当前位置: 首页 > news >正文

【2025年泰迪杯数据挖掘挑战赛】B题 详细解题思路+数据预处理+代码分享

目录

  • 2025年泰迪杯B题详细解题思路
    • 问题一
      • 问题分析
      • 数学模型
      • Python代码
      • Matlab代码
    • 问题二
      • 问题分析
      • 数学模型
      • Python代码
      • Matlab代码
    • 问题三
      • 问题分析
      • 数学模型
      • Python代码
      • Matlab代码
    • 问题四
      • 问题分析
      • 数学模型
      • Python代码
      • Matlab代码

2025年泰迪杯B题详细解题思路

初步分析整理了B题的赛题分析与解题思路,后面还会更新详细的建模论文与解题代码,明天完成!

问题一

问题分析

需要从附件1的加速度数据中提取MET值,并按强度分类统计时长。核心在于正确处理时间戳间隔和MET区间分类。由于时间戳为毫秒级,需计算相邻时间差并累加至对应活动类别。需注意时间差计算的精度及MET区间的边界条件。

数学模型

在这里插入图片描述

Python代码

import pandas as pd
import re
import osdef process_volunteer(file_path):df = pd.read_csv(file_path)df['日期'] = pd.to_numeric(df['日期'])df = df.sort_values('日期')df['delta'] = df['日期'].diff().shift(-1) / (3600 * 1000)  # 转换为小时df = df.dropna(subset=['delta'])# 提取MET值df['MET'] = df['标签'].apply(lambda x: float(re.search(r'MET值\s*([0-9.]+)', x).group(1)))# 分类统计bins = [-float('inf'), 1, 1.6, 3, 6, float('inf')]labels = ['睡眠', '静态活动', '低等强度', '中等强度', '高等强度']df['category'] = pd.cut(df['MET'], bins=bins, labels=labels, right=False)result = df.groupby('category')['delta'].sum().to_dict()return {'志愿者ID': os.path.basename(file_path).split('.')[0],'记录总时长(小时)': round(df['delta'].sum(), 4),'睡眠总时长(小时)': round(result.get('睡眠', 0), 4),'高等强度运动总时长(小时)': round(result.get('高等强度', 0), 4),'中等强度运动总时长(小时)': round(result.get('中等强度', 0), 4),'低等强度运动总时长(小时)': round(result.get('低等强度', 0), 4),'静态活动总时长(小时)': round(result.get('静态活动', 0), 4)}# 主程序
metadata = pd.read_csv('Metadatal.csv')
results = []
for vid in metadata['志愿者ID']:file_path = f'附件1/P{vid}.csv'if os.path.exists(file_path):res = process_volunteer(file_path)results.append(res)pd.DataFrame(results).to_excel('result_1.xlsx', index=False)

Matlab代码

function B1()dataDir = '附件1/';meta = readtable('Metadatal.csv');results = cell(height(meta), 7);for i = 1:height(meta)vid = meta.志愿者ID{i};file = [dataDir 'P' vid '.csv'];if ~exist(file, 'file'), continue; end% 读取数据并排序tbl = readtable(file);tbl.日期 = str2double(tbl.日期);[~, idx] = sort(tbl.日期);tbl = tbl(idx, :);% 计算时间差delta = diff(tbl.日期) / (3600 * 1000); % 转换为小时met = zeros(length(delta), 1);for j = 1:length(delta)metStr = tbl.标签{j};metVal = regexp(metStr, 'MET值\s*([0-9.]+)', 'tokens', 'once');met(j) = str2double(metVal{1});end% 分类统计edges = [-inf, 1, 1.6, 3, 6, inf];[~, bin] = histc(met, edges);total = sum(delta);counts = accumarray(bin, delta, [5, 1], @sum, 0);% 保存结果results(i, :) = {vid, total, counts(1), counts(5), counts(4), counts(3), counts(2)};end% 输出到ExcelT = cell2table(results, 'VariableNames', {'志愿者ID', '总时长', '睡眠', '高等', '中等', '低等', '静态'});writetable(T, 'result_1.xlsx');
end

