《人工智能深度学习的基本路线图》
《人工智能深度学习的基本路线图》
- 基础准备阶段
- 数学基础:
- 线性代数:深度学习中大量涉及矩阵运算、向量空间等概念,线性代数是理解和处理这些的基础。例如,神经网络中的权重矩阵、输入向量的运算等都依赖于线性代数知识。学习内容包括矩阵的基本运算、特征值与特征向量、线性方程组的求解等。推荐学习麻省理工学院英文原版教材《线性代数导论》等。
- 微积分:在深度学习的模型训练过程中,需要使用微积分来计算损失函数的梯度,以便进行参数优化。比如,反向传播算法就是基于微积分的链式法则来计算梯度的。要重点掌握导数、偏导数、梯度等概念,以及常见函数的求导方法。
- 概率与统计:有助于理解数据的分布、不确定性以及模型的预测结果。例如,在处理图像分类问题时,了解不同类别的数据分布可以帮助选择合适的模型和算法。学习内容包括概率分布、期望、方差、协方差等,以及假设检验、回归分析等基本统计方法。
- 编程基础:
- Python 编程:Python 是深度学习中最常用的编程语言,掌握 Python 的基本语法、数据结构、函数、面向对象编程等是进行深度学习的前提。可以通过在线教程(如 Python 官方文档、菜鸟教程等)、书籍(如《Python 编程:从入门到实践》)等进行学习,并通过一些简单的项目练习来巩固所学知识,比如编写一个简单的数据分析程序、文本处理程序等。
- 数学基础:
- 理论学习阶段
- 机器学习基础:
- 了解机器学习的基本概念,如监督学习、无监督学习、强化学习等分类,以及训练集、测试集、验证集的划分等。
- 学习常见的机器学习算法,如线性回归、逻辑回归、决策树、支持向量机、聚类算法等。掌握这些算法的原理、优缺点、适用场景等,并通过一些开源的机器学习库(如 scikit-learn)进行实践,比如使用线性回归算法对房价数据进行预测、使用 K-Means 聚类算法对客户数据进行分类等。
- 深度学习基础:
- 神经网络基础:学习神经网络的基本结构,包括输入层、隐藏层、输出层,以及神经元的激活函数(如 Sigmoid、ReLU 等)。理解神经网络的训练过程,即通过前向传播计算输出,然后通过反向传播算法调整权重以最小化损失函数。
- 深度学习的基本概念:了解深度学习与传统机器学习的区别和联系,掌握深度学习中的一些重要概念,如深度、模型容量、过拟合与欠拟合等。学习如何使用正则化、批量归一化、Dropout 等技术来防止过拟合,提高模型的泛化能力。
- 机器学习基础:
- 框架与工具学习阶段
- 深度学习框架:选择一种主流的深度学习框架进行深入学习,如 TensorFlow、PyTorch 等。
- PyTorch:具有动态图机制,易于调试和理解,适合研究和实验。学习 PyTorch 的基本操作,如张量的创建、操作、运算,以及如何构建神经网络模型、定义损失函数、使用优化器进行训练等。可以参考官方文档、教程以及一些在线课程进行学习,例如 Aladdin Persson 在 YouTube 上的 PyTorch 教程。
- TensorFlow:是一个功能强大的深度学习框架,广泛应用于工业界。学习 TensorFlow 的基本概念和操作,如计算图的构建、会话的管理、变量的定义等,以及如何使用 TensorFlow 进行模型的训练和评估。同样可以参考官方文档和相关的学习资源。
- 数据处理工具:
- 数据预处理:学习如何对数据进行清洗、归一化、标准化、缺失值处理等操作,以提高数据的质量和模型的训练效果。掌握一些常用的数据预处理工具和库,如 Pandas、NumPy 等。
- 数据增强:对于图像、文本等数据,了解数据增强的方法,如随机裁剪、旋转、翻转、添加噪声等,以增加数据的多样性,提高模型的鲁棒性。
- 深度学习框架:选择一种主流的深度学习框架进行深入学习,如 TensorFlow、PyTorch 等。
- 实践与项目阶段
- 复现经典模型:选择一些经典的深度学习模型进行复现,如 LeNet-5、AlexNet、VGG、ResNet 等(对于图像分类领域),或者 LSTM、GRU、Transformer 等(对于自然语言处理领域)。通过复现这些模型,加深对深度学习原理和算法的理解,掌握模型的实现细节和训练技巧。
- 小型项目实践:
