0 Qwen31 平台与环境安装1 模型下载2 模型测试 0 Qwen3 今天,通义千问Qwen团队正式开源推出 Qwen3,这是 Qwen 系列大型语言模型的最新成员。最新的Qwen3系列模型具备双模推理能力(深入思考/快速响应)、支持119种语言及方…...
【C到Java的深度跃迁:从指针到对象,从过程到生态】第四模块·Java特性专精 —— 第十七章 IO流:超越FILE*的维度战争
一、从C文件操作到Java流的进化 1.1 C文件操作的原始挑战 C语言通过FILE*和低级文件描述符进行I/O操作,存在诸多限制: 典型文件复制代码: #include <stdio.h> int copy_file(const char* src, const char* dst) { FILE* in fope…...
Leetcode刷题记录22——滑动窗口最大值
题源:https://leetcode.cn/problems/sliding-window-maximum/description/?envTypestudy-plan-v2&envIdtop-100-liked 题目描述: 思路一: 暴力遍历法,通过一个长度为k的滑动窗口遍历nums,将其中最大的数依次记…...
React 第三十四节 Router 开发中 useLocation Hook 的用法以及案例详解
一、useLocation基础用法 作用:获取当前路由的 location 对象 返回对象结构: {pathname: "/about", // 当前路径search: "?namejohn", // 查询参数(URL参数)hash: "#contact", …...
BT134-ASEMI机器人功率器件专用BT134
编辑:LL BT134-ASEMI机器人功率器件专用BT134 型号:BT134 品牌:ASEMI 封装:TO-126 批号:最新 引脚数量:3 封装尺寸:如图 特性:双向可控硅 工作结温:-40℃~150℃…...
十五种光电器件综合对比——《器件手册--光电器件》
十五、光电器件 名称 原理 特点 应用 发光二极管(LED) 基于半导体材料的电致发光效应,当电流通过时,电子与空穴复合,释放出光子。 高效、节能、寿命长、响应速度快、体积小。 广泛用于指示灯、照明、显示&#…...
网络安全攻防演练实训室建设方案
一、引言 在数字化浪潮席卷全球的当下,网络已深度融入社会的各个层面,成为推动经济发展、社会进步和科技创新的关键力量。从日常生活中的移动支付、社交互动,到企业运营中的数据管理、业务拓展,再到国家关键基础设施的运行&#…...