问题二

问题分析

需构建回归模型预测MET值。输入特征包括三轴加速度的时域、频域统计量及元数据(年龄、性别)。模型需捕捉加速度与MET值的非线性关系。

数学模型

在这里插入图片描述
在这里插入图片描述

Python代码

import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_scoredef extract_features(data):x = data['X'].valuesy = data['Y'].valuesz = data['Z'].valuesvm = np.sqrt(x**2 + y**2 + z**2)# 时域特征features = {'x_mean': np.mean(x), 'x_std': np.std(x),'y_mean': np.mean(y), 'y_std': np.std(y),'z_mean': np.mean(z), 'z_std': np.std(z),'vm_mean': np.mean(vm), 'vm_std': np.std(vm),'vm_rms': np.sqrt(np.mean(vm**2))}# 频域特征for axis, sig in zip(['x', 'y', 'z'], [x, y, z]):fft = np.abs(np.fft.rfft(sig))features[f'{axis}_energy'] = np.sum(fft**2)return features# 训练数据准备
metadata = pd.read_csv('Metadatal.csv')
X, y = [], []
for vid in metadata['志愿者ID']:df = pd.read_csv(f'附件1/P{vid}.csv')df['MET'] = df['标签'].str.extract(r'MET值\s*([0-9.]+)').astype(float)# 滑动窗口处理(窗口5秒)window_size = 5for i in range(0, len(df
) - window_size, window_size):window = df.iloc[i:i+window_size]feat = extract_features(window)feat['age'] = metadata.loc[metadata['志愿者ID'] == vid, '年龄'].values[0]feat['gender'] = 1 if metadata.loc[metadata['志愿者ID'] == vid, '性别'].values[0] == '男' else 0X.append(feat)y.append(window['MET'].mean())# 训练模型
model = RandomForestRegressor(n_estimators=100)
scores = cross_val_score(model, pd.DataFrame(X), y, cv=5, scoring='r2')
print(f'交叉验证R²得分: {np.mean(scores):.4f}')
model.fit(pd.DataFrame(X), y)# 预测附件2数据

Matlab代码

function B2()% 特征提取函数function feat = extractFeatures(x, y, z)vm = sqrt(x.^2 + y.^2 + z.^2);feat = [mean(x), std(x), mean(y), std(y), mean(z), std(z), ...mean(vm), std(vm), rms(vm), sum(abs(fft(x)).^2), ...sum(abs(fft(y)).^2), sum(abs(fft(z)).^2)];end% 加载数据meta = readtable('Metadatal.csv');X = []; y = [];for i = 1:height(meta)file = ['附件1/P' meta.志愿者ID{i} '.csv'];tbl = readtable(file);met = cellfun(@(s) str2double(regexp(s, 'MET值\s*([0-9.]+)', 'tokens', 'once')), tbl.标签);% 滑动窗口处理winSize = 5;  % 5秒窗口for j = 1:winSize:height(tbl)-winSizex = tbl.X(j:j+winSize-1);y_axis = tbl.Y(j:j+winSize-1);z = tbl.Z(j:j+winSize-1);feat = extractFeatures(x, y_axis, z);X = [X; feat meta.年龄(i) strcmp(meta.性别{i}, '男')];y = [y; mean(met(j:j+winSize-1))];endend% 训练随机森林model = TreeBagger(100, X, y, 'Method', 'regression');% 预测附件2
end

问题三

问题分析

睡眠阶段通过低活动量时段检测。计算向量幅度(VM)的滑动窗口均值,低于阈值视为睡眠候选,进一步聚类划分模式。

数学模型

活动量计算:
[
VM(t) = \sqrt{x(t)^2 + y(t)^2 + z(t)^2}
]
睡眠窗口检测:
[
W_{\text{sleep}} = { t \mid \overline{VM}(t) < \theta }
]
K-means聚类:
目标函数为最小化类内平方和:
[
\min \sum_{k=1}^K \sum_{\mathbf{x} \in C_k} | \mathbf{x} - \mathbf{\mu}_k |^2
]
其中 ( \mathbf{\mu}_k ) 为窗口特征 ( \mathbf{x} ) 的聚类中心。

