当前位置: 首页 > news >正文

【AI模型对比】AI新宠Kimi与ChatGPT的全面对比:技术、性能、应用全揭秘

文章目录

    • Moss前沿AI
    • 技术背景
      • Kimi人工智能的技术积淀
      • ChatGPT的技术优势
    • 详细对比列表
    • 模型研发
      • Kimi大模型的研发历程
      • ChatGPT的发展演进
    • 参数规模与架构
      • Kimi大模型的参数规模解析
      • ChatGPT的参数体系
    • 模型表现与局限性
      • Kimi大模型的表现
      • ChatGPT的表现
    • 结论:如何选择适合自己的AI模型
    • 技术背景
      • Kimi人工智能的技术积淀
      • ChatGPT的技术优势

随着AI技术的不断成熟,越来越多的AI模型涌现出来,满足不同领域和用户的需求。Kimi大模型和ChatGPT作为其中的佼佼者,凭借其强大的功能和广泛的应用场景,吸引了大量用户的关注和使用。然而,两者在技术实现、应用领域以及性能表现上存在诸多差异,本文将通过详细的对比分析,帮助读者深入理解这两款AI模型的独特之处,进而做出最佳选择。

Moss前沿AI

【OpenAI】获取OpenAI API Key的多种方式全攻略:从入门到精通,再到详解教程!!

【VScode】VSCode中的智能AI-GPT编程利器,全面揭秘ChatMoss & ChatGPT中文版

【GPT-o1系列模型!支持Open API调用、自定义助手、文件上传等强大功能,助您提升工作效率!】>>> - CodeMoss & ChatGPT-AI中文版

技术背景

Kimi人工智能的技术积淀

Kimi人工智能是一个国产AI项目,依托于国内强大的技术积累和算法开发团队,致力于为中国市场提供本土化的AI解决方案。Kimi大模型的研发过程中,广泛使用了大量的中文语料,针对中文语言的特性进行了深度优化。此外,Kimi团队结合中国市场的实际需求,针对教育、医疗、客户服务等特定行业进行了模型的细化和优化,确保其在这些领域能够提供高效、精准的服务。
在这里插入图片描述

ChatGPT的技术优势

ChatGPT由OpenAI开发,是基于Generative Pre-trained Transformer(GPT)架构的自然语言处理模型。作为全球领先的AI研究机构,OpenAI在模型训练中利用了海量的多语言数据,并采用了先进的分布式计算资源进行优化和训练。ChatGPT的发展历程中,经过了多次迭代(GPT-1、GPT-2、GPT-3、GPT-4等),每一次升级都显著提升了其语言理解和生成能力,使其在全球范围内的应用场景中展现出卓越的表现。
在这里插入图片描述

详细对比列表

以下是Kimi大模型与ChatGPT模型在多个关键指标上的详细对比:

指标Kimi大模型ChatGPT模型
技术背景国产AI项目,结合国内技术积累和本土需求开发OpenAI开发,基于全球领先的GPT架构
模型研发基于Transformer架构,针对中文和特定领域优化完全基于Transformer,多次迭代升级(GPT-1至GPT-4)
参数规模约300亿参数GPT-3:1750亿参数,GPT-4更大参数规模
长文本处理能力支持数百万字上下文输入,适合复杂信息分析支持较长文本(约4096个token),适合常规长文本处理
多模态支持支持文本、图像、语音等多种输入方式支持文本和图像输入(DALL-E集成)
中文处理能力专为中文用户设计,表现更自然中文支持良好,但主要优化为英文
应用场景教育、医疗、企业文档分析等特定领域日常对话、创意写作、编程辅助等广泛领域
用户活跃度月活跃用户超过3600万月活跃用户超过5000万
更新频率定期更新,快速迭代定期更新,持续优化
外部信息搜索能力积极搜索外部来源,提供最新信息主要依赖自身知识库,需明确指示才能搜索外部信息
本地化优势更适应中国市场语言习惯和用户需求国际化支持,多语言适应性强
资源消耗与效率优化算法,提高运行效率,适中资源消耗高参数规模对应高算力需求,资源消耗较大
模型表现稳定性在特定领域高效稳定,通用性稍弱高通用性和稳定性,适应多种应用场景
隐私与数据安全本土化管理,符合中国数据安全法规国际标准,需额外关注数据隐私和安全措施