- 图像分类项目:使用深度学习框架和公开的图像数据集(如 MNIST、CIFAR-10 等),构建一个简单的图像分类模型,对图像进行分类预测。在项目中,需要完成数据的加载、模型的构建、训练、评估等环节。
- 文本分类项目:利用文本数据集(如 IMDb 影评数据集等),构建一个文本分类模型,对文本的情感进行分类(如正面、负面)。学习如何对文本进行预处理、词向量表示,以及如何使用深度学习模型进行文本分类。
- 参加竞赛和开源项目:
- 竞赛:参加一些知名的数据竞赛平台(如 Kaggle)上的深度学习竞赛,与其他参赛者一起解决实际的问题,学习他们的思路和方法,提高自己的实践能力和解决问题的能力。
- 开源项目:参与一些深度学习的开源项目,在社区中与其他开发者交流和合作,学习先进的技术和经验,为开源社区做出贡献的同时,提升自己的技术水平。
- 进阶与拓展阶段
- 深入学习特定领域:根据自己的兴趣和需求,深入学习深度学习的特定领域,如计算机视觉、自然语言处理、强化学习等。
- 计算机视觉:学习目标检测、图像分割、视频分析等技术,掌握相关的算法和模型,如 Faster R-CNN、YOLO、Mask R-CNN 等。可以使用一些计算机视觉的开源框架(如 OpenCV、TensorFlow Object Detection API 等)进行实践。
- 自然语言处理:深入研究自然语言处理中的文本生成、机器翻译、问答系统等任务,学习 Transformer、BERT、GPT 等先进的模型和技术。了解自然语言处理的最新研究进展和应用场景,通过实际项目来提高自己的实践能力。
- 强化学习:学习强化学习的基本原理、算法(如 Q-learning、策略梯度等),以及如何将强化学习应用于机器人控制、游戏等领域。可以通过一些开源的强化学习框架(如 OpenAI Gym、Ray 等)进行实践和实验。
- 研究与创新:阅读最新的学术论文和研究报告,关注深度学习领域的前沿技术和发展趋势。尝试提出自己的研究问题和想法,开展实验和研究,探索新的模型、算法和应用场景。可以与高校、科研机构的研究人员进行交流和合作,参与学术会议和研讨会,分享自己的研究成果,不断提升自己的研究能力和学术水平。
- 深入学习特定领域:根据自己的兴趣和需求,深入学习深度学习的特定领域,如计算机视觉、自然语言处理、强化学习等。
相关文章:
《人工智能深度学习的基本路线图》
《人工智能深度学习的基本路线图》 基础准备阶段 数学基础: 线性代数:深度学习中大量涉及矩阵运算、向量空间等概念,线性代数是理解和处理这些的基础。例如,神经网络中的权重矩阵、输入向量的运算等都依赖于线性代数知识。学习内容…...
Matlab 答题卡方案
在现代教育事业的飞速发展中,考试已经成为现代教育事业中最公平的方式方法,而且也是衡量教与学的唯一方法。通过考试成绩的好与坏,老师和家长可以分析出学生掌握的知识多少和学习情况。从而老师可以了解到自己教学中的不足来改进教学的方式方…...
[Unity]TileMap开发,TileMap地图缝隙问题
环境: windows11 unity 2021.3.14f1c1 tilemap使用的图是美术已经拼接到一起的整图,块与块之间没有留缝隙 问题: TileMap地图直接在Unity中使用时,格子边缘会出现缝隙,移动或缩放地图时较明显。 解决方案&#x…...
pnpm : 无法加载文件 D:\Tool\environment\NodeAndNvm\node\pnpm.ps1,因为在此系统上禁止运行脚本。
问题 在终端(cmd)输入 pnpm -v,报错如下 pnpm : 无法加载文件 D:\Tool\environment\NodeAndNvm\node\pnpm.ps1,因为在此系统上禁止运行脚本。解决 1. 在终端输入get-ExecutionPolicy(查看执行策略/权限) 输出如下: # (受限的) Restricte…...
redis的map底层数据结构 分别什么时候使用哈希表(Hash Table)和压缩列表(ZipList)
在Redis中,Hash数据类型的底层数据结构可以是压缩列表(ZipList)或者哈希表(HashTable)。这两种结构的使用取决于特定的条件: 1. **使用ZipList的条件**: - 当Hash中的数据项(即f…...