Python代码

from sklearn.cluster import KMeansdef detect_sleep(file_path):df = pd.read_csv(file_path)df['vm'] = np.sqrt(df['X']**2 + df['Y']**2 + df['Z']**2)# 滑动窗口检测低活动(30秒窗口)window_size = 30df['window'] = df.index // window_sizeactivity = df.groupby('window')['vm'].mean()sleep_windows = activity[activity < 0.1].index# 提取窗口特征features = []for win in sleep_windows:win_data = df[df['window'] == win]vm_mean = win_data['vm'].mean()vm_std = win_data['vm'].std()features.append([vm_mean, vm_std])# K-means聚类if len(features) == 0:return {'睡眠总时长': 0.0, '模式一': 0.0, '模式二': 0.0, '模式三': 0.0}kmeans = KMeans(n_clusters=3).fit(features)labels = kmeans.labels_counts = np.bincount(labels, minlength=3)hours = counts * window_size / 3600  # 转换为小时return {'睡眠总时长': round(np.sum(hours), 4),'模式一': round(hours[0], 4),'模式二': round(hours[1], 4),'模式三': round(hours[2], 4)}# 处理附件2并保存结果

Matlab代码

function B3()function [total, modes] = detectSleep(file)tbl = readtable(file);vm = sqrt(tbl.X.^2 + tbl.Y.^2 + tbl.Z.^2);% 检测低活动窗口(30秒窗口)winSize = 30;numWin = floor(height(tbl)/winSize);act = zeros(numWin, 1);for i = 1:numWinidx = (i-1)*winSize + 1 : i*winSize;act(i) = mean(vm(idx));endsleepWins = find(act < 0.1);% 提取特征并聚类features = zeros(length(sleepWins), 2);for j = 1:length(sleepWins)idx = (sleepWins(j)-1)*winSize + 1 : sleepWins(j)*winSize;vmWin = vm(idx);features(j, :) = [mean(vmWin), std(vmWin)];endif isempty(features)total = 0; modes = zeros(1,3);else[~, C] = kmeans(features, 3);counts = histcounts(C, 1:4);total = sum(counts) * winSize / 3600;modes = counts * winSize / 3600;endend% 应用至附件2(略)
end

问题四

问题分析

检测连续静态活动(MET<1.6)超过30分钟的时段。遍历预测的MET序列,记录连续满足条件的时段。

数学模型

设MET序列为 ( MET(t) ),窗口步长 ( \Delta t )(单位:分钟),久坐判定条件为:
[
\sum_{i=t}^{t+\Delta t} MET(i) < 1.6 \quad \text{且} \quad \Delta t \geq 30
]

Python代码

def sedentary_alert(met_series, window_min=5):delta = window_min / 60  # 转换为小时sedentary = []current_duration = 0.0start_idx = Nonefor i, met in enumerate(met_series):if met < 1.6:current_duration += deltaif start_idx is None:start_idx = ielse:if current_duration >= 0.5:  # 0.5小时=30分钟end_idx = i - 1sedentary.append((start_idx, end_idx, current_duration))current_duration = 0.0start_idx = Noneif current_duration >= 0.5:sedentary.append((start_idx, len(met_series)-1, current_duration))return sedentary# 应用至附件2预测结果

Matlab代码

function B4()function alerts = detectSedentary(met, winSize)delta = winSize / 60;  % 窗口分钟转小时alerts = [];start = 1; count = 0;for i = 1:length(met)if met(i) < 1.6count = count + delta;if isempty(start), start = i; endelseif count >= 0.5  % 0.5小时=30分钟alerts = [alerts; [start, i-1, count]];endcount = 0;start = [];endendif count >= 0.5alerts = [alerts; [start, length(met), count]];endend% 应用至附件2(略)
end

完整论文代码获取,请看下方~ 可直接指导比赛,冲国奖

相关文章:

【2025年泰迪杯数据挖掘挑战赛】B题 详细解题思路+数据预处理+代码分享

目录 2025年泰迪杯B题详细解题思路问题一问题分析数学模型Python代码Matlab代码 问题二问题分析数学模型Python代码Matlab代码 问题三问题分析数学模型Python代码Matlab代码 问题四问题分析数学模型Python代码Matlab代码 2025年泰迪杯B题详细解题思路 初步分析整理了B题的赛题分…...

