Redis缓存设计与性能优化
多级缓存架构
缓存设计
缓存穿透
缓存穿透是指查询一个根本不存在的数据,缓存层和存储层都不会命中,通常出于容错的考虑,如果从存储层查不到数据则不写入缓存层。
缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去了缓存保护后端存储的意义。
造成缓存穿透的基本原因有两个:
第一,自身业务代码或者数据出现问题。
第二,一些恶意攻击、 爬虫等造成大量空命中。
缓存穿透问题解决方案:
1、缓存空对象
String get(String key) {// 从缓存中获取数据String cacheValue = cache.get(key);// 缓存为空if (StringUtils.isBlank(cacheValue)) {// 从存储中获取String storageValue = storage.get(key);cache.set(key, storageValue);// 如果存储数据为空, 需要设置一个过期时间(300秒)if (storageValue == null) {cache.expire(key, 60 * 5);}return storageValue;} else {// 缓存非空return cacheValue;}}
2、布隆过滤器
对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。
布隆过滤器就是一个大型的位数组和几个不一样的无偏 hash 函数。所谓无偏就是能够把元素的 hash 值算得比较均匀。
向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就完成了 add 操作。
向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位置是否都为 1,只要有一个位为 0,那么说明布隆过滤器中这个key 不存在。如果都是 1,这并不能说明这个 key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组长度比较大,存在概率就会很大,如果这个位数组长度比较小,存在概率就会降低。
这种方法适用于数据命中不高、 数据相对固定、 实时性低(通常是数据集较大) 的应用场景, 代码维护较为复杂, 但是缓存空间占用很少。
可以用redisson实现布隆过滤器,引入依赖:
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.6.5</version></dependency>
示例伪代码:
public class RedissonBloomFilter {public static void main(String[] args) {Config config = new Config();config.useSingleServer().setAddress("redis://localhost:6379");//构造RedissonRedissonClient redisson = Redisson.create(config);RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");//初始化布隆过滤器:预计元素为100000000L,误差率为3%,根据这两个参数会计算出底层的bit数组大小bloomFilter.tryInit(100000000L,0.03);//将xiaoyu插入到布隆过滤器中bloomFilter.add("xiaoyu");//判断下面号码是否在布隆过滤器中System.out.println(bloomFilter.contains("zhangsan"));//falseSystem.out.println(bloomFilter.contains("lisi"));//falseSystem.out.println(bloomFilter.contains("xiaoyu"));//true}}
使用布隆过滤器需要把所有数据提前放入布隆过滤器,并且在增加数据时也要往布隆过滤器里放,布隆过滤器缓存过滤伪代码:
//初始化布隆过滤器RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");//初始化布隆过滤器:预计元素为100000000L,误差率为3%bloomFilter.tryInit(100000000L,0.03);//把所有数据存入布隆过滤器void init(){for (String key: keys) {bloomFilter.put(key);}}String get(String key) {// 从布隆过滤器这一级缓存判断下key是否存在Boolean exist = bloomFilter.contains(key);if(!exist){return "";}// 从缓存中获取数据String cacheValue = cache.get(key);// 缓存为空if (StringUtils.isBlank(cacheValue)) {// 从存储中获取String storageValue = storage.get(key);cache.set(key, storageValue);// 如果存储数据为空, 需要设置一个过期时间(300秒)if (storageValue == null) {cache.expire(key, 60 * 5);}return storageValue;} else {// 缓存非空return cacheValue;}}
