当前位置: 首页 > news >正文

基于论文的大模型应用:基于SmartETL的arXiv论文数据接入与预处理(二)

上一篇 文章介绍了arXiv采集处理的任务背景、整体需求,并对数据进行了调研。

本文介绍整体方案设计。

4.整体方案设计

4.1.总体流程

基于上述调研了解的情况,针对工作需求设计处理流程如下:

  1. 下载kaggle数据集作为流程输入,出发采集任务。优先采集最新的论文,因此需要对数据集按时间重排。每周下载一次最新数据集,通过记录处理上次处理的论文ID,提取出增量数据加入流程处理。
  2. 基于输入数据拼接HTML页面的URL、PDF页面的URL(备用)。
  3. 下载HTML页面,保存到MinIO系统中。
  4. 下载PDF文件,保存到MinIO系统中。这一步可选,主要是对缺失HTML页面的补充,以及用于做PDF抽取实验。
  5. 基于HTML网页解析标题、作者、摘要、正文、参考文献、表格和图像地址,形成层级化的文档结构。
  6. 下载图像,保存为base64字段,或保存到MinIO系统中。
  7. 保存完整记录:基于MinIOMongoDB存储论文完整结构。
  8. 建立ES全文索引:论文ID、标题、摘要、作者、正文等写入ES
  9. 建立正文Qdrant向量化索引:对论文摘要、正文建立向量化索引。文本向量化模型可采用bge-large-en-v1.5(arXiv论文主要为英文,针对中文需要换成bge-large-zh-v1.5)。
  10. 建立图片Qdrant向量化索引:对论文图片建立向量化索引。图片向量化模型可采用BGE-VL-large。

4.2.任务解耦

由于流程较为复杂,如果采用普通的串行流程,虽然可以实现业务功能,但存在性能不佳、更新数据不及时、添加采集任务不灵活等问题。(思考:为什么会有这些问题?

很容易想到的解决办法是将流程拆分,分为论文采集流程、论文解析流程和建索引流程,通过不同的并行调度策略,分别进行优化。

但是流程拆分马上产生一个问题:**前后流程如何衔接?**即前一个流程的数据如何输入到后一个流程中。

这里通过引入Kafka消息队列进行解决。

部署kafka服务(单节点或集群)并建立3个消息队列:

  • 采集任务队列(arxiv_task):将下载的kaggle数据集排序后写入此队列中。对已经采集处理的论文任务可以丢弃,后续定期下载最新的数据集,但只需要将新增的部分数据写入消息队列,避免重复。由采集程序进行消费。
  • 采集结果队列(arxiv_html):完成HTML(或/和PDF文件)后,在此队列中插入一条消息,从而通知HTML解析消费者。
  • 解析结果队列(arxiv_parsed):完成文件解析后,在此队列中插入一条消息,从而通知索引构建消费者。

整体流程如下图所示:
在这里插入图片描述

4.3.细化向量索引

为了提升向量检索效果,优化向量索引方式。考虑到论文中不同章节的内容类型不同,建立以下不同的索引,支持应用端根据需要进行检索:

  • 论文摘要索引(paper_abstract):对论文摘要信息创建索引,可用于论文概要信息查找。
  • 论文引言索引(paper_introduction):引言涉及到问题背景、研究领域、主要方法和贡献等。
  • 论文方法索引(paper_method):方法章节具体描述论文采用的方法,方便用户查看论文方法细节。
  • 论文实验索引(paper_experiment):实验方法介绍了论文的实验相关内容,方便用户查看论文实验细节。
  • 论文讨论索引(paper_discusss):讨论章节对某些问题进行阐述,可用于启发相关研究。
  • 论文图片索引(paper_figure):对论文中的图片建立向量化索引,支持进行跨模态检索。

4.4.存储结构设计

4.4.1.数据结构

采集任务数据结构:

{
"id": "2501.00468", //论文ID
"title": "Non-perturbative self-consistent electron-phonon spectral functions and transport", //标题"authors": "Jae-Mo Lihm and Samuel Ponce", //作者"submitter": "Jae-Mo Lihm", //提交者"categories": "cond-mat.mtrl-sci", //分类"abstract": "  Electron-phonon coupling often dominates the electron spectral functions and\ncarrier transport properties. However, studies of this effect in real materials\nhave largely relied on perturbative one-shot methods due to the lack of a\nfirst-principles theoretical and computational framework. Here, we present a\nself-consistent theory and implementation for the non-perturbative calculations\nof spectral functions and conductivity due to electron-phonon coupling.\nApplying this method to monolayer InSe, we demonstrate that self-consistency\nqualitatively affects the spectral function and transport properties compared\nto state-of-the-art one-shot calculations and allow one to reconcile\nexperimental angle-resolved photoemission experiments. The developed method can\nbe widely applied to materials with dominant electron-phonon coupling at\nmoderate computational cost.\n", //摘要"versions": [  //提交版本{"version": "v1","created": "Tue, 31 Dec 2024 14:39:52 GMT"},{"version": "v2","created": "Thu, 20 Mar 2025 15:18:07 GMT"}],
"update_date": "2025-03-21", //更新日期
"_id": "2501.00468v2", //文档ID
"url_pdf": "http://arxiv.org/pdf/2501.00468", //PDF链接
"url_html": "http://arxiv.org/html/2501.00468v2" //HTML链接
}

解析结果数据结构:

{"title": "Non-perturbative self-consistent electron-phonon spectral functions and transport", //标题"authors": [ //作者列表"Jae-Mo Lihm \\orcidlink0000-0003-0900-0405\n\njaemo.lihm@gmail.com\n\nEuropean Theoretical Spectroscopy Facility, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Chemin des Étoiles 8, B-1348 Louvain-la-Neuve, Belgium"],"abstract": "Electron-phonon coupling often dominates the electron spectral functions and carrier transport properties.……","sections": [//正文各个章节{"title": "title", //章节标题"content": "content" //章节正文内容,段落间用换行符分割"figures": [//图表列表{"caption": "caption", //图表标题"url": "https://....", //图片绝对地址
}
] , "tables": [ //表格列表{"caption": "caption", //表格标题"rows": [//表格的行 包括标题行{"v": "cell value", //单元格内容"rowspan": 1, //跨行数 字段不存在标识不跨行 "colspan": 1, //跨列数 字段不存在标识不跨列}]}
]
}],"references": [//参考文献列表"Damascelli et al. [2003] A. Damascelli, Z. Hussain, and Z.-X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys. 75, 473 (2003)."]
}

4.4.2.对象存储结构

采用MinIO文件系统对解析后的完整数据结构进行存储,方便应用获取论文详情。

MinIO对象存储模型为桶(bucket)-键-值相当于顶层目录,一个应用通常对应一个桶。可以根据需要设计为多级,以/进行分隔。就是对象的内容。

本系统中设计桶为 goinv3-arxiv-2504。键设计为 YYMM/nnn/nn.json,即将论文ID分为年月、前三位顺序号、后两位顺序号3级,方便以浏览器进行直接查看。值设计为JSON格式(通过键名设计也可以看出来),即将解析后的对象做JSON序列化,以及附加gzip压缩,减小存储空间。

4.4.3.传统索引结构

采用ElasticSearch对解析后的论文内容建立传统索引(包括普通索引和文本倒排索引),方便对论文进行条件检索和关键词匹配。

ElasticSearch按照索引(index)对JSON文档进行管理,通过指定索引的设置(settings)和映射(mapping),实现更加准确的检索。
本系统中设计索引名为goinv3-arxiv-2504。映射设计如下:

  • _id 直接采用论文ID。如果新版本,直接更新。
  • title: text;索引源为论文标题字符串。
  • authors:text;索引源为论文作者拼接字符串。
  • abstract: text;索引源为论文摘要拼接字符串。
  • content: text;索引源为论文正文拼接字符串。
  • created_time: datetime;索引源为论文第一个版本的发布时间。
  • updated_time: datetime;索引源为论文最新版本的发布时间。