对shell脚本敏感命令进行加密执行

我要加密这条命令&#xff1a;rm /root/scripty.sh 如何利用openssl aes-256-cbc 实现加密和解密&#xff0c;并执行命令 加密、解密并执行命令的完整流程 以下是使用 openssl aes-256-cbc 加密命令 rm /root/scripty.sh&#xff0c;解密并执行的详细步骤&#xff1a; 1. 加密…...

SQL ⑦-索引

索引 索引是一种特殊的数据结构&#xff0c;它帮助数据库系统高效地找到数据。 索引通过一定的规则排列数据表中的记录&#xff0c;使得对表的查询可以通过对索引的搜索来加快速度。 索引好比书籍的目录&#xff0c;能帮助你快速找到相应的章节。 B树 B树是一种经常用于数…...

LinkedBlockingQueue使用场景有哪些

1、LinkedBlockingQueue 的特点 LinkedBlockingQueue 是 Java 中 java.util.concurrent 包下的一种阻塞队列&#xff0c;它有以下几个主要特点&#xff1a; 1.线程安全 LinkedBlockingQueue 是线程安全的&#xff0c;它内部使用了锁机制来确保多线程环境下的并发访问不会导致…...

关于难例损失函数小记

什么是难例损失函数&#xff08;Hard Example Loss Function&#xff09; 这玩意儿是深度学习训练中非常重要又很实用的一个概念&#xff0c;特别适用于处理 数据不平衡、模型收敛缓慢、或者**想让模型更“挑剔”**的场景。 &#x1f31f; 先从名字讲起&#xff1a; “难例”…...

小程序开发指南

小程序开发指南 目录 1. 小程序开发概述 1.1 什么是小程序1.2 小程序的优势1.3 小程序的发展历程 2. 开发准备工作 2.1 选择开发平台2.2 开发环境搭建2.3 开发模式选择 3. 小程序开发流程 3.1 项目规划3.2 界面设计3.3 代码开发3.4 基本开发示例3.5 数据存储3.6 网络请求3.7 …...

RCE漏洞学习

1&#xff0c;What is RCE&#xff1f; 在CTF&#xff08;Capture The Flag&#xff09;竞赛中&#xff0c;RCE漏洞指的是远程代码执行漏洞&#xff08;Remote Code Execution&#xff09;。这类漏洞允许攻击者通过某种方式在目标系统上执行任意代码&#xff0c;从而完全控制目…...

青少年编程考试 CCF GESP图形化编程 三级认证真题 2025年3月

图形化编程 三级 2025 年 03 月 一、单选题&#xff08;共 15 题&#xff0c;每题 2 分&#xff0c;共 30 分&#xff09; 1、2025 年春节有两件轰动全球的事件&#xff0c;一个是 DeepSeek 横空出世&#xff0c;另一个是贺岁 片《哪吒 2》票房惊人&#xff0c;入了全球票房榜…...

一、绪论(Introduction of Artificial Intelligence)

写在前面&#xff1a; 老师比较看重的点&#xff1a;对问题的概念本质的理解&#xff0c;不会考试一堆运算的东西&#xff0c;只需要将概念理解清楚就可以&#xff0c;最后一个题会出一个综合题&#xff0c;看潜力&#xff0c;前面的部分考的不是很深&#xff0c;不是很难&…...

多模态大语言模型arxiv论文略读(十五)

## Jailbreaking GPT-4V via Self-Adversarial Attacks with System Prompts ➡️ 论文标题&#xff1a;Jailbreaking GPT-4V via Self-Adversarial Attacks with System Prompts ➡️ 论文作者&#xff1a;Yuanwei Wu, Xiang Li, Yixin Liu, Pan Zhou, Lichao Sun ➡️ 研究机…...