注意:布隆过滤器不能删除数据,如果要删除得重新初始化数据。
缓存失效(击穿)
由于大批量缓存在同一时间失效可能导致大量请求同时穿透缓存直达数据库,可能会造成数据库瞬间压力过大甚至挂掉,对于这种情况我们在批量增加缓存时最好将这一批数据的缓存过期时间设置为一个时间段内的不同时间。
示例伪代码:
String get(String key) {// 从缓存中获取数据String cacheValue = cache.get(key);// 缓存为空if (StringUtils.isBlank(cacheValue)) {// 从存储中获取String storageValue = storage.get(key);cache.set(key, storageValue);//设置一个过期时间(300到600之间的一个随机数)int expireTime = new Random().nextInt(300) + 300;if (storageValue == null) {cache.expire(key, expireTime);}return storageValue;} else {// 缓存非空return cacheValue;}}
缓存雪崩
缓存雪崩指的是缓存层支撑不住或宕掉后, 流量会像奔逃的野牛一样, 打向后端存储层。
由于缓存层承载着大量请求, 有效地保护了存储层, 但是如果缓存层由于某些原因不能提供服务(比如超大并发过来,缓存层支撑不住,或者由于缓存设计不好,类似大量请求访问bigkey,导致缓存能支撑的并发急剧下降), 于是大量请求都会打到存储层, 存储层的调用量会暴增, 造成存储层也会级联宕机的情况。
预防和解决缓存雪崩问题, 可以从以下三个方面进行着手。
1) 保证缓存层服务高可用性,比如使用Redis Sentinel或Redis Cluster。
2) 依赖隔离组件为后端限流熔断并降级。比如使用Sentinel或Hystrix限流降级组件。
比如服务降级,我们可以针对不同的数据采取不同的处理方式。当业务应用访问的是非核心数据(例如电商商品属性,用户信息等)时,暂时停止从缓存中查询这些数据,而是直接返回预定义的默认降级信息、空值或是错误提示信息;当业务应用访问的是核心数据(例如电商商品库存)时,仍然允许查询缓存,如果缓存缺失,也可以继续通过数据库读取。
3) 提前演练。 在项目上线前, 演练缓存层宕掉后, 应用以及后端的负载情况以及可能出现的问题, 在此基础上做一些预案设定。
热点缓存key重建优化
开发人员使用“缓存+过期时间”的策略既可以加速数据读写, 又保证数据的定期更新, 这种模式基本能够满足绝大部分需求。 但是有两个问题如果同时出现, 可能就会对应用造成致命的危害:
- 当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常大。
- 重建缓存不能在短时间完成, 可能是一个复杂计算, 例如复杂的SQL、 多次IO、 多个依赖等。
在缓存失效的瞬间, 有大量线程来重建缓存, 造成后端负载加大, 甚至可能会让应用崩溃。
要解决这个问题主要就是要避免大量线程同时重建缓存。
我们可以利用互斥锁来解决,此方法只允许一个线程重建缓存, 其他线程等待重建缓存的线程执行完, 重新从缓存获取数据即可。
示例伪代码:
String get(String key) {// 从Redis中获取数据String value = redis.get(key);// 如果value为空, 则开始重构缓存if (value == null) {// 只允许一个线程重建缓存, 使用nx, 并设置过期时间exString mutexKey = "mutext:key:" + key;if (redis.set(mutexKey, "1", "ex 180", "nx")) {// 从数据源获取数据value = db.get(key);// 回写Redis, 并设置过期时间redis.setex(key, timeout, value);// 删除key_mutexredis.delete(mutexKey);}// 其他线程休息50毫秒后重试else {Thread.sleep(50);get(key);}}return value;}
缓存与数据库双写不一致
在大并发下,同时操作数据库与缓存会存在数据不一致性问题
1、双写不一致情况
2、读写并发不一致
解决方案:
1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等),这种几乎不用考虑这个问题,很少会发生缓存不一致,可以给缓存数据加上过期时间,每隔一段时间触发读的主动更新即可。
2、就算并发很高,如果业务上能容忍短时间的缓存数据不一致(如商品名称,商品分类菜单等),缓存加上过期时间依然可以解决大部分业务对于缓存的要求。
3、如果不能容忍缓存数据不一致,可以通过加分布式读写锁保证并发读写或写写的时候按顺序排好队,读读的时候相当于无锁。
4、也可以用阿里开源的canal通过监听数据库的binlog日志及时的去修改缓存,但是引入了新的中间件,增加了系统的复杂度。
总结:
以上我们针对的都是读多写少的情况加入缓存提高性能,如果写多读多的情况又不能容忍缓存数据不一致,那就没必要加缓存了,可以直接操作数据库。当然,如果数据库抗不住压力,还可以把缓存作为数据读写的主存储,异步将数据同步到数据库,数据库只是作为数据的备份。
放入缓存的数据应该是对实时性、一致性要求不是很高的数据。切记不要为了用缓存,同时又要保证绝对的一致性做大量的过度设计和控制,增加系统复杂性!
