当前位置: 首页 > news >正文

OpenHarmony - 小型系统内核(LiteOS-A)(六)

OpenHarmony - 小型系统内核(LiteOS-A)(六)


七、文件系统

支持的文件系统

FAT

基本概念

FAT文件系统是File Allocation Table(文件配置表)的简称,主要包括DBR区、FAT区、DATA区三个区域。其中,FAT区各个表项记录存储设备中对应簇的信息,包括簇是否被使用、文件下一个簇的编号、是否文件结尾等。FAT文件系统有FAT12、FAT16、FAT32等多种格式,其中,12、16、32表示对应格式中FAT表项的比特数,它们同时也限制了文件系统中的最大文件大小。FAT文件系统支持多种介质,特别在可移动存储介质(U盘、SD卡、移动硬盘等)上广泛使用,使嵌入式设备和Windows、Linux等桌面系统保持很好的兼容性,方便用户管理操作文件。

OpenHarmony内核支持FAT12、FAT16与FAT32三种格式的FAT文件系统,具有代码量小、资源占用小、可裁切、支持多种物理介质等特性,并且与Windows、Linux等系统保持兼容,支持多设备、多分区识别等功能。OpenHarmony内核支持硬盘多分区,可以在主分区以及逻辑分区上创建FAT文件系统。

运行机制

FAT文件系统设计与物理布局的相关文档在互联网上非常丰富,请开发者自行搜索查看。

OpenHarmony LiteOS-A内核通过Bcache提升FAT文件系统性能,Bcache是block cache的简称。当发生读写时,Bcache会缓存读写扇区附近的扇区,以减少I/O次数,提高性能。Bcache的基本缓存单位为block,每个block大小一致(默认有28个block,每个block缓存64个扇区的数据)。当Bcache脏块率(脏扇区数/总扇区数)达到阈值时,会触发写回;如果脏块率未达到阈值,则不会将缓存数据写回磁盘。如果需要保证数据写回,开发者应当调用sync和fsync触发写回。FAT文件系统的部分接口也会触发写回操作(如close、umount等),但开发者不应当基于这些接口触发写回。

开发指导

开发流程

基本使用流程为挂载→操作→卸载。

SD卡或MMC的设备名为mmcblk[x]p[y],文件系统类型为“vfat”。

示例:

mount("/dev/mmcblk0p0", "/mnt", "vfat", 0, NULL);

icon-note.gif

说明:

  • FAT文件系统中,单个文件不能大于4 GiB。

  • 当有两个SD卡插槽时,卡0和卡1不固定,先插上的为卡0,后插上的为卡1。

  • 当多分区功能打开,存在多分区的情况下,卡0注册的设备节点/dev/mmcblk0(主设备)和/dev/mmcblk0p0(次设备)是同一个设备,禁止对主设备进行操作。

  • 为避免SD卡使用异常或内存泄漏,SD卡使用过程中拔卡,用户必须先关闭正处于打开状态的文件和目录,并且卸载挂载节点。

  • 在format操作之前,需要首先umount挂载点。

  • 当Bcache功能生效时,需要注意:

    • 当mount函数的入参为MS_NOSYNC时,FAT不会主动将cache的内容写回存储器件。FAT的如下接口(open、close、 unlink、rename、mkdir、rmdir、truncate)不会自动进行sync操作,速度可以提升,但是需要上层主动调用sync来进行数据同步,否则可能会数据丢失。

    • Bcache有定时写回功能。在menuconfig中开启LOSCFG_FS_FAT_CACHE_SYNC_THREAD选项,打开后系统会创建一个任务定时写回Bcache中的数据,默认每隔5秒检查Bcache中脏数据块比例,超过80%时进行sync操作,将Bcache中的脏数据全部写回磁盘。任务优先级、刷新时间间隔以及脏数据块比例的阈值可分别通过接口LOS_SetSyncThreadPrio、 LOS_SetSyncThreadInterval和LOS_SetDirtyRatioThreshold设置。

    • 当前cache的默认大小为28个块,每个块64个扇区。

JFFS2

基本概念

JFFS2是Journalling Flash File System Version 2(日志文件系统)的缩写,是针对MTD设备的日志型文件系统。

OpenHarmony内核的JFFS2主要应用于NOR FLASH闪存,其特点是:可读写、支持数据压缩、提供了崩溃/掉电安全保护、提供“写平衡”支持等。闪存与磁盘介质有许多差异,直接将磁盘文件系统运行在闪存设备上,会导致性能和安全问题。为解决这一问题,需要实现一个特别针对闪存的文件系统,JFFS2就是这样一种文件系统。

运行机制

关于JFFS2文件系统的在存储设备上的实际物理布局,及文件系统本身的规格说明,请参考JFFS2的官方规格说明文档。

这里仅列举几个对开发者和使用者会有一定影响的JFFS2的重要机制/特征:

  1. Mount机制及速度问题:按照JFFS2的设计,所有的文件会按照一定的规则,切分成大小不等的节点,依次存储到flash设备上。在mount流程中,需要获取到所有的这些节点信息并缓存到内存里。因此,mount速度和flash设备的大小和文件数量的多少成线性比例关系。这是JFFS2的原生设计问题,对于mount速度非常介意的用户,可以在内核编译时开启“Enable JFFS2 SUMMARY”选项,可以极大提升mount的速度。这个选项的原理是将mount需要的信息提前存储到flash上,在mount时读取并解析这块内容,使得mount的速度变得相对恒定。这个实际是空间换时间的做法,会消耗8%左右的额外空间。

  2. 写平衡的支持:由于flash设备的物理属性,读写都只能基于某个特定大小的“块”进行,为了防止某些特定的块磨损过于严重,在JFFS2中需要对写入的块进行“平衡”的管理,保证所有的块的写入次数都是相对平均的,进而保证flash设备的整体寿命。

  3. GC(garbage collection)机制:在JFFS2里发生删除动作,实际的物理空间并不会立即释放,而是由独立的GC线程来做空间整理和搬移等GC动作,和所有的GC机制一样,在JFFS2里的GC会对瞬时的读写性能有一定影响。另外,为了有空间能被用来做空间整理,JFFS2会对每个分区预留3块左右的空间,这个空间是用户不可见的。

  4. 压缩机制:当前使用的JFFS2,底层会自动的在每次读/写时进行解压/压缩动作,实际IO的大小和用户请求读写的大小并不会一样。特别在写入时,不能通过写入大小来和flash剩余空间的大小来预估写入一定会成功或者失败。

  5. 硬链接机制:JFFS2支持硬链接,底层实际占用的物理空间是一份,对于同一个文件的多个硬连接,并不会增加空间的占用;反之,只有当删除了所有的硬链接时,实际物理空间才会被释放。

开发指导

对于基于JFFS2和nor flash的开发,总体而言,与其他文件系统非常相似,因为都有VFS层来屏蔽了具体文件系统的差异,对外接口体现也都是标准的POSIX接口。

对于整个裸nor flash设备而言,没有集中的地方来管理和记录分区的信息。因此,需要通过其他的配置方式来传递这部分信息(当前使用的方式是在烧写镜像的时候,使用bootargs参数配置的),然后在代码中调用相应的接口来添加分区,再进行挂载动作。

制作JFFS2文件系统镜像

使用mkfs.jffs2工具,制作镜像默认命令如下。页大小默认为4KiB,eraseblock大小默认64KiB。若实际参数与下面不同时,修改相应参数。

./mkfs.jffs2 -d rootfs/ -o rootfs.jffs2

表1 指令含义表(更详细的介绍可以通过mkfs.jffs2 --help来查看)

指令含义
-s页大小,不指定默认为4KiB。
-eeraseblock大小,不指定默认为64KiB。
-p镜像大小。在镜像文件后面,用0xFF填充至指定大小,不指定则用0xFF填充至eraseblock对齐。
-d要制作成文件系统镜像的源目录。
-o要制成的镜像名称。

挂载JFFS2分区

调用int mount(const char *source, const char *target, const char *filesystemtype, unsigned long mountflags, const void *data)函数实现设备节点和挂载点的挂载。

该函数有五个参数,第一个参数const char *source,表示设备节点,第二个参数const char *target表示挂载点。第三个参数 const char *filesystemtype,表示文件系统类型。

最后两个参数unsigned long mountflags和const void *data表示挂载标志和数据,默认为0和NULL;这一操作也可以在Shell中使用mount命令实现,最后两个参数不需要用户给出。

运行命令:

OHOS # mount /dev/spinorblk1 /jffs1 jffs2

将从串口得到如下回应信息,表明挂载成功。

OHOS # mount /dev/spinorblk1 /jffs1 jffs2
mount OK

挂载成功后,用户就能对norflash进行读写操作。

卸载JFFS2分区

调用int umount(const char *target)函数卸载分区,只需要正确给出挂载点即可。

运行命令:

OHOS # umount /jffs1

将从串口得到如下回应信息,表明卸载成功。

OHOS # umount /jffs1
umount ok

NFS

基本概念

NFS是Network File System(网络文件系统)的缩写。它最大的功能是可以通过网络,让不同的机器、不同的操作系统彼此分享其他用户的文件。因此,用户可以简单地将它看做是一个文件系统服务,在一定程度上相当于Windows环境下的共享文件夹。