漏洞报告:多短视频平台时间差举报滥用漏洞

漏洞标题&#xff1a;跨平台内容发布时序漏洞导致的恶意举报攻击向量 漏洞类型&#xff1a;逻辑缺陷/滥用机制 漏洞等级&#xff1a;中高风险 漏洞描述&#xff1a; 攻击者可利用多平台内容发布时间差&#xff0c;伪造原创证明对合法内容发起恶意举报。该漏洞源于平台间缺乏发…...

【LINUX】学习宝典

一.Linux系统常用单词翻译 1.new folder 新建文件夹 2.paste 粘贴 3.select all 全选 4.open in terminal 打开终端/命令行 5.keep aligned 保持对齐 6.organize deaktop by name按名称组织桌面 7.change background更改背景 8.cancel 取消 9.create创造 创建 10.wal…...

青少年编程考试 CCF GESP图形化编程 四级认证真题 2025年3月

图形化编程 四级 2025 年 03 月 一、单选题&#xff08;共 10 题&#xff0c;每题 2 分&#xff0c;共 30 分&#xff09; 1、2025 年春节有两件轰动全球的事件&#xff0c;一个是 DeepSeek 横空出世&#xff0c;另一个是贺岁片《哪吒 2》票房惊人&#xff0c;入了全球票房榜…...

学习海康VisionMaster之平行线查找

一&#xff1a;进一步学习了 今天学习下VisionMaster中的平行线查找&#xff0c;这个还是拟合直线的衍生应用&#xff0c;可以同时测量两条线段&#xff0c;输出中线 二&#xff1a;开始学习 1&#xff1a;什么是平行线查找&#xff1f; 按照传统的算法&#xff0c;必须是开两…...

小甲鱼第004讲:变量和字符串(下)| 课后测试题及答案

问答题: 0. 请问下面代码有没有毛病&#xff0c;为什么? 请问下面代码为什么会出错&#xff0c;应该如何解决&#xff1f; 答:这是由于在字符串中&#xff0c;反斜杠()会与其随后的字符共同构成转义字符。 为了避免这种不测情况的发生&#xff0c;我们可以在字符串的引号前面…...

2025 蓝桥杯省赛c++B组个人题解

声明 本题解为退役蒻苟所写&#xff0c;不保证正确性&#xff0c;仅供参考。 花了大概2个半小时写完&#xff0c;感觉比去年省赛简单&#xff0c;难度大概等价于 codeforces dv4.5 吧 菜鸡不熟悉树上背包&#xff0c;调了一个多小时 题目旁边的是 cf 预测分 所有代码均以通…...

2025蓝桥杯算法竞赛深度突破:创新题型与高阶策略全解析

一、新型算法范式实战 1.1 元启发式算法应用&#xff08;预测难度&#xff1a;★★★★&#xff09; 题目场景&#xff1a;星际货物装载 需在飞船载重限制下选择最优货物组合&#xff0c;引入遗传算法解决NP-Hard问题&#xff1a; 染色体编码&#xff1a;二进制串表示货物选择…...

网络流量管理-流(Flow)

1. 传统网络的问题&#xff1a;快递员送信模式 想象你每天要寄100封信给同一个朋友&#xff0c;传统网络的处理方式就像一个固执的快递员&#xff1a; 每封信都单独处理&#xff1a;检查地址、规划路线、盖章、装车…即使所有信的目的地、收件人都相同&#xff0c;也要重复100…...

Spring Boot对接马来西亚股票数据源API

随着对东南亚市场的兴趣日益增长&#xff0c;获取马来西亚股票市场的实时和历史数据变得尤为重要。本文将指导您如何使用Spring Boot框架对接一个假定的马来西亚股票数据源API&#xff08;例如&#xff0c;StockTV API&#xff09;&#xff0c;以便开发者能够轻松访问和处理这些…...

MySQL 面经

1、什么是 MySQL&#xff1f; MySQL 是一个开源的关系型数据库&#xff0c;现在隶属于 Oracle 公司。是我们国内使用频率最高的一种数据库&#xff0c;我本地安装的是比较新的 8.0 版本。 1.1 怎么删除/创建一张表&#xff1f; 可以使用 DROP TABLE 来删除表&#xff0c;使用…...