开发规范与性能优化
一、键值设计
1. key名设计
(1)【建议】:可读性和可管理性
以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id
trade:order:1
(2)【建议】:简洁性
保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:
user:{uid}:friends:messages:{mid} 简化为 u:{uid}:fr:m:{mid}
(3)【强制】:不要包含特殊字符
反例:包含空格、换行、单双引号以及其他转义字符
2. value设计
(1)【强制】:拒绝bigkey(防止网卡流量、慢查询)
在Redis中,一个字符串最大512MB,一个二级数据结构(例如hash、list、set、zset)可以存储大约40亿个(2^32-1)个元素,但实际中如果下面两种情况,我就会认为它是bigkey。
- 字符串类型:它的big体现在单个value值很大,一般认为超过10KB就是bigkey。
- 非字符串类型:哈希、列表、集合、有序集合,它们的big体现在元素个数太多。
一般来说,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。
反例:一个包含200万个元素的list。
非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞)
bigkey的危害:
1.导致redis阻塞
2.网络拥塞
bigkey也就意味着每次获取要产生的网络流量较大,假设一个bigkey为1MB,客户端每秒访问量为1000,那么每秒产生1000MB的流量,对于普通的千兆网卡(按照字节算是128MB/s)的服务器来说简直是灭顶之灾,而且一般服务器会采用单机多实例的方式来部署,也就是说一个bigkey可能会对其他实例也造成影响,其后果不堪设想。
3.过期删除
有个bigkey,它安分守己(只执行简单的命令,例如hget、lpop、zscore等),但它设置了过期时间,当它过期后,会被删除,如果没有使用Redis 4.0的过期异步删除(lazyfree-lazy-expire yes),就会存在阻塞Redis的可能性。
bigkey的产生:
一般来说,bigkey的产生都是由于程序设计不当,或者对于数据规模预料不清楚造成的,来看几个例子:
(1) 社交类:粉丝列表,如果某些明星或者大v不精心设计下,必是bigkey。
(2) 统计类:例如按天存储某项功能或者网站的用户集合,除非没几个人用,否则必是bigkey。
(3) 缓存类:将数据从数据库load出来序列化放到Redis里,这个方式非常常用,但有两个地方需要注意,第一,是不是有必要把所有字段都缓存;第二,有没有相关关联的数据,有的同学为了图方便把相关数据都存一个key下,产生bigkey。
如何优化bigkey
1.拆
big list: list1、list2、...listN
big hash:可以讲数据分段存储,比如一个大的key,假设存了1百万的用户数据,可以拆分成200个key,每个key下面存放5000个用户数据
2. 如果bigkey不可避免,也要思考一下要不要每次把所有元素都取出来(例如有时候仅仅需要hmget,而不是hgetall),删除也是一样,尽量使用优雅的方式来处理。
(2)【推荐】:选择适合的数据类型。
例如:实体类型(要合理控制和使用数据结构,但也要注意节省内存和性能之间的平衡)
反例:
set user:1:name tom
set user:1:age 19
set user:1:favor football
正例:
hmset user:1 name tom age 19 favor football
3.【推荐】:控制key的生命周期,redis不是垃圾桶。
建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期)。
二、命令使用
1.【推荐】 O(N)命令关注N的数量
例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。
2.【推荐】:禁用命令
禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。
3.【推荐】合理使用select
redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。
4.【推荐】使用批量操作提高效率
原生命令:例如mget、mset。
非原生命令:可以使用pipeline提高效率。
但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)。
注意两者不同:
- 原生命令是原子操作,pipeline是非原子操作。
- pipeline可以打包不同的命令,原生命令做不到
- pipeline需要客户端和服务端同时支持。
5.【建议】Redis事务功能较弱,不建议过多使用,可以用lua替代
三、客户端使用
1.【推荐】
避免多个应用使用一个Redis实例
正例:不相干的业务拆分,公共数据做服务化。
2.【推荐】
使用带有连接池的数据库,可以有效控制连接,同时提高效率,标准使用方式:
JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();jedisPoolConfig.setMaxTotal(5);jedisPoolConfig.setMaxIdle(2);jedisPoolConfig.setTestOnBorrow(true);JedisPool jedisPool = new JedisPool(jedisPoolConfig, "192.168.0.60", 6379, 3000, null);Jedis jedis = null;try {jedis = jedisPool.getResource();//具体的命令jedis.executeCommand()} catch (Exception e) {logger.error("op key {} error: " + e.getMessage(), key, e);} finally {//注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。if (jedis != null)jedis.close();}
连接池参数含义:
序号 | 参数名 | 含义 | 默认值 | 使用建议 |
1 | maxTotal | 资源池中最大连接数 | 8 | 设置建议见下面 |
2 | maxIdle | 资源池允许最大空闲的连接数 | 8 | 设置建议见下面 |
3 | minIdle | 资源池确保最少空闲的连接数 | 0 | 设置建议见下面 |