模型研发

Kimi大模型的研发历程

Kimi大模型的研发基于Transformer架构,借鉴了GPT和BERT等开放架构,并结合了国内特定领域的需求进行模型微调和改进。在发展初期,Kimi团队重点关注中文语言处理,通过大量的中文语料库训练模型,使其在中文理解和生成方面表现优异。同时,Kimi大模型在资源有限的情况下,通过优化算法和模型结构,提升了模型的运行效率和响应速度,确保在实际应用中能够高效运行。

ChatGPT的发展演进

ChatGPT的研发完全基于Transformer架构,经过多次迭代和优化,逐步演变为当前强大的AI模型。GPT-3拥有1750亿参数,通过大规模的数据训练,ChatGPT在语言生成质量和多样性方面表现出色。到了GPT-4,模型在理解复杂语境、处理多模态输入(如图像和文本结合)方面进一步提升。OpenAI在研发过程中,不仅投入了大量的算力资源,还采用了先进的优化策略,如强化学习和监督学习相结合,确保模型在不同场景下都能稳定高效地运行。

参数规模与架构

Kimi大模型的参数规模解析

Kimi大模型的参数规模约为300亿,在当前的AI模型中属于中等规模。这一规模的设定,平衡了模型的性能和计算资源的消耗,使其能够在实际应用中高效运行。相比于资源更为丰富的国际大模型,Kimi大模型通过优化算法和模型结构,实现了在较小参数规模下的高效表现,特别是在中文处理和特定领域应用中展现出明显优势。

ChatGPT的参数体系

ChatGPT的GPT-3模型拥有1750亿参数,GPT-4的具体参数规模虽未公开,但可预见其在参数数量上进一步增长。这庞大的参数规模使得ChatGPT能够处理更为复杂的语言任务,生成更加自然和多样化的回应。同时,ChatGPT通过大规模分布式计算资源的支持,确保了其在高负载下依然能够保持高效的响应速度和稳定性。

模型表现与局限性

Kimi大模型的表现

Kimi大模型在中文处理和特定领域应用中表现优异,能够提供高效、精准的服务。模型经过特化训练,能够快速理解和分析大量文献,提高工作效率。然而,Kimi大模型在通用性和多语言支持方面相对有限,对于非中文环境或更为通用的任务,可能需要进一步优化和提升。

ChatGPT的表现

ChatGPT凭借其庞大的参数规模和广泛的数据训练,在多种语言和应用场景中表现稳定。其在语言理解和生成方面的表现尤为突出,能够处理复杂的语境和任务。然而,正因为其高度的通用性,ChatGPT在某些特定领域或专业任务中,可能不如经过特化训练的模型那样精准。此外,ChatGPT对隐私和数据安全的要求也需要更为严格的管理和控制。

结论:如何选择适合自己的AI模型

无论是选择Kimi大模型还是ChatGPT,都需根据自身的具体需求、资源条件和应用目标,进行综合考量。两者在各自领域内都有卓越的表现,合理选择,能够最大化地发挥AI技术的优势,推动业务的持续发展。

技术背景

Kimi人工智能的技术积淀

Kimi人工智能是由国内领先的AI公司推出的,依托于深厚的技术积累和丰富的行业经验,Kimi大模型在中文自然语言处理方面表现突出。其研发团队由业内顶尖的算法专家和工程师组成,致力于将最新的AI研究成果应用于实际业务中。Kimi大模型在训练过程中,广泛采集和使用了海量的中文语料,确保其在理解和生成中文文本时的准确性和流畅性。此外,Kimi还特别注重模型在特定行业中的应用,如教育、医疗和客户服务,通过细化模型训练,提升了其在这些领域中的表现和实用性。

ChatGPT的技术优势

ChatGPT由OpenAI开发,是全球领先的自然语言处理模型之一。基于GPT(Generative Pre-trained Transformer)架构,ChatGPT通过大规模的多语言数据训练,具备了强大的语言理解和生成能力。OpenAI在模型训练中采用了分布式计算和高效的优化算法,使得ChatGPT能够高效地处理复杂的语言任务。随着版本的迭代,ChatGPT在多模态支持、上下文理解、逻辑推理等方面不断提升,尤其是在多语言和跨文化交流中表现出色。此外,OpenAI注重模型的安全性和伦理性,通过多层次的防护机制,确保ChatGPT在实际应用中的可靠性和合规性。