运行机制

OpenHarmony LiteOS-A内核的NFS文件系统指的是NFS的客户端,NFS客户端能够将远程的NFS服务端分享的目录挂载到本地的机器中,运行程序和共享文件,但不占用当前系统的存储空间,在本地端的机器看起来,远程服务端的目录就好像是自己的一个磁盘一样。

开发指导

  1. 搭建NFS服务器。

    这里以Ubuntu操作系统为例,说明服务器端设置步骤。

    • 安装NFS服务器软件。

      设置好Ubuntu系统的下载源,保证网络连接好的情况下执行:

      sudo apt-get install nfs-kernel-server
      
    • 创建用于挂载的目录并设置完全权限。

      mkdir -p /home/sqbin/nfs
      sudo chmod 777 /home/sqbin/nfs
      
    • 设置和启动NFS server。

      修改NFS配置文件/etc/exports,添加如下一行:

      /home/sqbin/nfs *(rw,no_root_squash,async)
      

      其中/home/sqbin/nfs是NFS共享的根目录。

      执行以下命令启动NFS server:

      sudo /etc/init.d/nfs-kernel-server start
      

      执行以下命令重启NFS server:

      sudo /etc/init.d/nfs-kernel-server restart
      
  2. 设置单板为NFS客户端。

    本指导中的NFS客户端指运行OpenHarmony内核的设备。

    • 硬件连接设置。

      OpenHarmony内核设备连接到NFS服务器的网络。设置两者IP,使其处于同一网段。比如,设置NFS服务器的IP为10.67.212.178/24,设置OpenHarmony内核设备IP为 10.67.212.3/24,注意:此IP为内网私有IP地址,用户使用时有差异,以用户实际IP为准。

      OpenHarmony内核设备上的IP信息可通过ifconfig命令查看。

    • 启动网络,确保单板到NFS服务器之间的网络通畅。

      启动以太网或者其他类型网络,使用ping命令检查到服务器的网络是否通畅。

      OHOS # ping 10.67.212.178
      [0]Reply from 10.67.212.178: time=1ms TTL=63
      [1]Reply from 10.67.212.178: time=0ms TTL=63
      [2]Reply from 10.67.212.178: time=1ms TTL=63
      [3]Reply from 10.67.212.178: time=1ms TTL=63
      --- 10.67.212.178 ping statistics ---
      packets transmitted, 4 received, 0 loss

    客户端NFS初始化,运行命令:

    OHOS # mkdir /nfs
    OHOS # mount 10.67.212.178:/home/sqbin/nfs /nfs nfs 1011 1000
    

    将从串口得到如下回应信息,表明初始化NFS客户端成功。

    OHOS # mount 10.67.212.178:/home/sqbin/nfs /nfs nfs 1011 1000
    Mount nfs on 10.67.212.178:/home/sqbin/nfs, uid:1011, gid:1000
    Mount nfs finished.
    

    该命令将服务器10.67.212.178上的/home/sqbin/nfs目录挂载到OpenHarmony内核设备上的/nfs上。

    icon-note.gif

    说明: 本例默认nfs server已经配置可用,即示例中服务器10.67.212.178上的/home/sqbin/nfs已配置可访问。

    mount命令的格式为:

    mount <SERVER_IP:SERVER_PATH> <CLIENT_PATH> nfs
    

    其中“SERVER_IP”表示服务器的IP地址;“SERVER_PATH”表示服务器端NFS共享目录路径;“CLIENT_PATH”表示设备上的NFS路径,“nfs”表示客户端要挂载的路径,可以根据自己需要替换。

    如果不想有NFS访问权限限制,可以在Linux命令行将NFS根目录权限设置成777:

    chmod -R 777 /home/sqbin/nfs
    

    至此,NFS客户端设置完毕。NFS文件系统已成功挂载。

  3. 利用NFS共享文件。

    在NFS服务器下新建目录dir,并保存。在OpenHarmony内核下运行ls命令:

    OHOS # ls /nfs
    

    则可从串口得到如下回应:

    OHOS # ls /nfs 
    Directory /nfs:                 
    drwxr-xr-x 0        u:0     g:0     dir
    

    可见,刚刚在NFS服务器上新建的dir目录已同步到客户端(OpenHarmony内核系统)的/nfs目录,两者保持同步。

    同样地,在客户端(OpenHarmony内核系统)上创建文件和目录,在NFS服务器上也可以访问,读者可自行体验。

    icon-note.gif

    说明: 目前,NFS客户端仅支持NFS v3部分规范要求,因此对于规范支持不全的服务器,无法完全兼容。在开发测试过程中,建议使用Linux的NFS server,其对NFS支持很完善。

Ramfs

基本概念

RAMFS是一个可动态调整大小的基于RAM的文件系统。RAMFS没有后备存储源。向RAMFS中进行的文件写操作也会分配目录项和页缓存,但是数据并不写回到任何其他存储介质上,掉电后数据丢失。