通达OA前台submenu.php存在SQL注入漏洞(CVE-2024-10600)
通达OA前台submenu.php存在SQL注入漏洞(CVE-2024-10600) pda/appcenter/submenu.php 未包含inc/auth.inc.php且 $appid 参数未用’包裹导致前台SQL注入 影响范围 v2017-v11.6 fofa app"TDXK-通达OA" && icon_hash"-759108386"poc http://url…...
Flutter:photo_view图片预览功能
导入SDK photo_view: ^0.15.0单张图片预览,支持放大缩小 import package:flutter/material.dart; import package:photo_view/photo_view.dart;... ...class _MyHomePageState extends State<MyHomePage>{overrideWidget build(BuildContext context) {return…...
C++结构型设计模式之使用抽象工厂来创建和配置桥接模式的例子
下面是一个使用抽象工厂模式来创建和配置桥接模式的示例,场景是创建不同操作系统的窗口(Window)及其对应的实现(WindowImpl)。我们将通过抽象工厂来创建不同操作系统下的窗口和实现。 代码示例 #include <iostrea…...
智能合约运行原理
点个关注吧!! 用一句话来总结,智能合约就像是一个自动售货机:你投入硬币(触发条件),选择商品(执行合约),然后机器就会自动给你商品(执行结果&…...
Unity3D基于ECS的游戏逻辑线程详解
前言 Unity3D是一款非常流行的游戏开发引擎,其采用的是组件实体系统(ECS)架构,这种架构可以让游戏开发者更加高效地管理游戏逻辑线程。本文将详细介绍Unity3D基于ECS的游戏逻辑线程,并给出技术详解以及代码实现。 对…...
GIT 操作
全局设置 git config --global user.name "用户名" git config --global user.email "用户邮箱" 创建仓库 mkdir 项目目录 cd 项目目录 git init touch README.md git add README.md git commit -m "first commit" git remote add origin GIT…...
佛山三水戴尔R740服务器黄灯故障处理
1:佛山三水某某大型商场用户反馈一台DELL PowerEdge R740服务器近期出现了黄灯警告故障,需要冠峰工程师协助检查故障灯原因。 2:工程师协助该用户通过笔记本网线直连到服务器尾部的IDRAC管理端口,默认ip 192.168.0.120 密码一般在…...
系统性能优化方法论详解:从理解系统到验证迭代
在当今的企业级和云计算环境中,系统性能优化已成为提升竞争力的关键因素。本文将对系统优化的步骤进行深入解析,帮助读者系统化地进行性能优化,从而显著提升系统的整体表现。 流程概述: 系统性能优化的流程可以分为以下几个关键步骤&#x…...
241120学习日志——[CSDIY] [InternStudio] 大模型训练营 [09]
CSDIY:这是一个非科班学生的努力之路,从今天开始这个系列会长期更新,(最好做到日更),我会慢慢把自己目前对CS的努力逐一上传,帮助那些和我一样有着梦想的玩家取得胜利!!&…...
MySQL创建和管理触发器
1.在教务管理系统数据库d_eams的course表中,创建一个插入事件触发器tr_course,添加一条课程信息时,显示提示信息。 delimiter %% create trigger tr_course after insert on course for each row begin set tr_i 操作成功!; end…...
uniapp rpx兼容平板
问题: 使用uniapp开发平板端时, rpx/upx 内容过小, 没有适应屏幕 原因: uniapp 默认支持最大设备宽度为960px 而平板宽度超出了960 uniapp官方文档https://uniapp.dcloud.io/collocation/pages?idglobalstyle 解决: // pages.json 文件: {//..."globalSt…...
mysql 唯一键
在数据库中,唯一键(Unique Key)是一种约束条件,用于确保表中的某一列或多列组合的数据具有唯一性。这意味着在这列或这些列中不能有两个相同的值。唯一键的主要目的是保证数据的完整性和准确性,防止重复记录的插入。 …...