4.4.4.向量索引结构

采用Qdrant向量数据库对论文建立向量化索引,支撑应用进行语义检索。

Qdrant采用集合(collection)对向量进行索引管理,通过创建集合时指定向量维度、相似度计算方法等参数,满足向量检索要求。由于向量化的复杂性,Qdrant(以及其他大多数向量库)并不直接提供向量化模型,应用系统需要单独对数据进行向量化,在实际场景中这样更加灵活。

向量索引与文档内容拆分(chunk)粒度密切相关。chunk如果太长,则可能包含更混杂的语义;如果太短,则可能因为没有足够的上下文而语义信息不足。对于论文而言,各个章节的内容、长度、焦点主题、相关内容等情况非常复杂,可能需要在实际应用中不断尝试,或者通过一些实验评估,才能确定最佳方案。

本系统初步设计针对论文摘要引言方法实验讨论等章节分别建立索引(如前文“细化向量索引”一节所述)。每个索引除了向量本身,还包括一个载荷(payload)对象,包括doc_idcontent字段,方便快速获取当前向量对应的原文(针对文本)以及论文编号。

由于Qdrant的集合仅支持数字IDUUID,为了方便与论文对象关联,采用论文ID的数字化形式,如论文2502.18864,对应的记录ID为250218864。考虑chunk长度,在记录ID后面附加两位数字序号,如25021886401表示论文中相应部分的第一个chunk。(payload中的doc_id仍然需要,后续如果变更记录ID设计,也不影响与论文的对应关系。)

此外,为了便于对论文图片进行语义检索(以文搜图、以图搜图),对论文中的图表也建立向量化索引,其记录ID设计与上述类似。

4.4.5.文件存储结构

为了简化设计,采用MinIO对相关文件进行存储,包括HTML文件PDF文件图表文件等。

采用与前文对象存储结构的文件存储结构,分别设计桶为goinv3-arxiv-html-2504goinv3-arxiv-pdf-2504goinv3-arxiv-figure-2504。键设计分别为YYMM/nnn/nn.htmlYYMM/nnn/nn.pdfYYMM/nnn/nn_xx.png,其中xx是图表文件序号,从01开始编号。对于HTML文件,可采用gzip进行压缩以减小存储空间。

4.5.向量化模型

影响向量语义检索质量的因素除了chunk拆分设计,另一个重要因素就是向量化模型选择,向量化模型直接影响对数据内容的语义捕获的准确性。对于如何选择向量化模型,并没有简单答案,与应用场景密切相关,需要根据经验或实验评估进行权衡。

本系统中采用bge-large-en-v1.5 对论文文本进行向量化,在这里查看模型 ;采用BGE-VL-large对论文图表进行向量化,在这里查看模型。

相关文章:

基于论文的大模型应用:基于SmartETL的arXiv论文数据接入与预处理(二)

上一篇 文章介绍了arXiv采集处理的任务背景、整体需求,并对数据进行了调研。 本文介绍整体方案设计。 4.整体方案设计 4.1.总体流程 基于上述调研了解的情况,针对工作需求设计处理流程如下: 下载kaggle数据集作为流程输入,出…...

Halo 设置 GitHub - OAuth2 认证指南

在当今数字化时代,用户认证的便捷性和安全性愈发重要。对于使用 Halo 搭建个人博客或网站的开发者而言,引入 GitHub - OAuth2 认证能够极大地提升用户登录体验。今天,我们就来详细探讨一下如何在 Halo 中设置 GitHub - OAuth2 认证。 一、为…...

脑影像分析软件推荐 | AIDA介绍

目录 1.软件界面 2.工具包功能简介 3.软件安装注意事项 1.软件界面 2.工具包功能简介 AIDAmri是一种新型的基于图谱的成像数据分析流程,用于处理小鼠大脑的结构和功能数据,包括解剖MRI、基于扩散张量成像(DTI)的纤维追踪以及基…...