4 | blockWhenExhausted | 当资源池用尽后,调用者是否要等待。只有当为true时,下面的maxWaitMillis才会生效 | true | 建议使用默认值 |
5 | maxWaitMillis | 当资源池连接用尽后,调用者的最大等待时间(单位为毫秒) | -1:表示永不超时 | 不建议使用默认值 |
6 | testOnBorrow | 向资源池借用连接时是否做连接有效性检测(ping),无效连接会被移除 | false | 业务量很大时候建议设置为false(多一次ping的开销)。 |
7 | testOnReturn | 向资源池归还连接时是否做连接有效性检测(ping),无效连接会被移除 | false | 业务量很大时候建议设置为false(多一次ping的开销)。 |
8 | jmxEnabled | 是否开启jmx监控,可用于监控 | true | 建议开启,但应用本身也要开启 |
优化建议:
1)maxTotal:最大连接数,早期的版本叫maxActive
实际上这个是一个很难回答的问题,考虑的因素比较多:
- 业务希望Redis并发量
- 客户端执行命令时间
- Redis资源:例如 nodes(例如应用个数) * maxTotal 是不能超过redis的最大连接数maxclients。
- 资源开销:例如虽然希望控制空闲连接(连接池此刻可马上使用的连接),但是不希望因为连接池的频繁释放创建连接造成不必靠开销。
以一个例子说明,假设:
- 一次命令时间(borrow|return resource + Jedis执行命令(含网络) )的平均耗时约为1ms,一个连接的QPS大约是1000
- 业务期望的QPS是50000
那么理论上需要的资源池大小是50000 / 1000 = 50个。但事实上这是个理论值,还要考虑到要比理论值预留一些资源,通常来讲maxTotal可以比理论值大一些。
但这个值不是越大越好,一方面连接太多占用客户端和服务端资源,另一方面对于Redis这种高QPS的服务器,一个大命令的阻塞即使设置再大资源池仍然会无济于事。
2)maxIdle和minIdle
maxIdle实际上才是业务需要的最大连接数,maxTotal是为了给出余量,所以maxIdle不要设置过小,否则会有new Jedis(新连接)开销。
连接池的最佳性能是maxTotal = maxIdle,这样就避免连接池伸缩带来的性能干扰。但是如果并发量不大或者maxTotal设置过高,会导致不必要的连接资源浪费。一般推荐maxIdle可以设置为按上面的业务期望QPS计算出来的理论连接数,maxTotal可以再放大一倍。
minIdle(最小空闲连接数),与其说是最小空闲连接数,不如说是"至少需要保持的空闲连接数",在使用连接的过程中,如果连接数超过了minIdle,那么继续建立连接,如果超过了maxIdle,当超过的连接执行完业务后会慢慢被移出连接池释放掉。
如果系统启动完马上就会有很多的请求过来,那么可以给redis连接池做预热,比如快速的创建一些redis连接,执行简单命令,类似ping(),快速的将连接池里的空闲连接提升到minIdle的数量。
连接池预热示例代码:
List<Jedis> minIdleJedisList = new ArrayList<Jedis>(jedisPoolConfig.getMinIdle());for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {Jedis jedis = null;try {jedis = pool.getResource();minIdleJedisList.add(jedis);jedis.ping();} catch (Exception e) {logger.error(e.getMessage(), e);} finally {//注意,这里不能马上close将连接还回连接池,否则最后连接池里只会建立1个连接。。//jedis.close();}}//统一将预热的连接还回连接池for (int i = 0; i < jedisPoolConfig.getMinIdle(); i++) {Jedis jedis = null;try {jedis = minIdleJedisList.get(i);//将连接归还回连接池jedis.close();} catch (Exception e) {logger.error(e.getMessage(), e);} finally {}}
总之,要根据实际系统的QPS和调用redis客户端的规模整体评估每个节点所使用的连接池大小。
3.【建议】
高并发下建议客户端添加熔断功能(例如sentinel、hystrix)
4.【推荐】
设置合理的密码,如有必要可以使用SSL加密访问
5.【建议】
Redis对于过期键有三种清除策略:
- 被动删除:当读/写一个已经过期的key时,会触发惰性删除策略,直接删除掉这个过期key
- 主动删除:由于惰性删除策略无法保证冷数据被及时删掉,所以Redis会定期(默认每100ms)主动淘汰一批已过期的key,这里的一批只是部分过期key,所以可能会出现部分key已经过期但还没有被清理掉的情况,导致内存并没有被释放
- 当前已用内存超过maxmemory限定时,触发主动清理策略
主动清理策略在Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略,总共8种:
- 针对设置了过期时间的key做处理:
- volatile-ttl:在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
- volatile-random:就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
- volatile-lru:会使用 LRU 算法筛选设置了过期时间的键值对删除。
- volatile-lfu:会使用 LFU 算法筛选设置了过期时间的键值对删除。
- 针对所有的key做处理:
- allkeys-random:从所有键值对中随机选择并删除数据。
- allkeys-lru:使用 LRU 算法在所有数据中进行筛选删除。
- allkeys-lfu:使用 LFU 算法在所有数据中进行筛选删除。
- 不处理:
- noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时Redis只响应读操作。
LRU 算法(Least Recently Used,最近最少使用)
淘汰很久没被访问过的数据,以最近一次访问时间作为参考。
LFU 算法(Least Frequently Used,最不经常使用)
淘汰最近一段时间被访问次数最少的数据,以次数作为参考。
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。这时使用LFU可能更好点。