C++设计模式行为模式———迭代器模式
文章目录 一、引言二、迭代器模式三、总结 一、引言 迭代器模式是一种行为设计模式, 让你能在不暴露集合底层表现形式 (列表、 栈和树等) 的情况下遍历集合中所有的元素。C标准库中内置了很多容器并提供了合适的迭代器,尽管我们不…...
Flutter:SlideTransition位移动画,Interval动画延迟
配置vsync,需要实现一下with SingleTickerProviderStateMixinclass _MyHomePageState extends State<MyHomePage> with SingleTickerProviderStateMixin{// 定义 AnimationControllerlate AnimationController _controller;overridevoid initState() {super.…...
Ruby Socket 编程
Ruby Socket 编程 Ruby 是一种动态、开放源代码的编程语言,以其简洁明了的语法和强大的功能而受到许多开发者的喜爱。在 Ruby 中,Socket 编程是一种重要的网络编程技术,它允许程序员创建可以在网络中通信的程序。本文将详细介绍 Ruby Socket 编程的基础知识,包括如何创建 …...
内容安全与系统构建加速,助力解决生成式AI时代的双重挑战
内容安全与系统构建加速,助力解决生成式AI时代的双重挑战 0. 前言1. PRCV 20241.1 大会简介1.2 生成式 Al 时代的内容安全与系统构建加速 2. 生成式 AI2.1 生成模型2.2 生成模型与判别模型的区别2.3 生成模型的发展 3. GAI 内容安全3.1 GAI 时代内容安全挑战3.2 图像…...
基于Vue的微前端架构实现与挑战
引言 微前端架构作为一种新兴的前端开发方案,能够有效解决大型应用的复杂性问题。本文将详细探讨基于Vue实现微前端的具体方案及其面临的挑战。 什么是微前端? 微前端是一种将前端应用分解成一系列更小、更易管理的独立应用的架构模式。每个子应用可以…...
UE5 DownloadImage加载jpg失败的解决方法
DownloadImage加载jpg失败的解决方法 现象解决方案具体方法 现象 用UE自带的 DownloadImage 无法下载成功,从 failure 引脚出来。 接入一个由监控器自动保存起的图像,有些可以正常加载成功,有些无法加载成功。 经调查问题出现在,…...
Consumer Group
不,kafka-consumer-groups.sh 脚本本身并不用于创建 Consumer Group。它主要用于管理和查看 Consumer Group 的状态和详情,比如列出所有的 Consumer Group、查看特定 Consumer Group 的详情、删除 Consumer Group 等。 Consumer Group 是由 Kafka 消费者…...
[开源] SafeLine 好用的Web 应用防火墙(WAF)
SafeLine,中文名 “雷池”,是一款简单好用, 效果突出的 Web 应用防火墙(WAF),可以保护 Web 服务不受黑客攻击 一、简介 雷池通过过滤和监控 Web 应用与互联网之间的 HTTP 流量来保护 Web 服务。可以保护 Web 服务免受 SQL 注入、XSS、 代码注…...
vue3 路由守卫
在Vue 3中,路由守卫是一种控制和管理路由跳转的机制。它允许你在执行导航前后进行一些逻辑处理,比如权限验证、数据预取等,从而增强应用的安全性和效率。路由守卫分为几种不同的类型,每种类型的守卫都有其特定的应用场景。 其实路…...
unigui 登陆界面
新建项目,因为我的Main页面做了其他的东西,所以我在这里新建一个form File -> New -> From(Unigui) -> 登录窗体 添加组件:FDConnection,FDQuery,DataSource,Unipanel和几个uniedit,…...