SQL:Relationship(关系)

目录 🔗 什么是 Relationship? 三种基本关系类型(基于实体间的关系): 1. 一对一(One-to-One) 2. 一对多(One-to-Many) 3. 多对多(Many-to-Many&#xf…...

【今日三题】压缩字符串(模拟) / chika和蜜柑(topK) / 01背包

⭐️个人主页:小羊 ⭐️所属专栏:每日两三题 很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~ 目录 压缩字符串 (模拟)chika和蜜柑 (topK)01背包 压缩字符串 (模拟) 压缩字符串 class Solution { public:string compressStri…...

PHP多维数组

在 PHP 中&#xff0c;多维数组是数组的数组&#xff0c;允许你存储和处理更复杂的数据结构。多维数组可以有任意数量的维度&#xff0c;但通常我们最常用的是二维数组&#xff08;数组中的数组&#xff09;。 首先来介绍一下一维数组&#xff0c; <?php//一维数组 $strAr…...

智能手机功耗测试

随着智能手机发展,用户体验对手机的续航功耗要求越来越高。需要对手机进行功耗测试及分解优化,将手机的性能与功耗平衡。低功耗技术推动了手机的用户体验。手机功耗测试可以采用powermonitor或者NI仪表在功耗版上进行测试与优化。作为一个多功能的智能终端,手机的功耗组成极…...

0x02.Redis 集群的实现原理是什么?

回答重点 Redis 集群&#xff08;Redis cluster&#xff09;是通过多个 Redis 实例组成的&#xff0c;每个主节点实例负责存储部分的数据&#xff0c;并且可以有一个或多个从节点作为备份。 具体是采用哈希槽&#xff08;Hash Slot&#xff09;机制来分配数据&#xff0c;将整…...

游戏引擎学习第219天

游戏运行时的当前状态 目前的工作基本上就是编程&#xff0c;带着一种预期&#xff0c;那就是一切都会很糟糕&#xff0c;而我们需要一个系统来防止它变得更糟。接下来&#xff0c;我们来看看目前的进展。 简要说明昨天提到的无限调试信息存储系统 昨天我们完成了内存管理的…...

二叉树深度解析:从基础概念到算法实现与应用

一、二叉树的本质定义与核心特性 &#xff08;一&#xff09;递归定义与逻辑结构 二叉树是一种 严格有序的树结构&#xff0c;其递归定义为&#xff1a; 空树&#xff1a;不含任何结点的集合&#xff0c;是二叉树的特殊形态。非空二叉树&#xff1a;由以下三部分组成&#x…...

Model Context Protocol(MCP)模型上下文协议

Model Context Protocol&#xff08;MCP&#xff09;模型上下文协议 前言一、什么是MCP二、MCP的作用三、MCP与Function call对比四、构建一个简单的MCP DEMO环境准备实现MCP Server运行 ServerMCP Client端配置验证 总结 前言 在Agent时代&#xff0c;将Agent确立为大模型未来…...

代码随想录算法训练营第十六天

LeetCode题目: 530. 二叉搜索树的最小绝对差501. 二叉搜索树中的众数236. 二叉树的最近公共祖先3272. 统计好整数的数目(每日一题) 其他: 今日总结 往期打卡 530. 二叉搜索树的最小绝对差 跳转: 530. 二叉搜索树的最小绝对差 学习: 代码随想录公开讲解 问题: 给你一个二叉搜…...

类似东郊到家的上门按摩预约服务系统小程序APP源码全开源

&#x1f525; 为什么上门按摩正在席卷全国&#xff1f; 万亿蓝海市场爆发 2024年中国按摩市场规模突破8000亿&#xff0c;上门服务增速达65% 90后成消费主力&#xff0c;**72%**白领每月至少使用1次上门按摩&#xff08;数据来源&#xff1a;艾媒咨询&#xff09; 传统痛点…...

