当前位置: 首页 > news >正文

C++知识整理day3类与对象(下)——赋值运算符重载、取地址重载、列表初始化、友元、匿名对象、static

文章目录

  • 1.赋值运算符重载
    • 1.1 运算符重载
    • 1.2 赋值运算符重载
  • 2.取地址重载
    • 2.1 const成员函数
    • 2.2 取地址运算符重载
  • 3.类与对象的补充
    • 3.1 再探构造函数---初始化列表
    • 3.2 类型转换
    • 3.3 static成员
    • 3.4 友元
    • 3.5 内部类
    • 3.6 匿名对象
    • 3.7 对象拷贝时的编译器优化

1.赋值运算符重载

赋值运算符重载是六个默认成员函数之一,在讲解这个我们要先了解一下运算符重载。

1.1 运算符重载

当运算符被用于类类型的对象时,C++语言允许我们通过运算符重载的形式指定新的含义。C++规定类类型对象使用运算符的时候,必须转换成调用对应运算符重载,若没有对应的运算符重载,则会报编译错误。

注意:对于下面的例子中,都是使用的Date类。

class Date
{
public:Date(int year, int month, int day){_year = year;_month = month;_day = day;}void Print(){cout << _year << '-' << _month << '-' << _day << endl;}private:int _year;int _month;int _day;
};
  1. 运算符重载是具有特别名字的函数,他的名字是由operator和后面要定义的运算符共同构成。和其他函数一样,他也具有其返回类型和参数列表以及函数体。
  2. 重载运算符函数的参数个数和该运算符作⽤的运算对象数量⼀样多。⼀元运算符有⼀个参数,⼆元运算符有两个参数,⼆元运算符的左侧运算对象传给第⼀个参数,右侧运算对象传给第⼆个参数。(注意:成员函数的第一个参数默认是this指针。

示例:
如果我们写了这行代码,那么毫无疑问编译器会报错,因为对于类类型判断相等的符号编译器是无法识别的(只有内置类型才可以使用):
在这里插入图片描述
那么我们就需要写一个赋值运算符重载了,如下:
在这里插入图片描述
Q1:上面的代码为什么会报错?
A1:我们是定义了一个全局函数,而类内的成员变量是私有的,即类外是无法访问的。

Q2:我们如何解决上面错误呢?
A2:我们有四个方法:

  • 成员变为公有(不建议,不安全)
  • Date提供GetYear之类的函数
  • 使用友元函数(之后会介绍)
  • 重载为成员函数(推荐,下面第3点就会讲到)
  1. 如果⼀个重载运算符函数是成员函数,则它的第⼀个运算对象默认传给隐式的this指针,因此运算符重载作为成员函数时,参数⽐运算对象少⼀个。

示例:
在这里插入图片描述

  1. 运算符重载以后,其优先级和结合性与对应的内置类型运算符保持⼀致。
  2. 不能通过连接语法中没有的符号来创建新的操作符:⽐如operator@。
  3. ⼀个类需要重载哪些运算符,是看哪些运算符重载后有意义,⽐如Date类重载operator-就有意义(两个日期相减得到天数),但是重载operator+就没有意义(两个日期相加没有意义)。
  4. 重载++运算符时,有前置++和后置++,运算符重载函数名都是operator++,⽆法很好的区分。C++规定,后置++重载时,增加⼀个int形参,跟前置++构成函数重载,⽅便区分。
  5. 重载<<和>>时,需要重载为全局函数,因为重载为成员函数,this指针默认抢占了第⼀个形参位置,第⼀个形参位置是左侧运算对象,调⽤时就变成了 对象<<cout,不符合使⽤习惯和可读性。重载为全局函数把ostream/istream放到第⼀个形参位置就可以了,第⼆个形参位置当类类型对象。

示例:

//流插入
ostream& operator<<(ostream& out, const Date& d)
{out << d._year << "年" << d._month << "月" << d._day << "日" << endl;return out;
}//流提取
istream& operator>>(istream& in, Date& d)
{cout << "请依次输入年月日:>";in >> d._year >> d._month >> d._day;return in;
}

Q:为什么返回值要是ostream&和istream&?
A:因为我们他的对象是为了让他支持连续输入输出 的特性,对于&是因为流插入和流提取是不允许被修改的。

对于上面的讲解,下面我会依次给出例子:

示例①:重载运算符+和+=

// d1 += 50
Date& Date::operator+=(int day)
{if (day < 0){return *this -= (-day);}_day += day;while (_day > GetMonthDay(_year, _month)){_day -= GetMonthDay(_year, _month);_month++;if (_month == 13){_year++;_month = 1;}}return *this;
}// d1 + 50
Date Date::operator+(int day)
{Date tmp(*this);tmp._day += day;while (tmp._day > GetMonthDay(tmp._year, tmp._month)){tmp._day -= GetMonthDay(tmp._year, tmp._month);tmp._month++;if (tmp._month == 13){tmp._year++;tmp._month = 1;}}return tmp;
}