Ubuntu,openEuler,MySql安装
文章目录 Ubuntu什么是Ubuntu概述Ubuntu版本简介桌面版服务器版 部署系统新建虚拟机安装系统部署后的设置设置root密码关闭防火墙启用允许root进行ssh安装所需软件制作快照 网络配置Netplan概述配置详解配置文件DHCP静态IP设置 软件安装方法apt安装软件作用常用命令配置apt源 d…...
LLM( Large Language Models)典型应用介绍 1 -ChatGPT Large language models
ChatGPT 是基于大型语言模型(LLM)的人工智能应用。 GPT 全称是Generative Pre-trained Transformer。-- 生成式预训练变换模型: Generative(生成式):可以根据输入生成新的文本内容,例如回答问题…...
deepin系统下载pnpm cnpm等报错
deepin系统下载pnpm cnpm等报错 npm ERR! request to https://registry.npm.taobao.org/pnpm failed, reason: certificate has expired 报错提示证书过期,执行以下命令 npm config set registry https://registry.npmmirror.com下载pnpm npm install pnpm -g查…...
RPC-健康检测机制
什么是健康检测? 在真实环境中服务提供方是以一个集群的方式提供服务,这对于服务调用方来说,就是一个接口会有多个服务提供方同时提供服务,调用方在每次发起请求的时候都可以拿到一个可用的连接。 健康检测,能帮助从连…...
数据结构-二叉树_堆
目录 1.二叉树的概念 编辑1.1树的概念与结构 1.2树的相关语 1.3 树的表示 2. ⼆叉树 2.1 概念与结构 2.2 特殊的⼆叉树 2.2.2 完全⼆叉树 2.3 ⼆叉树存储结构 2.3.1 顺序结构 2.3.2 链式结构 3. 实现顺序结构⼆叉树 3.2 堆的实现 3.2.2 向下调整算法 1.二叉树的概…...
“无关紧要”的小知识点:“xx Packages Are Looking for Funding”——npm fund命令及运行机制
“无关紧要”的小知识点:“xx Packages Are Looking for Funding”——npm fund 命令及运行机制 在 Node.js 和 npm 生态系统中,开源项目的持续发展和维护常常依赖于贡献者的支持和资助。为了让开发者更容易了解他们依赖的项目哪些有资金支持选项&#…...
【案例】---Hutool提取excel文档
目录 一、前言二、提取excel文档2.1、核心代码一、前言 引用jar包 <!--hutool--><dependency><groupId>cn.hutool</groupId>...
GPT-1.0、GPT-2.0、GPT-3.0参数对比
以下是 GPT-1.0、GPT-2.0、GPT-3.0 的模型参数对比表格: 模型GPT-1.0GPT-2.0GPT-3.0参数数量117M1.5B175B层数12 层12 - 48 层96 层嵌入维度768768 - 160012,288注意力头数1212 - 2596上下文长度51210242048词汇表大小约 40,00050,00050,000训练数据BooksCorpus (约…...
鸿蒙网络编程系列48-仓颉版UDP回声服务器示例
1. UDP回声服务器简介 回声服务器指的是这样一种服务器,它接受客户端的连接,并且把收到的数据原样返回给客户端,本系列的第2篇文章《鸿蒙网络编程系列2-UDP回声服务器的实现》中基于ArkTS语言在API 9的环境下实现了UDP回声服务器,…...
110. UE5 GAS RPG 实现玩家角色数据存档
在这篇,我们实现将玩家数据保存到存档内。 增加保存玩家属性 玩家属性默认的等级,经验值,可分配的技能点和属性点。还有一些角色基础属性也需要保存,回忆一下,我们是如何实现玩家的属性的,我们是通过多个…...
Excel - VLOOKUP函数将指定列替换为字典值
背景:在根据各种复杂的口径导出报表数据时,因为关联的表较多、数据量较大,一行数据往往会存在三个以上的字典数据。 为了保证导出数据的效率,博主选择了导出字典code值后,在Excel中处理匹配字典值。在查询百度之后&am…...
多线程并发造成的数据重复问题解决方案参考(笔记记录)
一、添加 MySQL 组合唯一索引,需要注意什么坑? 在 MySQL 中,创建组合唯一索引(Composite Unique Index)时,需要注意以下一些容易踩的坑: 1. 字段顺序影响索引使用 问题:组合唯一索…...