MySQL 5.7.30 Linux 二进制安装包详解及安装指南

MySQL 5.7.30 Linux 安装包详解 mysql-5.7.30-linux-glibc2.12-x86_64.tar 是 MySQL 服务器 5.7.30 版本的 Linux 二进制发行包。 mysql-5.7.30-linux-glibc2.12-x86_64.tar 安装包下载 链接&#xff1a;https://pan.quark.cn/s/2943cd209ca5 包信息 版本: MySQL 5.7.30 平…...

C语言超详细指针知识(二)

在上一篇有关指针的博客中&#xff0c;我们介绍了指针的基础知识&#xff0c;如&#xff1a;内存与地址&#xff0c;解引用操作符&#xff0c;野指针等&#xff0c;今天我们将更加深入的学习指针的其他知识。 1.指针的使用和传址调用 1.1strlen的模拟实现 库函数strlen的功能是…...

Java集合框架详解:核心类、使用场景与最佳实践

文章目录 一、Java集合框架概览二、核心集合类详解1. List接口&#xff08;有序、可重复&#xff09;**ArrayList****LinkedList****List对比表** 2. Set接口&#xff08;无序、唯一&#xff09;**HashSet****TreeSet****Set对比表** 3. Queue接口&#xff08;队列&#xff09;…...

模板引擎语法-标签

模板引擎语法-标签 文章目录 模板引擎语法-标签[toc]一、用于进行判断的{% if-elif-else-endif %}标签二、关于循环对象的{% for-endfor %}标签三、关于自动转义的{% autoescape-endautoescape %}标签四、关于循环对象的{% cycle %}标签五、关于检查值是否变化的{% ifchange %}…...

刘火良FreeRTOS内核实现与应用学习之7——任务延时列表

在《刘火良FreeRTOS内核实现与应用学习之6——多优先级》的基础上&#xff1a;关键是添加了全局变量&#xff1a;xNextTaskUnblockTime &#xff0c;与延时列表&#xff08;xDelayedTaskList1、xDelayedTaskList2&#xff09;来高效率的实现延时。 以前需要在扫描就绪列表中所…...

基于红外的语音传输及通信系统设计

标题:基于红外的语音传输及通信系统设计 内容:1.摘要 本设计聚焦于基于红外的语音传输及通信系统&#xff0c;以解决传统通信方式在特定场景下的局限性为背景&#xff0c;旨在开发一种高效、稳定且具有一定抗干扰能力的语音传输系统。方法上&#xff0c;采用红外技术作为语音信…...

解锁AI未来,开启创新之旅——《GPTs开发详解》与《ChatGPT 4应用详解》两本书的深度解析

前言 在这个数字化时代&#xff0c;AI技术正在以前所未有的速度改变我们的生活和工作方式。作为一名AI爱好者和从业者&#xff0c;我深知了解并掌握先进技术的重要性。今天&#xff0c;我想向大家推荐两本极具价值的书籍&#xff1a;《GPTs开发详解》和《ChatGPT 4应用详解》。…...

Linux进程通信入门:匿名管道的原理、实现与应用场景

Linux系列 文章目录 Linux系列前言一、进程通信的目的二、进程通信的原理2.1 进程通信是什么2.2 匿名管道通讯的原理 三、进程通讯的使用总结 前言 Linux进程间同通讯&#xff08;IPC&#xff09;是多个进程之间交换数据和协调行为的重要机制&#xff0c;是我们学习Linux操作系…...

[SpringMVC]上手案例

创建工程 新建项目&#xff0c;选择maven工程&#xff0c;原型&#xff08;Archetype&#xff09;选择maven的webapp&#xff0c;注意名称头尾。会使用到tomcat&#xff08;因为是javaWeb&#xff09;。 新建的项目结构目录如下&#xff0c;如果没有java目录&#xff0c;需要自…...

kubernetes 入门篇之架构介绍

经过前段时间的学习和实践&#xff0c;对k8s的架构有了一个大致的理解。 1. k8s 分层架构 架构层级核心组件控制平面层etcd、API Server、Scheduler、Controller Manager工作节点层Kubelet、Kube-proxy、CRI&#xff08;容器运行时接口&#xff09;、CNI&#xff08;网络插件&…...