相关文章:

【AI模型对比】AI新宠Kimi与ChatGPT的全面对比:技术、性能、应用全揭秘

文章目录 Moss前沿AI技术背景Kimi人工智能的技术积淀ChatGPT的技术优势 详细对比列表模型研发Kimi大模型的研发历程ChatGPT的发展演进 参数规模与架构Kimi大模型的参数规模解析ChatGPT的参数体系 模型表现与局限性Kimi大模型的表现ChatGPT的表现 结论:如何选择适合自…...

详细解读CMA实验室认可

CMA实验室认可,即中国计量认证(China Metrology Accreditation)的实验室资质认定,以下是对其的详细解读: 一、定义与目的 CMA认证是经省级以上人民政府计量行政部门对实验室的计量检定、测试能力和可靠性考核合格后进…...

H5与支付宝小程序通信,调起扫一扫

1.public/index.html加入代码 <script>if (navigator.userAgent.indexOf(AliApp) > -1) {document.writeln(<script src"https://appx/web-view.min.js" > < / script>);}window.$my my </script>2.vue其他具体页面加入代码 metho…...

Lighthouse(灯塔)—— Chrome 浏览器性能测试工具

1.认识 Lighthouse Lighthouse 是 Google 开发的一款开源性能测试工具&#xff0c;用于分析网页或 Web 应用的性能、可访问性、最佳实践、安全性以及 SEO 等关键指标。开发人员可以通过 Lighthouse 快速了解网页的性能瓶颈&#xff0c;并基于优化建议进行改进。 核心功能&…...

深入浅出机器学习中的梯度下降算法

大家好&#xff0c;在机器学习中&#xff0c;梯度下降算法&#xff08;Gradient Descent&#xff09;是一个重要的概念。它是一种优化算法&#xff0c;用于最小化目标函数&#xff0c;通常是损失函数。梯度下降可以帮助找到一个模型最优的参数&#xff0c;使得模型的预测更加准…...

AIGC 012-Video LDM-更进一步,SD作者将LDM扩展到视频生成任务!

AIGC 012-Video LDM-Stable Video diffusion前身&#xff0c;将LDM扩展到视频生成任务&#xff01; 文章目录 0 论文工作1论文方法实验结果 0 论文工作 Video LDM作者也是Stable diffusion的作者&#xff0c;作者在SD的架构上进行扩展&#xff0c;实现了视频的生成。后续在Vid…...

Rust常用命令总结

安装Rust 检查并更新Ubuntu的软件包 $ sudo apt update $ sudo apt upgrade安装相关依赖&#xff1a;安装GCC、G、MAKE、curl $ sudo apt install build-essential $ sudo apt install curl安装Rust $ curl --proto https --tlsv1.2 -sSf https://sh.rustup.rs | sh执行命令…...

docker部署RustDesk自建服务器

客户端&#xff1a; Releases rustdesk/rustdesk GitHub 服务端&#xff1a; 项目官方地址&#xff1a;GitHub - rustdesk/rustdesk-server: RustDesk Server Program 1、拉取RustDesk库 docker pull rustdesk/rustdesk-server:latest 阿里云库&#xff1a; docker pu…...

QT4和 QT5 槽函数连接的区别

正常连接方式 //QT4官方用列QLabel *label new QLabel;QScrollBar *scrollBar new QScrollBar;QObject::connect(scrollBar, SIGNAL(valueChanged(int)),label, SLOT(setNum(int)));//QT5官方用列QLabel *label new QLabel;QLineEdit *lineEdit new QLineEdit;QObject::c…...

【C++】入门【六】

本节目标 一、继承的概念及定义 二、基类和派生类对象赋值转换 三、继承中的作用域 四、派生类的默认成员函数 五、继承与友元 六、继承与静态成员 七、复杂的菱形继承及菱形虚拟继承 八、继承的总结和反思 九、笔试面试题 一、继承的概念及定义 1.继承的概念 继承是面向对象…...