运行机制

RAMFS文件系统把所有的文件都放在 RAM 中,所以读/写操作发生在RAM中,可以用RAMFS来存储一些临时性或经常要修改的数据,例如/tmp和/var目录,这样既避免了对存储器的读写损耗,也提高了数据读写速度。

开发指导

挂载:

mount(NULL, "/dev/shm", "ramfs", 0, NULL)

创建目录:

mkdir(pathname, mode)

创建文件:

open(pathname, O_NONBLOCK | O_CREAT | O_RDWR, mode)

读取目录:

dir = opendir(pathname) 
ptr = readdir(dir)
closedir(dir)

删除文件:

unlink(pathname)

删除目录:

rmdir(pathname)

去挂载:

umount("/dev/shm")

icon-caution.gif

注意:

  • RAMFS只能挂载一次,一次挂载成功后,后面不能继续挂载到其他目录。

  • RAMFS属于调测功能,默认配置为关闭,正式产品中不要使用该功能。

Procfs

基本概念

procfs是进程文件系统的简称,是一种虚拟文件系统,他用文件的形式,展示进程或其他系统信息。相比调用接口的方式获取信息,以文件操作的方式获取系统信息更为方便。

运行机制

OpenHarmony内核中,procfs在开机时会自动挂载到/proc目录下,仅支持内核模块创建文件节点来提供查询服务。

开发指导

procfs文件的创建无法使用一般的文件系统接口,需要使用ProcMkdir接口创建目录,使用CreateProcEntry接口创建文件。文件节点功能的开发就是实现read和write函数的钩子挂到CreateProcEntry创建的文件中。当用户使用读写procfs的文件时,就会调用到钩子函数来实现自定义的功能。

编程实例

下面我们以创建/proc/hello/world文件为例,实现如下功能:

1.在/proc/hello/world位置创建一个文件

2.当读文件内容时,返回"HelloWorld!"

3.当写文件内容时,打印写入的内容

#include "proc_fs.h"static int TestRead(struct SeqBuf *buf, void *arg)
{LosBufPrintf(buf, "Hello World!\n"); /* 将数据打印到buffer中,这个buffer中的数据会返回到read的结果中 */return 0;
}static int TestWrite(struct ProcFile *pf, const char *buffer, size_t buflen, loff_t *ppos)
{if ((buffer == NULL) || (buflen <= 0)) {return -EINVAL;}PRINTK("your input is: %s\n", buffer); /* 注意和上面的read接口区别,这是对write接口输入命令的反馈,这个打印只会打印到控制台 */return buflen;
}
static const struct ProcFileOperations HELLO_WORLD_OPS = {.read = TestRead,.write = TestWrite,
};void HelloWorldInit(void)
{/* 创建hello目录 */struct ProcDirEntry *dir = ProcMkdir("hello", NULL);if (dir == NULL) {PRINT_ERR("create dir failed!\n");return;}/* 创建world文件 */struct ProcDirEntry *entry = CreateProcEntry("world", 0, dir);if (entry == NULL) {PRINT_ERR("create entry failed!\n");return;}/* 将自定义的read和write钩子挂到文件中 */entry->procFileOps = &HELLO_WORLD_OPS;
}

结果验证

启动后在shell输入如下命令

OHOS # cat /proc/hello/world
OHOS # Hello World!
OHOS # echo "yo" > /proc/hello/world
OHOS # your input is: yo

相关文章:

OpenHarmony - 小型系统内核(LiteOS-A)(六)

OpenHarmony - 小型系统内核&#xff08;LiteOS-A&#xff09;&#xff08;六&#xff09; 七、文件系统 支持的文件系统 FAT 基本概念 FAT文件系统是File Allocation Table&#xff08;文件配置表&#xff09;的简称&#xff0c;主要包括DBR区、FAT区、DATA区三个区域。其…...

“星睿O6” AI PC开发套件评测 - Windows on Arm 安装指南和性能测评

引言 Radxa联合此芯科技和安谋科技推出全新的"星睿O6"迷你 ITX 主板。该系统搭载了 CIX P1&#xff08;CD8180&#xff09;12 核 Armv9 处理器&#xff0c;拥有高达30T算力的NPU和高性能的GPU&#xff0c;最高配备64GB LPDDR内存&#xff0c;并提供了如 5GbE、HDMI …...

JS实现RSA加密

目录 目标 环境 实现RSA加解密 计算RSA加密允许的最大字节长度 目标 使用JS实现RSA加密解密。计算RSA加密允许的最大字节长度。 环境 node-rsa 实现RSA加解密 const NodeRSA require(node-rsa);function getKey() {const keyLength512// 创建 RSA 密钥对const key new …...