说一说 Spring 中的事务

什么是事务&#xff1f; 事务就是用户定义的一系列执行SQL语句的操作, 这些操作要么完全地执行&#xff0c;要么完全地都不执行&#xff0c; 它是一个不可分割的工作执行单元。 Spring 中的事务是怎么实现的&#xff1f; Spring事务底层是基于数据库事务和AOP机制的首先对于…...

docker容器安装的可道云挂接宿主机的硬盘目录:解决群晖 威联通 飞牛云等nas的硬盘挂接问题

基于Docker部署可道云&#xff08;KodCloud&#xff09;时&#xff0c;通过挂载宿主机其他磁盘目录可实现高效、安全的数据管理。具体而言&#xff0c;使用绑定挂载&#xff08;Bind Mounts&#xff09;将宿主机目录&#xff08;如/data/disk2&#xff09;映射到容器内的可道云…...

Oracle 23ai Vector Search 系列之5 向量索引(Vector Indexes)

文章目录 Oracle 23ai Vector Search 系列之5 向量索引Oracle 23ai支持的向量索引类型内存中的邻居图向量索引 (In-Memory Neighbor Graph Vector Index)磁盘上的邻居分区矢量索引 (Neighbor Partition Vector Index) 创建向量索引HNSW索引IVF索引 向量索引示例参考 Windows 环…...

GPT模型架构与文本生成技术深度解析

核心发现概述 本文通过系统分析OpenAI的GPT系列模型架构&#xff0c;揭示其基于Transformer解码器的核心设计原理与文本生成机制。研究显示&#xff0c;GPT模型通过自回归机制实现上下文感知的序列生成&#xff0c;其堆叠式解码器结构配合创新的位置编码方案&#xff0c;可有效…...

【读者求助】如何跨行业进入招聘岗位?

文章目录 读者留言回信岗位细分1. 中介公司的招聘岗位2. 猎头专员3. 公司的招聘专员选择建议 面试建议1. 请简单介绍你过去 3 年的招聘工作经历&#xff0c;重点说下你负责的岗位类型和规模2. 你在招聘流程中最常用的渠道有哪些&#xff1f;如何评估渠道效果&#xff1f;3. 当你…...

2025蓝桥杯省赛C++B组解题思路

由于题面还没出来&#xff0c;现在先口胡一下思路 填空题直接打表找规律或者乱搞一下就能出&#xff0c;从大题开始说。 1&#xff0c;题意&#xff1a; 给你一个数组&#xff0c;这个数组里有几个数可以被一个连续递增的数字区间求和得出 思路&#xff1a;诈骗题&#xff0c;显…...

springcloud整理

问题1.服务拆分后如何进行服务之间的调用 我们该如何跨服务调用&#xff0c;准确的说&#xff0c;如何在cart-service中获取item-service服务中的提供的商品数据呢&#xff1f; 解决办法&#xff1a;Spring给我们提供了一个RestTemplate的API&#xff0c;可以方便的实现Http请…...

游戏引擎学习第220天

介绍 今天的工作主要是进行一些代码整理和清理&#xff0c;目的是将我们之前写过的代码重新整合在一起&#xff0c;使它们能够更好地协同工作。现在的阶段&#xff0c;我们的任务并不是进行大规模的功能开发&#xff0c;而是集中精力对现有的代码进行整合和思考&#xff0c;确…...

OceanBase企业版单机部署:obd命令行方式

OceanBase企业版单机部署&#xff1a;obd命令行方式 安装包准备服务器准备最低资源配置是否部署ODP组件&#xff1f;仲裁服务器 服务器配置操作系统内核参数BIOS设置磁盘挂载网卡设置 obd部署前配置obd部署单机版安装obd配置obd部署OB集群部署后检查 环境清理与集群销毁 本文介…...