Ansible 运维工具

安装 apt install ansible /etc/ansible/hosts , 指定密码或密钥访问分组机器 [k8s_masters] master0.c0.k8s.sb[k8s_nodes] node0.c0.k8s.sb node1.c0.k8s.sb[k8s:children] k8s_masters k8s_nodes[k8s_masters:vars] ansible_ssh_usersbadmin ansible_ssh_pass"***&q…...

【分布式】分布式缓存

一、什么是分布式缓存 分布式缓存是一种将缓存数据存储在多个节点上的缓存方案。它通过将数据分散存储在多个节点的内存中&#xff0c;以提高系统的读取性能、降低数据库压力和提高系统可扩展性。 二、分布式缓存的优点 优点明细提高性能&#xff1a;分布式缓存可以将数据缓…...

uni-app简洁的移动端登录注册界面

非常简洁的登录、注册界面模板&#xff0c;使用uni-app编写&#xff0c;直接复制粘贴即可&#xff0c;无任何引用&#xff0c;全部公开。 废话不多说&#xff0c;代码如下&#xff1a; login.vue文件 <template><view class"content"><view class&quo…...

传奇996_47——前端ui

方式一&#xff1a; 后端写ui&#xff0c;前端通过触发函数进行截取。然后获取标签名进行补充或附加动画 这种方式很好用。 问题1&#xff1a;获取不到标签名&#xff0c;标签名就是标签id&#xff0c;当id数字时不需要处理即可直接获取到&#xff0c;但是id如果时汉字就会获取…...

nlp培训重点

1. SGD梯度下降公式 当梯度大于0时&#xff0c;变小&#xff0c;往左边找梯度接近0的值。 当梯度小于0时&#xff0c;减去一个负数会变大&#xff0c;往右边找梯度接近0的值&#xff0c;此时梯度从负数到0上升 2.Adam优化器实现原理 #coding:utf8import torch import torch.n…...

ARM A32多数据处理汇编指令理解分享

ARM A32多数据处理汇编指令理解分享 1 多数据存储指令1.1 push指令1.2 STMFD/STMDB指令1.3 STMED/STMDA指令1.4 STMFA/STMIB指令1.5 STMEA/STMIA指令 2 多数据加载指令2.1 pop指令2.2 LDMFD/LDMIA指令2.3 LDMFA/LDMDA指令2.4 LDMEA/LDMDB指令2.5 LDMED/LDMIB指令 在ARM A32多数…...

【人工智能】Transformers之Pipeline(二十七):蒙版生成(mask-generation)

​​​​​​​ 目录 一、引言 二、蒙版生成&#xff08;mask-generation&#xff09; 2.1 概述 2.2 facebook/sam-vit-base 2.3 pipeline参数 2.3.1 pipeline对象实例化参数 2.3.2 pipeline对象使用参数 2.3.3 pipeline对象返回参数 2.4 pipeline实战 2.5 模型排…...

数据挖掘之逻辑回归

逻辑回归&#xff08;Logistic Regression&#xff09;是数据挖掘中一种经典且广泛应用的算法&#xff0c;主要用于解决分类问题。尽管名字中带有“回归”&#xff0c;它的核心目标却是预测离散的类别&#xff0c;而不是连续的数值。逻辑回归凭借其简单、高效、易于解释的特性&…...

PH热榜 | 2024-12-05

1. Oopsie 标语&#xff1a;用AI和会话回放调试Flutter和React Native应用 介绍&#xff1a;Zipy推出的Oopsie是一款你唯一需要的AI赋能移动端调试工具&#xff0c;它能提供▶️会话回放、&#x1f916;错误监控、&#x1f4a1;AI生成的概要分析&#xff0c;以及&#x1f525…...

docker-常用应用部署dockerfile模板

文章目录 概述Springboot-Djava.security.egdfile:/dev/./urandom参数说明 vue应用部署nginx.conf配置Dockerfile 概述 本文列举了Java开发中常用如SpringBoot、Vue前端等类型的应用Docker部署所需的DockerFile Springboot FROM anapsix/alpine-java:8_server-jre_unlimited…...