根据自身业务类型,配置好maxmemory-policy(默认是noeviction),推荐使用volatile-lru。如果不设置最大内存,当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap),会让 Redis 的性能急剧下降。
当Redis运行在主从模式时,只有主结点才会执行过期删除策略,然后把删除操作”del key”同步到从结点删除数据。
四、系统内核参数优化
vm.swapiness
swap对于操作系统来说比较重要,当物理内存不足时,可以将一部分内存页进行swap到硬盘上,以解燃眉之急。但世界上没有免费午餐,swap空间由硬盘提供,对于需要高并发、高吞吐的应用来说,磁盘IO通常会成为系统瓶颈。在Linux中,并不是要等到所有物理内存都使用完才会使用到swap,系统参数swppiness会决定操作系统使用swap的倾向程度。swappiness的取值范围是0~100,swappiness的值越大,说明操作系统可能使用swap的概率越高,swappiness值越低,表示操作系统更加倾向于使用物理内存。swappiness的取值越大,说明操作系统可能使用swap的概率越高,越低则越倾向于使用物理内存。
如果linux内核版本<3.5,那么swapiness设置为0,这样系统宁愿swap也不会oom killer(杀掉进程)
如果linux内核版本>=3.5,那么swapiness设置为1,这样系统宁愿swap也不会oom killer
一般需要保证redis不会被kill掉:
cat /proc/version #查看linux内核版本
echo 1 > /proc/sys/vm/swappiness
echo vm.swapiness=1 >> /etc/sysctl.conf
PS:OOM killer 机制是指Linux操作系统发现可用内存不足时,强制杀死一些用户进程(非内核进程),来保证系统有足够的可用内存进行分配。
vm.overcommit_memory(默认0)
0:表示内核将检查是否有足够的可用物理内存(实际不一定用满)供应用进程使用;如果有足够的可用物理内存,内存申请允许;否则,内存申请失败,并把错误返回给应用进程
1:表示内核允许分配所有的物理内存,而不管当前的内存状态如何
如果是0的话,可能导致类似fork等操作执行失败,申请不到足够的内存空间
Redis建议把这个值设置为1,就是为了让fork操作能够在低内存下也执行成功。
cat /proc/sys/vm/overcommit_memory
echo "vm.overcommit_memory=1" >> /etc/sysctl.conf
sysctl vm.overcommit_memory=1
合理设置文件句柄数
操作系统进程试图打开一个文件(或者叫句柄),但是现在进程打开的句柄数已经达到了上限,继续打开会报错:“Too many open files”
ulimit -a #查看系统文件句柄数,看open files那项
ulimit -n 65535 #设置系统文件句柄数
慢查询日志:slowlog
Redis慢日志命令说明:
config get slow* #查询有关慢日志的配置信息
config set slowlog-log-slower-than 20000 #设置慢日志使时间阈值,单位微秒,此处为20毫秒,即超过20毫秒的操作都会记录下来,生产环境建议设置1000,也就是1ms,这样理论上redis并发至少达到1000,如果要求单机并发达到1万以上,这个值可以设置为100
config set slowlog-max-len 1024 #设置慢日志记录保存数量,如果保存数量已满,会删除最早的记录,最新的记录追加进来。记录慢查询日志时Redis会对长命令做截断操作,并不会占用大量内存,建议设置稍大些,防止丢失日志
config rewrite #将服务器当前所使用的配置保存到redis.conf
slowlog len #获取慢查询日志列表的当前长度
slowlog get 5 #获取最新的5条慢查询日志。慢查询日志由四个属性组成:标识ID,发生时间戳,命令耗时,执行命令和参数
slowlog reset #重置慢查询日志
相关文章:
Redis缓存设计与性能优化
多级缓存架构 缓存设计 缓存穿透 缓存穿透是指查询一个根本不存在的数据,缓存层和存储层都不会命中,通常出于容错的考虑,如果从存储层查不到数据则不写入缓存层。 缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去了…...
前端图像处理(三)
目录 一、大文件分片 二、图片添加防篡改水印 2.1、主图水印图(vue2) 2.2、主图文字(vue3) 一、大文件分片 并行传输:多个数据块可以同时并行传输,利用多线程或多路复用技术提高传输效率;减…...
JAVA设计模式,动态代理模式
动态代理(Dynamic Proxy)是Java中一种非常有用的设计模式。它允许在运行时创建一个实现了一组给定接口的新类。这种模式主要用于当需要为某个对象提供一个代理以控制对该对象的访问时。通过这种方式,可以添加额外的功能,如事务管理…...
谈论 PHP与XSS
本文将讨论一些脚本攻击问题,以及如何解决XSS脚本攻击问题 美好的周末就用来学点知识吧!!! ———————————————————————————————————— 文章目录 XSS跨站脚本攻击XSS是什么XSS类型:反…...
基于Java Springboot武汉市公交路线查询APP且微信小程序
一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术:Html、Css、Js、Vue、Element-ui 数据库:MySQL 后端技术:Java、Spring Boot、MyBatis 三、运行环境 开发工具:IDEA/eclipse 微信…...
106.【C语言】数据结构之二叉树的三种递归遍历方式
目录 1.知识回顾 2.分析二叉树的三种遍历方式 1.总览 2.前序遍历 3.中序遍历 4.后序遍历 5.层序遍历 3.代码实现 1.准备工作 2.前序遍历函数PreOrder 测试结果 3.中序遍历函数InOrder 测试结果 4.后序遍历函数PostOrder 测试结果 4.底层分析 1.知识回顾 在99.…...
解决WebView写入localstorage但首次加载取不到值的问题
本文是解决Android写localstorage的问题。 在android中,native经常需要和h5页面进行交互,比如将本地token写入h5,然后h5中的js获取token进行api请求。 写入localstorage的方法很标准,即在webview的onPageFinished中注入并调用一…...