KWDB创作者计划—KWDB认知引擎:数据流动架构与时空感知计算的范式突破

引言&#xff1a;数据智能的第三范式 在数字化转型进入深水区的2025年&#xff0c;企业数据系统正面临三重悖论&#xff1a;数据规模指数级增长与实时决策需求之间的矛盾、多模态数据孤岛与业务连续性要求之间的冲突、静态存储范式与动态场景适配之间的鸿沟。KWDB&#xff08;K…...

车载通信系统中基于ISO26262的功能安全与抗辐照协同设计研究

摘要&#xff1a;随着智能网联汽车的快速发展&#xff0c;车载通信系统正面临着功能安全与抗辐照设计的双重挑战。在高可靠性要求的车载应用场景下&#xff0c;如何实现功能安全标准与抗辐照技术的协同优化&#xff0c;构建满足ISO26262安全完整性等级要求的可靠通信架构&#…...

Oracle OCP认证考试考点详解083系列03

题记&#xff1a; 本系列主要讲解Oracle OCP认证考试考点&#xff08;题目&#xff09;&#xff0c;适用于19C/21C,跟着学OCP考试必过。 11. 第11题&#xff1a; 题目 解析及答案&#xff1a; 关于 RMAN&#xff08;恢复管理器&#xff09;多路复用备份集&#xff0c;以下哪…...

Spring

一.Ioc&DI 1.类的五种控制反转注解 这五个注解作用都一样&#xff0c;只是意义不一样&#xff0c;用来提高代码的可读性。 Controller&#xff1a;控制层&#xff0c;接收请求&#xff0c;对请求进⾏处理&#xff0c;并进⾏响应。 Servie&#xff1a;业务逻辑层&#xff0…...

基于开源链动2+1模式、AI智能名片与S2B2C商城小程序源码的体验式关系深化与商业转化研究

摘要&#xff1a;本文探讨了通过体验过程中的共同经历强化关系&#xff0c;促使KOC&#xff08;关键意见消费者&#xff09;为品牌背书的机制&#xff0c;并深入分析了开源链动21模式、AI智能名片以及S2B2C商城小程序源码在其中的创新应用。研究发现&#xff0c;这些新模式和技…...

【区块链安全 | 第三十九篇】合约审计之delegatecall(一)

文章目录 外部调用函数calldelegatecall call 与 delegatecall 的区别示例部署后初始状态调用B.testCall()函数调用B.testDelegatecall()函数区别总结 漏洞代码代码审计攻击代码攻击原理解析攻击流程修复建议审计思路 外部调用函数 在 Solidity 中&#xff0c;常见的两种底层外…...

Kingbase 常用运维命令总结

一、数据库连接与基础操作 连接指定服务器数据库 ksql -h 主机IP -p 端口号 -U 用户名 -d 数据库名 -W # 示例&#xff1a;连接 IP 为 192.168.1.100 的数据库 ksql -h 192.168.1.100 -p 54321 -U system -d test -W 断开数据库连接 \q 或 exit 查看数据库列表及详细信息…...

从零开始的C++编程 2(类和对象下)

目录 1.构造函数初始化列表 2.类型转换 3.static成员 4.友元 5.内部类 6.匿名对象 1.构造函数初始化列表 ①之前我们实现构造函数时&#xff0c;初始化成员变量主要使⽤函数体内赋值&#xff0c;构造函数初始化还有⼀种⽅式&#xff0c;就是初始化列表&#xff0c;初始化…...

Java---抽象类与接口

抽象类与接口 前言一、抽象类1.抽象类的概念2.抽象类的语法3.抽象类的特点4.抽象类的操作5.抽象类的作用 二、接口1.接口的概念2.接口语法3.接口的使用与特性4.实现多个接口5.接口之间的继承6.接口的实例(1).对象大小的比较(1).Comparable接口(2).Comparator接口 (2).实现类的克…...