LabVIEW中“this VI‘s owning library is missing”错误及解决

问题描述 当加载或打开一个VI时&#xff0c;如果其所属的项目库未加载到内存&#xff0c;LabVIEW将提示错误&#xff1a;“this VIs owning library is missing”&#xff08;该VI的所属库不存在&#xff09;。 该问题通常发生在以下情况下&#xff1a; 项目库文件丢失或路径…...

【算法】棋盘覆盖问题源代码及精简版

目录 一、题目 二、样例 三、示例代码 四、精简代码 五、总结 对于棋盘覆盖问题的解答和优化。 一、题目 输入格式&#xff1a; 第一行&#xff0c;一个整数n&#xff08;棋盘n*n&#xff0c;n确保是2的幂次&#xff0c;n<64&#xff09; 第二行&#xff0c;两个整数…...

剖析kubernetes service的IP能否在宿主机中ping通

文章目录 前言一、serviceIP是怎么产生的二、宿主机中ping serviceIP地址1.ping示例2.为什么ping不通剖析2.1.封装及解封装过程2.2.ICMP报文以太网数据帧格式2.3.原因 三、ping不通svcIP是否跟iptables规则有关&#xff1f;四、为什么ipvs的的clusterIP类型的service能够ping通…...

路由VueRouter的基本使用

1.下载VueRouter到当前工程。 vue2&#xff1a;VueRouter3.x Vuex3.x。 vue3&#xff1a;VueRouter4.x Vuex4.x。 在终端使用命令&#xff1a; year add vue-router3.6.5 2.引入。 import VueRouter from vue-router 3,安装注册。 Vue.use(VueRouter) 4…...

学习记录,正则表达式, 隐式转换

正则表达式 \\&#xff1a;表示正则表达式 W: 表示一个非字&#xff08;不是一个字&#xff0c;例如&#xff1a;空格&#xff0c;逗号&#xff0c;句号&#xff09; W: 多个非字 基本组成部分 1.字符字面量&#xff1a; 普通字符&#xff1a;在正则表达式中&#xff0c;大…...

Spring Boot + MySQL 多线程查询与联表查询性能对比分析

Spring Boot MySQL: 多线程查询与联表查询性能对比分析 背景 在现代 Web 应用开发中&#xff0c;数据库性能是影响系统响应时间和用户体验的关键因素之一。随着业务需求的不断增长&#xff0c;单表查询和联表查询的效率问题日益凸显。特别是在 Spring Boot 项目中&#xff0…...

C++小碗菜之二:软件单元测试

“没有测试的代码重构不能称之为重构&#xff0c;它仅仅是垃圾代码的到处移动” ——Corey Haines 目录 前言 什么是单元测试&#xff1f; 单元测试的组成 单元测试的命名 单元测试的独立性 Google Test 单元测试的环境配置与使用 1. Ubuntu下安装 Google Test 2. 编写…...

集成学习综合教程

一、前置知识 一个分类器的分类准确率在60%-80%&#xff0c;即&#xff1a;比随机预测略好&#xff0c;但准确率却不太高&#xff0c;我们可以称之为 “弱分类器”&#xff0c;比如CART&#xff08;classification and regression tree 分类与回归树&#xff09;。 反之&#x…...

Java NIO channel

channel(通道)&#xff0c;byteBuffer(缓冲区)&#xff0c;selector&#xff08;io多路复用&#xff09;&#xff0c;通道FileChannel,SocketChannel的transferTo,transferFrom,MappedByteBuffer实现了零拷贝。 JVM调操作系统方法&#xff0c;read,write&#xff0c;都可以送字…...

B3631 单向链表-模拟链表

来源 &#xff1a;题目链接-洛谷 B3631 单向链表 单向链表 题目描述 实现一个数据结构&#xff0c;维护一张表&#xff08;最初只有一个元素 1 1 1&#xff09;。需要支持下面的操作&#xff0c;其中 x x x 和 y y y 都是 1 1 1 到 1 0 6 10^6 106 范围内的正整数&…...

【C++】格式化输出详解:掌握 cout 的进阶用法

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;格式化输出的理论概述&#x1f4af;控制输出宽度和填充字符setw 操作符setfill 操作符 &#x1f4af;控制浮点数的显示格式fixed 与 scientificsetprecision &#x1f4af;…...