CTF-PWN glibc源码阅读[1]: 寻找libc中堆结构的定义(2.31-0ubuntu9.16)
源代码在这里下载 来到malloc/malloc.c 在980行发现这段代码 // 定义最大 mmap 值为 -4 #define M_MMAP_MAX -4// 如果没有定义 DEFAULT_MMAP_MAX,则将其定义为 65536 #ifndef DEFAULT_MMAP_MAX #define DEFAULT_MMAP_MAX (65536) #endif// 引…...
Node.js 实战: 爬取百度新闻并序列化 - 完整教程
很多时候我们需要爬取一些公开的网页内容来做一些数据分析和统计。而多数时候,大家会用到python ,因为实现起来很方便。但是其实Node.js 用来爬取网络内容,也是非常强大的。 今天我向大家介绍一下我自己写的一个百度新闻的爬虫,可…...
C++知识整理day3类与对象(下)——赋值运算符重载、取地址重载、列表初始化、友元、匿名对象、static
文章目录 1.赋值运算符重载1.1 运算符重载1.2 赋值运算符重载 2.取地址重载2.1 const成员函数2.2 取地址运算符重载 3.类与对象的补充3.1 再探构造函数---初始化列表3.2 类型转换3.3 static成员3.4 友元3.5 内部类3.6 匿名对象3.7 对象拷贝时的编译器优化 1.赋值运算符重载 赋…...
【计算机网络】实验6:IPV4地址的构造超网及IP数据报
实验 6:IPV4地址的构造超网及IP数据报 一、 实验目的 加深对IPV4地址的构造超网(无分类编制)的了解。 加深对IP数据包的发送和转发流程的了解。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实验内容 1、了解IPV4地址的构造超网…...
【服务器问题】xshell 登录远程服务器卡住( 而 vscode 直接登录不上)
打开 xshell ssh 登录远程服务器:卡在下面这里,迟迟不继续 当 SSH 连接卡在 Connection established. 之后,但没有显示远程终端提示符时,这通常意味着连接已经成功建立,说明不是网络连接和服务器连接问题,…...
node.js基础学习-querystring模块-查询字符串处理(三)
一、前言 querystring是 Node.js 中的一个内置模块,主要用于处理 URL 查询字符串。它提供了一些实用的方法来解析和格式化查询字符串,使得在处理 HTTP 请求中的查询参数等场景时非常方便。 还可以防止sql注入 二、解析查询字符串(parse方法&a…...
【C++】深入优化计算题目分析与实现
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯第一题:圆的计算我的代码实现代码分析改进建议改进代码 老师的代码实现代码分析可以改进的地方改进代码 💯第二题:对齐输出我的代码实现…...
【一起学习三维GIS】Cesium基础功能和项目讲解
一、Cesium整体介绍 Cesium正式发布于 2014 年,是一个完全开源的基于 WebGL 的 JavaScript框架,无需安装插件即可创建具有最佳性能、精度、视觉质量和易用性的世界级三维地球影像和地图,并且具有丰富的开源社区内容。 Cesium 作为一个较为…...
【docker】Overlay网络
什么是 Overlay 网络? Overlay 网络是一种 Docker 网络驱动,允许容器在不同主机间通信。 它依赖分布式存储(如 Swarm、Etcd 或 Consul)来管理网络配置和路由。 Overlay 网络的核心特点 跨主机通信:容器可以跨物理主…...
澎峰科技助力中国移动 重磅发布智算“芯合”算力原生基础软件栈2.0
11月30日 ,由中国通信学会主办、中国移动研究院承办的2024中国信息通信大会“算力网络算网一体创新发展论坛 ”在成都召开。中国移动研究院携手澎峰科技等产业合作伙伴在本次论坛重磅发布了智算“芯合”算力原生基础软件栈2.0。 芯片是智算生态的基石,基…...
电脑提示报错“Directx error”怎么解决?是什么原因导致的?游戏软件提示“Directx error”错误的解决方案
DirectX Error(DX错误)通常指的是在使用基于DirectX技术的应用程序(尤其是游戏)时遇到的问题。这个问题可能由多种因素导致,以下是一些可能的原因及相应的解决方案: 可能的原因 DirectX版本不匹配&#x…...
jmeter 压测常用静默参数解释应用
简介: JMeter静默压测(即无界面压测)是一种常用的性能测试方法,用于模拟多个用户同时访问系统并测量系统的响应时间和吞吐量等关键性能指标。在JMeter静默压测中,常用的压测参数及其解释如下: 一、基本…...
动态规划-----路径问题
动态规划-----路径问题 下降最小路径和1:状态表示2:状态转移方程3 初始化4 填表顺序5 返回值6 代码实现 总结: 下降最小路径和 1:状态表示 假设:用dp[i][j]表示:到达[i,j]的最小路径 2:状态转…...
LeetCode 438.找到字符串中所有字母异位词
LeetCode 438.找到字符串中所有字母异位词 思路🧐: 需要找到子串异位词,也就是只看该子串是否有相同字母而不管位置是否相同。分析题目发现只需要单调向前找异位词,则可以使用滑动窗口求解,注意这里每当左右边框长度大…...