使用uniapp开发微信小程序使用uni_modules导致主包文件过大,无法发布的解决方法
在使用uniapp开发微信小程序时候,过多的引入uni_modules的组件库,会导致主包文件过大,导致无法上传微信小程序,主包要求大小不超过1.5MB.分包大小每个不能超过2M。 解决方法:分包。 1.对每个除了主页面navbar的页面进…...
01_MinIO部署(Windows单节点部署/Docker化部署)
单节点-Windows环境安装部署 在Windows环境安装MinIO,主要包含两个东西: MinIO Server(minio.exe):应用服务本身MinIO Client(mc.exe):MinIO客户端工具(mc)…...
uniapp微信小程序转发跳转指定页面
onShareAppMessage 是微信小程序中的一个重要函数,用于自定义转发内容。当用户点击右上角的菜单按钮,并选择“转发”时,会触发这个函数。开发者可以在这个函数中返回一个对象,用于定义分享卡片的标题、图片、路径等信息。 使用场…...
【AI知识】两类最主流AI应用(文生图、ChatGPT)中的目标函数
之前写过一篇 【AI知识】了解两类最主流AI任务中的目标函数,介绍了AI最常见的两类任务【分类、回归】的基础损失函数【交叉熵、均方差】,以初步了解AI的训练目标。 本篇更进一步,聊一聊流行的“文生图”、“聊天机器人ChatGPT”模型中的目标函…...
区块链入门—带你快速了解(通俗易懂)
读懂这篇文章需要有一定的数据结构与算法的基础。 本篇文章如果有不正确的地方,欢迎指正。 目录 一、区块链基础 1.基本概念 2.核心特性 3.区块链分类 4.区块链发展历程 二、区块链技术概念 1.技术架构 2.区块图解 3.共识机制 4.智能合约 5.密码学—哈…...
【数据库知识】mysql进阶-Mysql数据库的主从复制
mysql主从复制 概述一、数据同步机制二、复制流程三、保证数据一致性的措施四、复制拓扑结构五、应用场景与优势 双主复制的过程一、配置前的准备二、配置主服务器三、配置从服务器(相对角色)四、验证复制状态五、处理潜在的问题 双主复制如何解决冲突问…...
深度学习中的mAP
在深度学习中,mAP是指平均精度均值(mean Average Precision),它是深度学习中评价模型好坏的一种指标(metric),特别是在目标检测中。 精确率和召回率的概念: (1).精确率(Precision):预测阳性结果中实际正确的比例(TP / …...
TB6612电机驱动模块使用指南
实物图: 简介:TB6612是一款双路H桥型直流电机驱动模块,可以控制两个直流电机的转速和方向 H桥:(双路H桥就是有两个这个结构) 引脚图:...
小试牛刀-Anchor安装和基础测试
目录 一、编写目的 二、安装步骤 2.1 安装Rust 设置rustup镜像 安装Rust 2.2 安装node.js 2.3 安装Solana-CLI 2.4 安装Anchor CLI 三、Program测试 四、可能出现的问题 Welcome to Code Blocks blog 本篇文章主要介绍了 [Anchor安装和基础测试] 博主广交技术好友&…...
基于FPGA(现场可编程门阵列)的SD NAND图片显示系统是一个复杂的项目,它涉及硬件设计、FPGA编程、SD卡接口、NAND闪存控制以及图像显示等多个方面
文章目录 0、前言 1、目标 2、图片的预处理 3、SD NAND的预处理 4、FPGA实现 4.1、详细设计 4.2、仿真 4.3、实验结果 前言 在上一篇文章《基于FPGA的SD卡的数据读写实现(SD NAND FLASH)》中,我们了解到了SD NAND Flash的相关知识&am…...
1.tree of thought (使用LangChain解决4x4数独问题)
本教程将介绍如何使用LangChain库和chatglm API来解决一个4x4的数独问题。我们将通过以下步骤实现这一目标: 初始化chatglm 的聊天模型。定义数独问题和解决方案。创建一个自定义的检查器来验证每一步的思考。使用ToTChain来运行整个思考过程。 1. 初始化chatglm4…...