【NoSQL数据库】Hbase基本操作——数据库表的增删改查

目录 一、Hbase原理 二、HBase数据库操作 三、遇到的问题和解决方法 一、Hbase原理 HBase的数据模型&#xff1a; 行键 时间戳 列族&#xff1a;contents 列族&#xff1a;anchor 列族&#xff1a;mime “com.cnn.www” T9 Achor:cnnsi.com”CNN” T8 Achor:…...

同步fifo

同步FIFO FIFO即是一种先进先出的数据缓存器。同步FIFO指的是数据的写入和读出的时钟是同一个时钟。异步 FIFO 有两个时钟信号&#xff0c;读和写逻辑用的各自的读写时钟。 FIFO没有外部读写地址线&#xff0c;使用起来简单。但是缺点就是只能先入先出&#xff0c;数据地址由…...

肌肉骨骼肿瘤治疗市场:潜力无限,未来可期

肌肉骨骼肿瘤治疗作为现代医学的重要分支&#xff0c;专注于应对骨骼和肌肉系统中的良性和恶性肿瘤。随着全球人口老龄化和生活方式的改变&#xff0c;肌肉骨骼疾病日益成为公共卫生的重要问题。与此同时&#xff0c;医疗技术的进步和患者对高质量医疗服务的需求不断推动该市场…...

高考倒计时:用倒计时软件 为梦想加油 可用于教室黑板或者电脑上

高考&#xff0c;这个被无数学子视为人生重要转折点的考试&#xff0c;即将来临。每一年的六月&#xff0c;都充满了紧张与期待。如何在这场人生的战役中取得胜利&#xff1f;除了日常的勤奋学习&#xff0c;科学的复习计划和心态调整外&#xff0c;一款好用的倒计时软件&#…...

人工智能学习用的电脑安装cuda、torch、conda等软件,版本的选择以及多版本切换

接触人工智能的学习三个月了&#xff0c;每天与各种安装包作斗争&#xff0c;缺少依赖包、版本高了、版本低了、不兼容了、系统做一半从头再来了。。。这些都是常态。三个月把单位几台电脑折腾了不下几十次安装&#xff0c;是时候总结一下踩过的坑和积累的经验了。 以一个典型的…...

BERT模型的输出格式探究以及提取出BERT 模型的CLS表示,last_hidden_state[:, 0, :]用于提取每个句子的CLS向量表示

说在前面 最近使用自己的数据集对bert-base-uncased进行了二次预训练&#xff0c;只使用了MLM任务&#xff0c;发现在加载训练好的模型进行输出CLS表示用于下游任务时&#xff0c;同一个句子的输出CLS表示都不一样&#xff0c;并且控制台输出以下警告信息。说是没有这些权重。…...

InfluxDB 集成 Grafana

将InfluxDB集成到Grafana进行详细配置通常包括以下几个步骤&#xff1a;安装与配置InfluxDB、安装与配置Grafana、在Grafana中添加InfluxDB数据源以及创建和配置仪表板。以下是一个详细的配置指南&#xff1a; 一、安装与配置InfluxDB 下载与安装&#xff1a; 从InfluxDB的官…...

Vue跨标签通讯(本地存储)(踩坑)

我司有一个需求【用户指引】 需求是根标签有一个用户指引总开关&#xff0c;可以控制页面所有的用户指引是否在页面进入后初始是否默认打开&#xff0c;但是有些页面会新开标签这就设计到跨标签通讯了 我采取的方案是本地存储 重点:首先本地存储在页面是同源(即域名协议端口三…...

掌握创意之钥:全面解析HTML5 Canvas

在数字时代&#xff0c;表达创意的方式多种多样&#xff0c;而 HTML5 中的 <canvas> 元素无疑为网页开发者提供了一个强大的工具箱。无论你是想要创建动态图表、互动游戏还是复杂的可视化应用&#xff0c;掌握 Canvas 的基本用法都是迈向成功的关键一步。本文将带你一步步…...

mac port 安装redis 并设置为系统服务 自定义配置方法

mac系统中&#xff0c;port 包管理工具比brew的速度快N倍&#xff0c;今天就给大家分享一下在macos系统中如何使用 port安装 redis数据库并配置为服务自动启动和自定义redis.conf配置的方法。 1. 安装redis sudo port install redis 2. 启动redis服务 sudo port load redis …...