[C++设计模式] 为什么需要设计模式?
文章目录 什么是设计模式?为什么需要设计模式?GOF 设计模式再次理解面向对象软件设计固有的复杂性软件设计复杂性的根本原因如何解决复杂性?分解抽象 结构化 VS 面向对象(封装)结构化设计代码示例:面向对象设计代码示例࿱…...
【ArkTS】使用AVRecorder录制音频 --内附录音机开发详细代码
系列文章目录 【ArkTS】关于ForEach的第三个参数键值 【ArkTS】“一篇带你读懂ForEach和LazyForEach” 【小白拓展】 【ArkTS】“一篇带你掌握TaskPool与Worker两种多线程并发方案” 【ArkTS】 一篇带你掌握“语音转文字技术” --内附详细代码 【ArkTS】技能提高–“用户授权”…...
【知识科普】设计模式之-责任链模式
这里写自定义目录标题 概述责任链模式的详细描述责任链模式的使用场景 使用场景举例1. 审批流程示例:2. 过滤器链示例:3. 事件处理系统示例:4. 插件系统示例: Java代码示例及注释代码解释 概述 责任链模式的详细描述 责任链模式…...
浏览器渲染原理
渲染原理 第一步解析Html第二步样式计算第三步布局第四步分层第五步绘制第六步分块第七步光栅化第八步画常见面试题什么是回流reflow?什么是重绘repaint? 当浏览器的网络线程收到HTML文档之后,会产生一个渲染任务并且会将其传递给渲染主线程的…...
顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)
顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab) 目录 顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实…...
【机器学习】分类任务: 二分类与多分类
二分类与多分类:概念与区别 二分类和多分类是分类任务的两种类型,区分的核心在于目标变量(label)的类别数: 二分类:目标变量 y 只有两个类别,通常记为 y∈{0,1} 或 y∈{−1,1}。 示例ÿ…...
速盾:高防 CDN 可以配置客户端请求超时配置?
在高防 CDN(Content Delivery Network,内容分发网络)的运行管理中,客户端请求超时配置是一项重要的功能设定,它对于优化网络资源分配、保障服务质量以及维护系统稳定性有着关键意义。 一、客户端请求超时配置的概念 …...
字节青训Marscode——8:找出整形数组中超过一半的数
问题描述 小R从班级中抽取了一些同学,每位同学都会给出一个数字。已知在这些数字中,某个数字的出现次数超过了数字总数的一半。现在需要你帮助小R找到这个数字。 测试样例 样例1: 输入:array [1, 3, 8, 2, 3, 1, 3, 3, 3] 输出…...
Fastapi + vue3 自动化测试平台---移动端App自动化篇
概述 好久写文章了,专注于新框架,新UI界面的实践,废话不多说,开搞 技术架构 后端: Fastapi Airtest multiprocessing 前端: 基于 Vue3、Vite、TypeScript、Pinia、Pinia持久化插件、Unocss 和 Elemen…...
go并发设计模式runner模式
go并发设计模式runner模式 真正运行的程序不可能是单线程运行的,go语言中最值得骄傲的就是CSP模型了,可以说go语言是CSP模型的实现。 假设现在有一个程序需要实现,这个程序有以下要求: 程序可以在分配的时间内完成工作࿰…...
[TPAMI 2024]Vision-Language Models for Vision Tasks: A Survey
论文网址:Vision-Language Models for Vision Tasks: A Survey | IEEE Journals & Magazine | IEEE Xplore 论文Github页面:GitHub - jingyi0000/VLM_survey: Collection of AWESOME vision-language models for vision tasks 英文是纯手打的&…...
Qt—QLineEdit 使用总结
文章参考:Qt—QLineEdit 使用总结 一、简述 QLineEdit是一个单行文本编辑控件。 使用者可以通过很多函数,输入和编辑单行文本,比如撤销、恢复、剪切、粘贴以及拖放等。 通过改变 QLineEdit 的 echoMode() ,可以设置其属性,比如以密码的形式输入。 文本的长度可以由 m…...
Flutter 之 InheritedWidget
InheritedWidget 是 Flutter 框架中的一个重要类,用于在 Widget 树中共享数据。它是 Flutter 中数据传递和状态管理的基础之一。通过 InheritedWidget,你可以让子 Widget 在不需要显式传递数据的情况下,访问祖先 Widget 中的数据。这种机制对…...
#JAVA-常用API-爬虫
1.爬虫 我们在正则表达式的讲解中可以使用字符串的方法materchs()来匹配,并且返回一个boolean值 String name "lshhhljh"; System.out.println(name.matches("lsh{3}\\s{3}")); //true现在我们将利用正则表达式来爬取本地或者网站上的文本内…...
Qt Serial Bus 前置介绍篇
文章目录 Qt Serial Bus 简介前言 什么是 Qt Serial Bus?Qt Serial Bus 的核心功能支持的协议1. **CAN 总线**2. **Modbus**3. **自定义协议** 应用场景优势总结 Qt Serial Bus 简介 前言 Qt Serial Bus 是 Qt 框架中的一个模块,用于与工业设备和嵌入式…...