【Flink运行时架构】作业提交流程

本文介绍在单作业模式下Flink提交作业的具体流程&#xff0c;如下图所示。 客户端将作业提交给YARN的RM&#xff1b;YARN的RM启动Flink JobManager&#xff0c;并将作业提交给JobMaster&#xff1b;JobMaster向Flink内置的RM请求slots&#xff1b;Flink内置的RM向YARN RM请求…...

【AutoTest】自动化测试工具大全(Java)

&#x1f60a; 如果您觉得这篇文章有用 ✔️ 的话&#xff0c;请给博主一个一键三连 &#x1f680;&#x1f680;&#x1f680; 吧 &#xff08;点赞 &#x1f9e1;、关注 &#x1f49b;、收藏 &#x1f49a;&#xff09;&#xff01;&#xff01;&#xff01;您的支持 &#x…...

当DRAM邂逅SSD:新型“DRAM+”存储技术来了!

在当今快速发展的科技领域&#xff0c;数据存储的需求日益增长&#xff0c;对存储设备的性能和可靠性提出了更高的要求。传统DRAM以其高速度著称&#xff0c;但其易失性限制了应用范围&#xff1b;而固态硬盘SSD虽然提供非易失性存储&#xff0c;但在速度上远不及DRAM。 为了解…...

【算法】快速排序

算法系列六&#xff1a;快速排序 一、快速排序的递归探寻 1.思路 2.书写 3.搭建 3.1设计过掉不符情况&#xff08;在最底层时&#xff09; 3.2查验能实现基础结果&#xff08;在最底层往上点时&#xff09; 3.3跳转结果继续往上回搭 4.实质 二、快速排序里的基准排序 …...

Python快速入门指南:从零开始掌握Python编程

文章目录 前言一、Python环境搭建&#x1f94f;1.1 安装Python1.2 验证安装1.3 选择开发工具 二、Python基础语法&#x1f4d6;2.1 第一个Python程序2.2 变量与数据类型2.3 基本运算 三、Python流程控制&#x1f308;3.1 条件语句3.2 循环结构 四、Python数据结构&#x1f38b;…...

机器学习中的数学(PartⅡ)——线性代数:2.1线性方程组

概述&#xff1a; 现实中很多问题都可被建模为线性方程组问题&#xff0c;而线性代数为我们提供了解决这类问题的工具。先看两个例子&#xff1a; 例子1&#xff1a; 一家公司有n个产品&#xff0c;分别是&#xff0c;生产上述产品需要m种原料&#xff0c;每个产品需要其中一…...

大模型上下文协议MCP详解(2)—核心功能

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl1. 标准化上下文交互技术 1.1 实时数据接入能力 MCP(Model Context Protocol)通过标准化的接口,为 AI 模型提供了强大的实时数据接入能力,使其能够快速获取和处理来自不同数据源的实时信息。…...

检测到目标URL存在http host头攻击漏洞

漏洞描述 修复措施 方法一: nginx 的 default_server 指令可以定义默认的 server 去处理一些没有匹配到 server_name 的请求,如果没有显式定义,则会选取第一个定义的 server 作为 default_server。 server {listen 80 default_server; …...

【 Beautiful Soup (bs4) 详解】

引言 Beautiful Soup 是 Python 最流行的 HTML/XML 解析库&#xff0c;能够从复杂的网页文档中高效提取数据。以下是其核心知识点及示例代码。 一、库简介 1. 核心模块 BeautifulSoup&#xff1a;主类&#xff0c;用于构建文档树结构Tag&#xff1a;表示 HTML/XML 标签的对象…...

Cuto壁纸 2.6.9 | 解锁所有高清精选壁纸,无广告干扰

Cuto壁纸 App 提供丰富多样的壁纸选择&#xff0c;涵盖动物、风景、创意及游戏动漫等类型。支持分类查找与下载&#xff0c;用户可轻松将心仪壁纸设为手机背景&#xff0c;并享受软件内置的编辑功能调整尺寸。每天更新&#xff0c;确保用户总能找到新鲜、满意的壁纸。 大小&am…...