Agent AI: Surveying the Horizons of Multimodal Interaction---摘要、引言、代理 AI 集成

题目 智能体AI:多模态交互视野的考察 论文地址&#xff1a;https://arxiv.org/abs/2401.03568 图1&#xff1a;可以在不同领域和应用程序中感知和行动的Agent AI系统概述。Agent AI是正在成为通用人工智能&#xff08;AGI&#xff09;的一个有前途的途径。Agent AI培训已经证…...

二百七十八、ClickHouse——将本月第一天所在的那一周视为第一周,无论它是从周几开始的,查询某个日期是本月第几周

一、目的 ClickHouse指标表中有个字段week_of_month&#xff0c;含义是这条数据属于本月第几周。 而且将本月第一天所在的那一周视为第一周&#xff0c;无论它是从周几开始的。比如2024-12-01是周日&#xff0c;即12月第一周。而2024-12-02是周一&#xff0c;即12月第二周 二…...

Unity 相机旋转及角度限制

前言 由于欧拉角具有直观的可读性&#xff0c;做相机旋转时选择修改eulerAngles 来实现旋转&#xff0c;但实际效果与预期稍有不同&#xff0c;这是因为欧拉角受到万向锁&#xff08;Gimbal Lock&#xff09;的影响&#xff0c;在赋值时需要对输入的角度进行调整。 if (value…...

基于CentOS系统利用Kamailio搭建企业级SIP服务器

一、Kamailio简介 Kamailio是一款开源的SIP服务器&#xff0c;具有高性能、可扩展、模块化等特点。它广泛应用于VoIP、即时通讯、视频会议等领域。Kamailio支持多种操作系统&#xff0c;如Linux、FreeBSD等&#xff0c;可以与其他开源项目&#xff08;如 Asterisk、FreeSWITCH…...

部署项目报错

vue2项目部署后 Error: Cannot find module /views/*** 1.起因 登录页、首页等静态页面可以正常进入&#xff0c;后端访问也正常&#xff0c;可以获取到验证码。 但是登录之后会发现首页空白或者进入不到首页 F12查看有报错信息&#xff1a;Error: Cannot find module ‘/v…...

【AIGC】大模型面试高频考点-位置编码篇

【AIGC】大模型面试高频考点-位置编码篇 &#xff08;一&#xff09;手撕 绝对位置编码 算法&#xff08;二&#xff09;手撕 可学习位置编码 算法&#xff08;三&#xff09;手撕 相对位置编码 算法&#xff08;四&#xff09;手撕 Rope 算法&#xff08;旋转位置编码&#xf…...

钓鱼攻击详解:鱼叉攻击与水坑攻击

钓鱼攻击详解&#xff1a;鱼叉攻击与水坑攻击 在现代网络安全领域中&#xff0c;钓鱼攻击&#xff08;Phishing&#xff09;是一种最常见且有效的攻击手段。它通过欺骗用户&#xff0c;引导其泄露敏感信息或执行恶意操作&#xff0c;从而为攻击者打开大门。本文将深入介绍两种…...

如何在自动化安全测试中,实现多工具集成与数据融合,以提高对Spring Boot应用程序安全漏洞的检测效率与准确性?

为了在自动化安全测试中实现多工具集成与数据融合&#xff0c;以提高对Spring Boot应用程序安全漏洞的检测效率与准确性&#xff0c;可以采取以下策略和方法&#xff1a; 文章目录 1. 工具选择与集成2. 数据标准化与聚合3. 数据分析与融合4. 持续改进5. 实施示例 1. 工具选择与…...

框架篇面试

一、Spring框架中的单例bean的安全性 Spring框架中有一个Scope注解&#xff0c;默认的值就是singleton&#xff0c;单例的&#xff1b;因为一般在spring的bean中注入的都是无状态的对象&#xff0c;所以没有线程安全问题。但是如果在bean中定义了可修改的成员变量&#xff0c;…...