由于每月的天数不一样,并且闰年的二月会少一天,所以定义GetMonthDay是获取某年某月的天数,如下:

int GetMonthDay(int year, int month)
{static int day[13] = { -1,31,28,31,30,31,30,31,31,30,31,30,31 };if (month == 2 && (year % 4 == 0 && year % 100 != 0) && year % 400 == 0)return 29;return day[month];
}

但是对于上面的重载运算符+和+=,其实我么你只需要实现一个就可以了,另外一个只需要通过已经重载的那个运算符来使用它即可,如下是两种不同重载对比:
在这里插入图片描述
我们可以发现,我们先重载运算符+=,在用+=就可以间接使用运算符重载+,这样的效率更高,只需要调用两次拷贝构造。

示例②:同上,重载运算符-和-=

// d1 -= 50
Date& Date::operator-=(int day)
{if (day < 0){return *this += (-day);}_day -= day;while(_day <= 0){//借位--_month;if (_month == 0){--_year;_month = 12;}_day += GetMonthDay(_year, _month);}return *this;
}// d1 - 50
Date Date::operator-(int day)
{Date tmp = *this;tmp -= day;return tmp;
}

示例③:重载运算符>(大于)

// >
bool Date::operator>(const Date& d)
{if (_year > d._year)return true;else if (_year == d._year && _month > d._month)return true;else if (_year == d._year && _month == d._month)return _day > d._day;return false;
}

示例④:运算符重载==(等于)

// == 
bool Date::operator==(const Date& d)
{return _year == d._year&& _month == d._month&& _day == d._day;
}

有了>和==运算符重载,可以衍生如下运算符重载:

  1. 大于等于
// >=
bool Date::operator>=(const Date& d)
{return *this > d || *this == d;
}
  1. 小于
// <
bool Date::operator<(const Date& d)
{return !(*this >= d);
}
  1. 小于等于
// <=
bool Date::operator<=(const Date& d)
{return !(*this >= d);
}
  1. !=
// !=
bool Date::operator!=(const Date& d)
{return !(*this == d);
}

示例⑤:前置++和后置++

// 前置++
Date& Date::operator++()
{*this += 1;return *this;
}// 后置++
Date Date::operator++(int)
{Date tmp = *this;*this += 1;return tmp;
}

注意:对于前置++,我们返回的是Date&,因为前置++,自增之后,我们返回的是+1的值。而后置++,我们返回的是没有+1之前的值,但是我们本身this指向的对象时自增了的。

1.2 赋值运算符重载

赋值运算符重载是⼀个默认成员函数,⽤于完成两个已经存在的对象直接的拷⻉赋值,这⾥要注意跟拷⻉构造区分,拷⻉构造⽤于⼀个对象拷⻉初始化给另⼀个要创建的对象。

赋值运算符的特点:

  1. 赋值运算符重载是⼀个运算符重载,规定必须重载为成员函数。赋值运算重载的参数建议写成const 当前类类型引⽤,否则会传值传参会有拷⻉。
  2. 有返回值,且建议写成当前类类型引⽤,引⽤返回可以提⾼效率,有返回值⽬的是为了⽀持连续赋值场景。
  3. 没有显式实现时,编译器会⾃动⽣成⼀个默认赋值运算符重载,默认赋值运算符重载⾏为跟默认构造函数类似,对内置类型成员变量会完成值拷⻉/浅拷⻉(⼀个字节⼀个字节的拷⻉),对⾃定义类型成员变量会调⽤他的赋值运算符重载。
  4. 像Date这样的类成员变量全是内置类型且没有指向什么资源,编译器⾃动⽣成的赋值运算符重载就可以完成需要的拷⻉,所以不需要我们显⽰实现赋值运算符重载。像Stack这样的类,虽然也都是内置类型,但是_a指向了资源,编译器⾃动⽣成的赋值运算符重载完成的值拷⻉/浅拷⻉不符合我们的需求,所以需要我们⾃⼰实现深拷⻉(对指向的资源也进⾏拷⻉)。像MyQueue这样的类型内部主要是⾃定义类型Stack成员,编译器⾃动⽣成的赋值运算符重载会调⽤Stack的赋值运算符重载,也不需要我们显⽰实现MyQueue的赋值运算符重载。这⾥还有⼀个⼩技巧,如果⼀个类显⽰实现了析构并释放资源,那么他就需要显⽰写赋值运算符重载,否则就不需要。(与拷贝构造函数类似)