人工智能之数学基础:复矩阵

本文重点 复矩阵是线性代数中以复数为元素的矩阵,是实矩阵在复数域上的自然推广。与实矩阵相比,复矩阵在数学性质、运算规则和应用场景上具有独特性,尤其在量子力学、信号处理、控制理论等领域发挥关键作用。 复矩阵的定义与表示 定义:复矩阵指的是元素含有复数的矩阵。…...

numpy初步掌握

文章目录 一、前言二、概述2.1 安装2.2 基础 三、数组3.1 数组创建3.1.1 从已有数据创建3.1.2 创建特殊值数组3.1.3 创建数值范围数组3.1.4 随机数组生成3.1.5 其他 3.2 数组属性 四、数组操作4.1 索引/切片4.2 数组遍历4.3 修改形状4.4 更多 五、数组运算5.1 常规运算5.2 广播…...

unity曲线射击

b站教程 using UnityEngine; using System.Collections;public class BallLauncher : MonoBehaviour {public float m_R;public NewBullet m_BulletPre;public Transform m_Target;private void Start(){StartCoroutine(Attack());}private void OnDestroy(){StopAllCoroutine…...

[特殊字符] 各领域 Dummy 开关实现方式大集合

涵盖硬件、软件、工业控制、游戏开发及网络虚拟化场景&#xff1a; &#x1f50c; 1. 电子 / 硬件工程 &#x1f6e0;️ (1) 物理替代方案 &#x1f9f2; 跳线帽&#xff08;Jumper&#xff09;或短路块 &#x1f449; 模拟开关“开/关”状态 ✅ 示例&#xff1a;开发板上的 B…...

深度解析基于 Web Search MCP的Deep Research 实现逻辑

写在前面 大型语言模型(LLM)已成为我们获取信息、生成内容的重要工具。但它们的知识大多截止于训练数据的时间点,对于需要实时信息、跨领域知识整合、多角度观点比较的深度研究 (Deep Research) 任务,它们往往力有不逮。如何让 LLM 突破自身知识的局限,像人类研究员一样,…...

set 的 contains

语法&#xff1a; set<int> num_set; st.contains(num); 在 C 中&#xff0c;!num_set.contains(num - 1) 这行代码通常用于检查一个集合&#xff08;num_set&#xff09;中是否不存在某个值&#xff08;num - 1&#xff09;。以下是对这行代码的详细解释&#xff1a;…...

深度学习总结(7)

用计算图进行自动微分 思考反向传播的一种有用方法是利用计算图(compu- tation graph)​。计算图是TensorFlow和深度学习革命的核心数据结构。它是一种由运算(比如我们用到的张量运算)构成的有向无环图。下图给出了一个模型的计算图表示。 计算图是计算机科学中一个非常…...

linux网络环境配置

今天我们来了解一下ip获取的两种方式,知道两者的特点,并且学会配置静态ip,那么话不多说,来看. linux网络环境配置. .第一种方式(自动获取): 说明:登录后,通过界面的来设置自动获取ip,特点;Linux启动后会自动获取ip,缺点是每次自动获取的ip地址可能不一样. 第二种方式(指定I…...

SSRF漏洞公开报告分析

文章目录 1. SSRF | 获取元数据 | 账户接管2. AppStore | 版本上传表单 | Blind SSRF3. HOST SSRF一、为什么HOST修改不会影响正常访问二、案例 4. Turbonomic 的 终端节点 | SSRF 获取元密钥一、介绍二、漏洞分析 5. POST | Blind SSRF6. CVE-2024-40898利用 | SSRF 泄露 NTL…...

Java接口深度解析

一、为什么需要接口 接口是Java实现多态的重要机制&#xff0c;核心价值体现在&#xff1a; ​​实现多继承能力​​&#xff1a;突破单继承限制&#xff0c;允许类实现多个接口​​规范系统解耦​​&#xff1a;制定通用标准&#xff0c;隔离实现与调用方​​增强扩展性​​…...