Seata方案详细

Seata&#xff08;Simple Extensible Autonomous Transaction Architecture&#xff09;是阿里开源的分布式事务解决方案&#xff0c;支持多种事务模式&#xff0c;提供一站式的事务管理能力。以下是其核心原理、模式及实践的详细解析&#xff1a; 一、Seata核心架构与角色 Se…...

深入了解v-model的原理:v-model拆分为value属性和input事件,表单类组件的封装并用v-model简化代码

文章目录 1.v-model的原理1.1.验证:在input文本输入框中不使用v-model实现双向数据绑定1.2.验证:v-model在下拉菜单中的拆分 2.表单类组件的封装2.1.原理或步骤2.2.示例:表单类组件封装之下拉菜单select的封装 3.使用v-model简化代码完整代码 4.拓展示例:完成input文本输入框的…...

设计模式每日硬核训练 Day 14:组合模式(Composite Pattern)完整讲解与实战应用

&#x1f504; 回顾 Day 13&#xff1a;桥接模式小结 在 Day 13 中&#xff0c;我们学习了桥接模式&#xff08;Bridge Pattern&#xff09;&#xff1a; 用于将“抽象”与“实现”分离&#xff0c;适用于双维度变化场景&#xff08;如图形类型 渲染方式&#xff09;。它强调…...

RMSIN论文阅读

自适应旋转卷积 (ARC)是否可以换成可变形卷积 研究背景 指向性遥感图像分割&#xff08;RRSIS&#xff09;&#xff1a;旨在根据文本描述实现遥感图像中目标对象的像素级定位 像素级定位&#xff1a;像素级定位指的是在图像中对目标对象的每个像素进行准确的定位和标记。这意味…...

【音视频】FLV格式分析

FLV概述 FLV(Flash Video)是Adobe公司推出的⼀种流媒体格式&#xff0c;由于其封装后的⾳视频⽂件体积⼩、封装简单等特点&#xff0c;⾮常适合于互联⽹上使⽤。⽬前主流的视频⽹站基本都⽀持FLV。采⽤FLV格式封装的⽂件后缀为.flv。 FLV封装格式是由⼀个⽂件头(file header)和…...

华为OD机试真题——最小的调整次数/特异性双端队列(2025A卷:100分)Java/python/JavaScript/C++/C语言/GO六种最佳实现

2025 A卷 100分 题型 本文涵盖详细的问题分析、解题思路、代码实现、代码详解、测试用例以及综合分析&#xff1b; 并提供Java、python、JavaScript、C、C语言、GO六种语言的最佳实现方式&#xff01; 2025华为OD真题目录全流程解析/备考攻略/经验分享 华为OD机试真题《最小的调…...

华为OD机试真题——统计匹配的二元组个数(2025A卷:100分)Java/python/JavaScript/C++/C语言/GO六种最佳实现

2025 A卷 100分 题型 本文涵盖详细的问题分析、解题思路、代码实现、代码详解、测试用例以及综合分析&#xff1b; 并提供Java、python、JavaScript、C、C语言、GO六种语言的最佳实现方式&#xff01; 2025华为OD真题目录全流程解析/备考攻略/经验分享 华为OD机试真题《统计匹配…...

4.16学习总结

完成134. 加油站 - 力扣&#xff08;LeetCode&#xff09;算法题 学习了filewriter的相关方法&#xff0c;了解了字符流的底层原理...

java面试篇 4.9

目录 mybatis&#xff1a; 1、mybatis的执行流程 2、mybatis是否支持延迟加载&#xff1f; 当我们需要去开启全局的懒加载时&#xff1a; 3、mybatis的一级和二级缓存 微服务 1、springcloud五大组件有哪些 2、服务注册和发现是什么意思&#xff1f;springcloud如何实现…...

子函数嵌套的意义——以“颜色排序”为例(Python)

多一层缩进精减参数传递&#xff0c;参数少平铺书代码写更佳。 笔记模板由python脚本于2025-04-16 11:52:53创建&#xff0c;本篇笔记适合喜欢子函数嵌套结构代码形式的coder翻阅。 【学习的细节是欢悦的历程】 博客的核心价值&#xff1a;在于输出思考与经验&#xff0c;而不仅…...

Python深度学习实现验证码识别全攻略

放在前面 Python深度学习实现验证码识别全攻略 Python深度学习实现验证码识别全攻略 在网络安全领域&#xff0c;验证码作为人机区分的关键防线&#xff0c;广泛应用于登录、注册等场景。随着技术演进&#xff0c;验证码样式愈发复杂&#xff0c;传统识别手段力不从心&#…...

【Linux】su、su-、sudo、sudo -i、sudo su - 命令有什么区别?分别适用什么场景?