玩转Docker | 使用Docker部署linkding书签管理工具

玩转Docker | 使用Docker部署linkding书签管理工具 前言一、linkding介绍简介主要特点二、系统要求环境要求环境检查Docker版本检查检查操作系统版本三、部署linkding服务下载镜像创建容器检查容器状态检查服务端口设置登录账号与密码安全设置四、访问linkding服务访问linkding…...

K8s 集群网络疑难杂症:解决 CNI 网络接口宕机告警的完整指南

引言 在 Kubernetes 集群运维过程中,网络问题往往是最棘手的故障之一。当你收到一条 [CRITICAL] 网络接口宕机 (172.18.109.55:9100) 的告警,并且告警内容显示 172.18.109.55:9100 的网络接口 cni0 已宕机5分钟 时,这通常意味着你的 Kubernetes 集群中有一个节点的容器网络…...

程序员/运维绘图工具---Mermaid

效果 介绍 Mermaid 是一种基于文本的图表生成工具&#xff0c;通过类似 Markdown 的简洁语法快速创建流程图、甘特图、类图等各类专业图表 应用场景 程序员绘图 系统架构图&代码逻辑可视化 项目管理图 数据可视化 AI辅助生成&#xff1a;LLM生成mermaid代码然后去渲染成…...

《MATLAB实战训练营:从入门到工业级应用》趣味入门篇-用MATLAB画一朵会动的3D玫瑰:从零开始的浪漫编程之旅

《MATLAB实战训练营&#xff1a;从入门到工业级应用》趣味入门篇-&#x1f339;用MATLAB画一朵会动的3D玫瑰&#xff1a;从零开始的浪漫编程之旅 你是否想过用代码创造一朵永不凋谢的玫瑰&#xff1f;今天&#xff0c;我将带你走进MATLAB的奇妙世界&#xff0c;用数学公式和编…...

激光院董事长龚赤坤到北京研发中心检查指导工作

4月11日&#xff0c;激光院党委书记、董事长龚赤坤到北京研发中心检查指导工作。 龚赤坤详细了解了北京研发中心的建设情况和科研进展&#xff0c;充分肯定所取得的成绩&#xff0c;对发展寄予厚望&#xff0c;龚赤坤指出北京研发中心的成立正处于激光院加速发展与产业进化的关…...

AbortController:让异步操作随时说停就停

AbortController&#xff1a;让异步操作随时说停就停 一、什么是 AbortController&#xff1f; AbortController 是 JavaScript 在浏览器和部分 Node.js 环境中提供的全局类&#xff0c;用来中止正在进行或待完成的异步操作&#xff08;如 fetch() 请求、事件监听、可写流、数…...

leetcode572 另一棵树的子树

1.与100、101解法相同 递归&#xff1a; class Solution { private:bool compare(TreeNode* p, TreeNode* q){if(!p && !q) return true;else if(!p || !q) return false;else if(p->val ! q->val) return false;bool leftside compare(p->left, q->lef…...

再看 MPTCP 时的思考

2022 年夏&#xff0c;居家办公时&#xff0c;第一次接手 mptcp 就觉得它不靠谱&#xff0c;以至于我后来搞了 mpudp for DC&#xff0c;再后来我调研了很多 mptcp-based 方案&#xff0c;发现它们都是向善而来&#xff0c;最终灰头土脸而终。mptcp 实则一个坑&#xff0c;业内…...

将三维非平面点集拆分为平面面片的MATLAB实现

将三维非平面点集拆分为平面面片的MATLAB实现 要将三维空间中不在同一平面上的点集拆分为多个平面面片&#xff0c;可以采用以下几种方法&#xff1a; 1. 三角剖分法 (Delaunay Triangulation) 最简单的方法是将点集进行三角剖分&#xff0c;因为三个点总是共面的&#xff1…...