VitePress 项目部署 cloudflare page 提示 npm run build 错误

构建的错误信息如下&#xff1a; 09:52:57.975 ➤ YN0000: Done with warnings in 3s 120ms 09:52:58.072 Executing user command: npm run build 09:52:58.817 npm ERR! Missing script: "build" 09:52:58.818 npm ERR! 09:52:58.818 npm ERR! To see a list of …...

#Hash 模式 vs History 模式

&#x1f4cc; 一、概念对比&#xff1a;Hash 模式 vs History 模式 特性Hash 模式History 模式URL 样式http://example.com/#/homehttp://example.com/home是否刷新页面❌ 不会刷新&#xff08;仅 hash 变化&#xff09;✅ 通过 HTML5 API 控制&#xff0c;不刷新原理window.…...

图像融合(Image Fusion)是什么

图像融合&#xff08;Image Fusion&#xff09;将来自相同类型传感器或成像方式的多幅图像&#xff08;通常内容是一样的&#xff09;进行融合&#xff0c;提高图像清晰度、对比度、空间或时间分辨率。得到比原始图像更清晰或信息更丰富的图像 常见类型&#xff1a; 多时相图…...

基于YOLOV8的中草药识别检测系统(包含数据集+PyQt5界面+系统代码)

一、简介 本项目构建了基于 YOLOV8 深度学习网络模型的中草药识别检测系统。凭借 YOLOV8 卓越的性能&#xff0c;该系统能够高效、精准地识别检测大枣、 百合、黄连 、乌梅、厚朴 、牡蛎 、海马 、罗汉果 、甘草、三七、 通草、 薏苡仁、 枸杞子 、八角茴香等 50种常见植物中草…...

【愚公系列】《高效使用DeepSeek》066-纠纷解决话术

🌟【技术大咖愚公搬代码:全栈专家的成长之路,你关注的宝藏博主在这里!】🌟 📣开发者圈持续输出高质量干货的"愚公精神"践行者——全网百万开发者都在追更的顶级技术博主! 👉 江湖人称"愚公搬代码",用七年如一日的精神深耕技术领域,以"…...

7. 解立方根

题目描述 给定一个正整数 N&#xff0c;请你求 N 的立方根是多少。 输入描述 第 1 行为一个整数 T&#xff0c;表示测试数据数量。 接下来的 T 行每行包含一个正整数 N。 1≤T≤105&#xff0c;0≤N≤105。 输出描述 输出共 T 行&#xff0c;分别表示每个测试数据的答案…...

【愚公系列】《Python网络爬虫从入门到精通》047-验证码识别(第三方验证码识别)

🌟【技术大咖愚公搬代码:全栈专家的成长之路,你关注的宝藏博主在这里!】🌟 📣开发者圈持续输出高质量干货的"愚公精神"践行者——全网百万开发者都在追更的顶级技术博主! 👉 江湖人称"愚公搬代码",用七年如一日的精神深耕技术领域,以"…...

C++指针(二)

个人主页&#xff1a;PingdiGuo_guo 收录专栏&#xff1a;C干货专栏 前言 本篇是介绍数组指针与指针数组的概念&#xff0c;用处&#xff0c;操作以及练习的。点赞破五十&#xff0c;更新下一期。 文章目录 1.数组指针 1.1数组指针的概念 1.2数组指针的用处 1.3数组指针的操…...

C++有关内存的那些事

个人主页&#xff1a;PingdiGuo_guo 收录转栏&#xff1a;C干货专栏 前言 本篇博客是讲解关于C内存的一些知识点的。 文章目录 前言 1.内存函数 1.1memcpy函数 1.2memmove函数 1.3 memset函数 2.各数据类型占用 2.1bool类型 2.2char类型 2.3short、int、long类型及整数…...

4.11时钟延迟

时钟偏差&#xff1a;同一个时钟域内的时钟信号到达数字电路的各个部分&#xff08;寄存器&#xff09;所用的时间差异 信号达到目标寄存器与接收寄存器的时间差【一般默认信号经过电路时间不计&#xff0c;】 图源&#xff1a;优化时钟网络之时钟偏移-CSDN博客 时钟周期是计…...