目录 su su- sudo sudo -i sudo su - /etc/sudoers su 该命令将启动非登录shell&#xff0c;即虽然以该用户身份启动shell&#xff0c;但使用的是原始用户的环境设置。普通用户账户运行 su 命令切换到另一用户账户&#xff0c;需提供要切换的账户的密码。root用户&…...

算法-同余原理

在计算n个数相加或者相乘再取余时&#xff0c;中间结果可能会溢出导致结果错误&#xff0c;这时可以使用同余原理 一、同余原理 ①加法同余 &#xff08;a[1] a[2] ... a[n]&#xff09;% m > (a[1] % m a[2] % m ... a[n] % m) % m ② 乘法同余 &#xff08;…...

深入理解卷积神经网络(CNN):从原理到实践

引言 卷积神经网络(Convolutional Neural Networks, CNN)是深度学习领域最具影响力的架构之一&#xff0c;尤其在计算机视觉任务中表现出色。自2012年AlexNet在ImageNet竞赛中一战成名以来&#xff0c;CNN不断演进&#xff0c;推动着图像识别、医疗影像分析、自动驾驶等领域的快…...

深度学习常见模块实现001

文章目录 1.学习目的2.常见模块使用与实现2.1 ResNet18实现2.2 SeNet模块2.3 CBAM模块 1.学习目的 深度学习在图像处理这块&#xff0c;很多模块已经成型&#xff0c;并没有很多新的东西&#xff0c;更多的是不同的模块堆叠&#xff0c;所以需要我们不断总结&#xff0c;动手实…...

Python实现贪吃蛇三

上篇文章Python实现贪吃蛇一&#xff0c;实现了一个贪吃蛇的基础版本。后面第二篇文章Python实现贪吃蛇二修改了一些不足&#xff0c;但最近发现还有两点需要优化&#xff1a; 1、生成食物的时候有概率和记分牌重合 2、游戏缺少暂停功能 先看生成食物的时候有概率和记分牌重合的…...

windows server C# IIS部署

1、添加IIS功能 windows server 2012、windows server 2016、windows server 2019 说明&#xff1a;自带的是.net 4.5 不需要安装.net 3.5 尽量使用 windows server 2019、2016高版本&#xff0c;低版本会出现需要打补丁的问题 2、打开IIS 3、打开iis应用池 .net 4.5 4、添…...

LLM小白自学笔记:1.两种指令微调

一、LoRA 简单来说&#xff0c;LoRA不直接调整个大模型的全部参数&#xff08;那样太费资源&#xff09;&#xff0c;而是在模型的某些层&#xff08;通常是注意力层&#xff09;加个“旁路”——两个小的矩阵&#xff08;低秩矩阵&#xff09;。训练时只更新这俩小矩阵&#x…...

杰弗里·辛顿:深度学习教父

名人说&#xff1a;路漫漫其修远兮&#xff0c;吾将上下而求索。—— 屈原《离骚》 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 杰弗里辛顿&#xff1a;当坚持遇见突破&#xff0c;AI迎来新纪元 一、人物简介 杰弗…...

RHCE 第一次作业

一.定义延迟任务 1.安装邮件服务 [roothaiou ~]# yum install s-nail -y 2.配置邮件服务 [roothaiou ~]# vim /etc/mail.rc 3.测试邮件服务 [roothaiou ~]# echo 88888888 | mail -v -s Passion 13571532874163.com 4.设置定时任务 [roothaiou ~]# crontab -e 二.时间同步…...

库洛游戏一面+二面

目录 一面 1. ArrayList和LinkedList的区别&#xff0c;就是我在插入和删除的时候他们在时间复杂度上有什么区别 2. hashmap在java的底层是怎么实现的 3. 红黑树的实现原理 4. 红黑树的特点 5. 为什么红黑树比链表查询速度快 6. 在java中字符串的操作方式有几种 7. Stri…...

基于多模态深度学习的亚急性脊髓联合变性全流程预测与个性化管理技术方案

目录 技术方案文档1. 数据收集与预处理模块2. 多模态预测模型构建3. 术前风险评估系统4. 术中实时监测系统5. 术后并发症预测与护理6. 统计分析与验证模块7. 健康教育系统技术实现说明技术方案文档 1. 数据收集与预处理模块 功能:构建数据管道,清洗并整合多源数据 伪代码示…...

蓝桥杯日期的题型

做题思路 一般分为3个步骤,首先要定义一个结构体来存储月份的天数,第一循环日期,第二判断日期是否为闰年,第三就是题目求什么 结构体 static int[] ds{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; 判断是否闰年的函数 public static void f(int m,int d){//被4整…...