JavaScript(一)
1.JavaScript 基本使用 2.JavaScript简单事件 3.JavaScript修改样式 4.JavaScript数据类型 JavaScript和Java有什么关系 知识点一 JavaScript基本使用 JS写在哪 还有一种写在中间的,也就是<head>里面 JS一些注意事项 JS修改元素内容 #JS获取对象<…...
Python实现网站资源批量下载【可转成exe程序运行】
Python实现网站资源批量下载【可转成exe程序运行】 背景介绍解决方案转为exe可执行程序简单点说详细了解下 声明 背景介绍 发现 宣讲家网 的PPT很好,作为学习资料使用很有价值,所以想下载网站的PPT课件到本地,但是由于网站限制,一…...
el-upload上传多个文件,一次请求,Django接收
1、:file-list"fileList" :on-change"handleChange" 将文件赋值到fileList 2、 :auto-upload"false" 手动触发上传 写个按钮点击执行这个 this.$refs.upload.submit(); 3、自己写上传,不会再触发上传成功或失败回调 4、 request.FI…...
【错误记录】jupyter notebook打开后服务器错误Forbidden问题
如题,在Anaconda Prompt里输入jupyter notebook后可以打开浏览器,但打开具体项目后就会显示“服务器错误:Forbidden”,终端出现: tornado.web.HTTPError: HTTP 403: Forbidden 查看jupyter-server和jupyter notebook版…...
修改MVCActiveRecord支持匿名函数(用于动态决定数据库连接)
要修改 TMVCActiveRecordMiddleware 以直接接受一个匿名函数(用于动态决定数据库连接)以及一个配置文件名,你需要对构造函数进行一些调整。这可以通过重载构造函数以接收另一个参数——匿名函数来实现。 构造函数修改步骤 假设你的目标是允…...
SpringMVC(一)
ModelAndView ModelAndView 是 Spring MVC 框架中的一个类,用于在控制器中返回模型数据和视图信息。 模型: 包含应用程序的数据,这些数据将被传递到视图层进行渲染。模型数据通常以键值对的形式存储在一个 map 中。 视图: 指定要渲…...
nginx配置笔记
前言 nginx官方文档: https://nginx.org/en/docs/openresty官方文档: https://github.com/openresty/lua-nginx-module一、配置 1. 配置实例 1.1. 80端口转443 server {listen 80 default_server;listen [::]:80 default_server;rewrite ^ https://$http_host$request_uri?…...
解决idea使用maven打包时无法将本地lib库文件和resource目录中的资源文件打包进jar文件的问题!!!
一、问题复现 1)项目结构如下 我们看到项目中手动添加了本地lib资源,同时bootspring的配置文件和mapper文件也放在了resouces目录中。 2)上述结构的项目在使用maven打包时,最终生成的jar文件中将不包含lib库文件,甚…...
html button 按钮单选且 高亮
<DIV class"middle"> <div class"containerTarget"> <span class"hover-target1" οnclick"btn(1);">韵达 </span> <span class"hover-target2" οnclick"btn(2);">中通 </span…...
GitLab使用中遇到的一些问题-记录
错误内容一 Warning: Permanently added gitlab.com (ED25519) to the list of known hosts. gitgitlab.com: Permission denied (publickey). Could not read from remote repository. Please make sure you have the correct access rights and the repository exists. …...
【合作原创】使用Termux搭建可以使用的生产力环境(二)
前言 上期文章没看的可以先从上期文章开始看起 【合作原创】使用Termux搭建可以使用的生产力环境(一)-CSDN博客 目前我们已经完成了FinalShell ssh连接手机Termux的功能了,这期我们继续朝我们的目标前进。今天早上有读者进群以为生成环境指…...
UG NX二次开发(C#)-选择对象居中(不是全部居中)
文章目录 1、前言2、什么是对象居中3、功能实现代码3.1 对象居中3.1 恢复原视图1、前言 在UG NX二次开发过程中,我们经常会用到居中以查看完整的模型,但是对于如果想展示某些对象,而不是全部模型时,那么我们就想将选择的对象(如体对象)居中查看,当查看结束后还能恢复到…...
12.2深度学习_项目实战
十、项目实战 鲍勃开了自己的手机公司。他想与苹果、三星等大公司展开硬仗。 他不知道如何估算自己公司生产的手机的价格。在这个竞争激烈的手机市场,你不能简单地假设事情。为了解决这个问题,他收集了各个公司的手机销售数据。 鲍勃想找出手机的特性(例…...
【Go底层】select原理
目录 1、背景2、go版本3、 selectgo函数解释【1】函数参数解释【2】函数具体解释第一步:遍历pollorder,选出准备好的case第二步:将当前goroutine放到所有case通道中对应的收发队列上第三步:唤醒groutine 4、总结 1、背景 select多…...