【树形dp题解】dfs的巧妙应用

【树形dp题解】dfs的巧妙应用 [P2986 USACO10MAR] Great Cow Gathering G - 洛谷 题目大意&#xff1a; Bessie 正在计划一年一度的奶牛大集会&#xff0c;来自全国各地的奶牛将来参加这一次集会。当然&#xff0c;她会选择最方便的地点来举办这次集会。 每个奶牛居住在 N N …...

《AI大模型应知应会100篇》第20篇:大模型伦理准则与监管趋势

第20篇&#xff1a;大模型伦理准则与监管趋势 摘要 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;尤其是大模型&#xff08;如GPT、PaLM等&#xff09;在自然语言处理、图像生成等领域的广泛应用&#xff0c;AI伦理问题和监管挑战日益凸显。本文将梳理当…...

线上教学平台(vue+springboot+ssm+mysql)含文档+PPT

线上教学平台&#xff08;vuespringbootssmmysql&#xff09;含文档PPT 该系统是一个在线教学平台&#xff0c;主要分为管理员和学员两个角色&#xff1b;管理员界面包含首页、交流中心、学员管理、资料类型管理、学习资料管理、交流论坛、我的收藏管理、留言板管理、考试管理…...

Being-0:具有视觉-语言模型和模块化技能的人形机器人智体

25年3月来自北大、北京智源和 BeingBeyond 的论文“Being-0: A Humanoid Robotic Agent with Vision-Language Models and Modular Skills”。 构建能够在现实世界具身任务中达到人类水平表现的自主机器人智体&#xff0c;是人形机器人研究的终极目标。近期&#xff0c;基于基…...

Fiddler 进行断点测试:调试网络请求

目录 一、什么是断点测试&#xff1f; 二、Fiddler 的断点功能 三、如何在 Fiddler 中设置断点&#xff1f; 步骤 1&#xff1a;启动 Fiddler 步骤 2&#xff1a;启用断点 步骤 3&#xff1a;捕获请求 步骤 4&#xff1a;修改请求或响应 四、案例&#xff1a;模拟登录失…...

决策树:ID3,C4.5,CART树总结

树模型总结 决策树部分重点关注分叉的指标&#xff0c;多叉还是单叉&#xff0c;处理离散还是连续值&#xff0c;剪枝方法&#xff0c;以及回归还是分类 一、决策树 ID3(Iterative Dichotomiser 3) 、C4.5、CART决策树 ID3:确定分类规则判别指标、寻找能够最快速降低信息熵的方…...

DDS信号发生器设计

一、基本概述 1.1 DDS简介 DDS信号发生器即直接数字频率合成&#xff08;Direct Digital Frequency Synthesis&#xff0c;简称DDS&#xff09;是一种利用数字技术生成信号的方法。它通过数字信号处理技术&#xff0c;将数字信号转换为模拟信号&#xff0c;从而生成高质量的正…...

23黑马产品经理Day01

今天过了一遍23黑马产品经理的基础视频 问题思考维度 抓住核心用户 为什么需要抓住核心用户&#xff1f; 主要原因&#xff1a;用户越来越细分&#xff0c;保持市场竞争力&#xff0c;产品开发推广更聚焦 做产品为什么要了解用户&#xff1a;了解用户的付费点&#xff0c;…...

18-21源码剖析——Mybatis整体架构设计、核心组件调用关系、源码环境搭建

学习视频资料来源&#xff1a;https://www.bilibili.com/video/BV1R14y1W7yS 文章目录 1. 架构设计2. 核心组件及调用关系3. 源码环境搭建3.1 测试类3.2 实体类3.3 核心配置文件3.4 映射配置文件3.5 遇到的问题 1. 架构设计 Mybatis整体架构分为4层&#xff1a; 接口层&#…...

东方潮流亮相广州益民艺术馆|朋克编码“艺术家潮玩”系列开幕引爆热潮

4月15日&#xff0c;由我的宇宙旗下公司朋克编码携“艺术家潮玩”系列亮相广州白云益民艺术馆&#xff0c;标志着其全国文化推广计划正式启航。本次展览围绕“潮玩艺术东方文化”展开&#xff0c;融合传统文化与当代潮流&#xff0c;以年轻化方式赋能中国文化出海。 展览现场潮…...

充电宝项目:规则引擎Drools学习

文章目录 规则引擎 Drools1 问题2 规则引擎概述2.1 规则引擎2.2 使用规则引擎的优势2.3 规则引擎应用场景2.4 Drools介绍 3 Drools入门案例3.1 创建springboot项目 引入依赖3.2 添加Drools配置类3.4 创建实体类Order3.5 orderScore.drl3.6 编写测试类 4 Drools基础语法4.1 规则…...

C++零基础实践教程 文件输入输出

模块八&#xff1a;文件输入输出 (数据持久化) 在之前的模块中&#xff0c;我们学习了如何使用程序处理数据。然而&#xff0c;当程序结束运行时&#xff0c;这些数据通常会丢失。数据持久化 (Data Persistence) 指的是将程序中的数据存储到非易失性存储介质&#xff08;如硬盘…...

SpringAI+DeepSeek大模型应用开发——1 AI概述

AI领域常用词汇 LLM&#xff08;LargeLanguage Model&#xff0c;大语言模型&#xff09; 能理解和生成自然语言的巨型AI模型&#xff0c;通过海量文本训练。例子&#xff1a;GPT-4、Claude、DeepSeek、文心一言、通义干问。 G&#xff08;Generative&#xff09;生成式: 根据上…...

数据中台进化史:从概念萌芽到价值变现的蜕变之路

在数字化转型的浪潮中&#xff0c;数据中台已成为企业驾驭数据、驱动业务创新的关键力量。回顾数据中台的发展历程&#xff0c;犹如一场从混沌到有序、从萌芽到成熟的精彩蜕变&#xff0c;它由湖仓一体、数据治理平台、数据服务平台三大核心要素逐步构建而成&#xff0c;每一个…...

【Java学习笔记】运算符

运算符 运算符的类型 算数运算符 赋值运算符 关系运算符&#xff08;比较哦啊运算符&#xff09; 逻辑运算符 三元运算符 位运算符&#xff08;需要二进制基础&#xff09; 一、算数运算符 运算符计算范例结果正号77-负号b11; -b-11加法9918-减法10-82*乘法7*856/除法9…...

【python】OpenCV—Tracking(10.6)—People Counting

文章目录 1、功能描述2、代码实现3、效果展示4、完整代码5、涉及到的库函数6、参考来自 更多有趣的代码示例&#xff0c;可参考【Programming】 1、功能描述 借助 opencv-python&#xff0c;用 SSD 人形检测模型和质心跟踪方法实现对人群的计数 基于质心的跟踪可以参考 【pyt…...

JavaSE学习(前端初体验)

文章目录 前言一、准备环境二、创建站点&#xff08;创建一个文件夹&#xff09;三、将站点部署到编写器中四、VScode实用小设置五、案例展示 前言 首先了解前端三件套&#xff1a;HTML、CSS、JS HTML&#xff1a;超文本标记语言、框架层、描述数据的&#xff1b; CSS&#xf…...

智慧城市像一张无形大网,如何紧密连接你我他?

智慧城市作为复杂巨系统&#xff0c;其核心在于通过技术创新构建无缝连接的网络&#xff0c;使物理空间与数字空间深度融合。这张"无形大网"由物联网感知层、城市数据中台、人工智能中枢、数字服务入口和安全信任机制五大支柱编织而成&#xff0c;正在重塑城市运行规…...

Linux常用命令

一、history 用于显示历史命令。 history 10显示最近10条历史命令。!200使用第200行的指令。history -c清空历史记录。 二、pwd 用于显示当前绝对路径。 pwd显示当前绝对路径。 三、ls 用于以行的形式显示当前文件夹下所有内容。 ls -a显示所有内容&#xff0c;包括隐藏文…...

【AI】SpringAI 第二弹:接入 DeepSeek 官方服务

一、接入 DeepSeek 官方服务 通过一个简单的案例演示接入 DeepSeek 实现简单的问答功能 1.添加依赖 <dependency><groupId>org.springframework.ai</groupId><artifactId>spring-ai-starter-model-openai</artifactId> </dependency> 2…...

QT的信号槽的直接触发,队列触发,自动触发

在Qt中&#xff0c;信号槽机制是一个非常强大的特性&#xff0c;它用于实现对象之间的通信。除了默认的直接触发方式之外&#xff0c;Qt还提供了队列触发等不同的触发方式。 1. 直接触发&#xff08;Direct Connection&#xff09; 直接触发是最常见的连接方式&#xff0c;信…...

typescript html input无法输入解决办法

input里加上这个&#xff1a; onkeydown:(e: KeyboardEvent) > {e.stopPropagation();...

工厂能耗系统智能化解决方案 —— 安科瑞企业能源管控平台

安科瑞顾强 政策背景与“双碳”战略驱动 2025年《政府工作报告》明确提出“单位国内生产总值能耗降低3%左右”的目标&#xff0c;要求通过产业结构升级&#xff08;如高耗能行业技术革新或转型&#xff09;、能源结构优化&#xff08;提高非化石能源占比&#xff09;及数字化…...

栅格数据处理

一、栅格数据的引入与基本操作 &#xff08;一&#xff09;加载栅格数据 在 ArcPy 中&#xff0c;栅格数据可以通过 arcpy.Raster 类来加载。例如&#xff0c;如果你有一个存储在本地路径下的栅格数据文件&#xff08;如 GeoTIFF 格式&#xff09;&#xff0c;可以这样加载&a…...