示例:

class Date
{
public:Date(int year, int month, int day){_year = year;_month = month;_day = day;}Date(const Date& d){cout << " Date(const Date& d)" << endl;_year = d._year;_month = d._month;_day = d._day;}void Print(){cout << _year << '-' << _month << '-' << _day << endl;}// 传引⽤返回减少拷⻉// d1 = d2;Date& operator=(const Date& d){// 不要忘记检查⾃⼰给⾃⼰赋值的情况if (this != &d){_year = d._year;_month = d._month;_day = d._day;}// d1 = d2表达式的返回对象应该为d1,也就是*thisreturn *this;}private:int _year;int _month;int _day;
};int main()
{Date d1(2024, 11, 28);Date d2(d1);Date d3(2024, 11, 11);d1 = d3;// 需要注意这⾥是拷⻉构造,不是赋值重载// 请牢牢记住赋值重载完成两个已经存在的对象直接的拷⻉赋值// ⽽拷⻉构造⽤于⼀个对象拷⻉初始化给另⼀个要创建的对象Date d4 = d1;return 0;
}

2.取地址重载

2.1 const成员函数

  • 将const修饰的成员函数称之为const成员函数,const修饰成员函数放到成员函数参数列表的后面
  • const实际修饰该成员函数隐含的this指针,表明在该成员函数中不能对类的任何成员进⾏修改。const 修饰Date类的Print成员函数,Print隐含的this指针由 Date* const this 变为 const Date* const this

意思就是我们在成员函数的后面加上了const,就意味着不可以修改this指向的对象了。

注意:

  1. const对象必须调用const成员函数,这是权限的平移
  2. const对象若调用非const成员函数,会报错误,这是权限的放大
  3. 非const对象调用const成员函数,是允许的,这是权限的缩小

2.2 取地址运算符重载

取地址运算符重载分为普通取地址运算符重载和const取地址运算符重载,⼀般这两个函数编译器⾃动⽣成的就可以够我们⽤了,不需要去显⽰实现。除⾮⼀些很特殊的场景,⽐如我们不想让别⼈取到当前类对象的地址,就可以⾃⼰实现⼀份,胡乱返回⼀个地址。

示例:

class Date
{
public :Date* operator&(){return this;// return nullptr;}const Date* operator&()const{return this;// return nullptr;}
private :int _year ; // 年int _month ; // ⽉int _day ; // ⽇
};

3.类与对象的补充

3.1 再探构造函数—初始化列表

  • 之前我们实现构造函数时,初始化成员变量主要使⽤函数体内赋值,构造函数初始化还有⼀种⽅式,就是初始化列表,初始化列表的使⽤⽅式是以⼀个冒号开始,接着是⼀个以逗号分隔的数据成员列表,每个"成员变量"后⾯跟⼀个放在括号中的初始值或表达式。

示例:

class Time
{
public:Time(int hour):_hour(hour) //初始化列表{cout << "Time()" << endl;}
private:int _hour;
};
  • 每个成员变量在初始化列表中只能出现⼀次,语法理解上初始化列表可以认为是每个成员变量定义初始化的地⽅。
  • 引⽤成员变量,const成员变量,没有默认构造的类类型变量,必须放在初始化列表位置进⾏初始化,否则会编译报错
    Q:为什么这三种情况必须在初始化列表进行初始化呢?
    A:我们知道,①引用是不可以修改的,他不像指针可以修改,也不像指针初始化成空。在之前我们就提到过:引用必须初始化和不可以修改。②const修饰的成员变量是不可以进行修改的,他是一个常变量,存储到内存中的代码段(只读变量)。③对于自定义的类类型当中还存在自定义的类类型,我们必须调用它的默认构造函数,不然就会报错。

示例:

class Time
{
public:Time(int hour):_hour(hour) //初始化列表{cout << "Time()" << endl;}
private:int _hour;
};class Date
{
public:Date(int& x, int year = 1, int month = 1, int day = 1):_year(year), _month(month), _day(day), _t(12), _ref(x), _n(1){// error C2512: “Time”: 没有合适的默认构造函数可⽤// error C2530 : “Date::_ref” : 必须初始化引⽤// error C2789 : “Date::_n” : 必须初始化常量限定类型的对象}void Print() const{cout << _year << "-" << _month << "-" << _day << endl;}
private:int _year;int _month;int _day;Time _t; // 没有默认构造int& _ref; // 引⽤const int _n; // const
};int main()
{int i = 0;Date d1(i);d1.Print();return 0;
}

在这里插入图片描述

  • C++11⽀持在成员变量声明的位置给缺省值,注意:这个缺省值只是是给没有显⽰在初始化列表初始化的成员使⽤的。
  • 尽量使⽤初始化列表初始化,因为那些你不在初始化列表初始化的成员也会⾛初始化列表,如果这个成员在声明位置给了缺省值,初始化列表会⽤这个缺省值初始化。如果你没有给缺省值,对于没有显⽰在初始化列表初始化的内置类型成员是否初始化取决于编译器,C++并没有规定。对于没有显⽰在初始化列表初始化的⾃定义类型成员会调⽤这个成员类型的默认构造函数,如果没有默认构造会编译错误。

示例:

class Time
{
public:Time(int hour):_hour(hour){cout << "Time()" << endl;}
private:int _hour;
};class Date
{
public:Date():_month(2){cout << "Date()" << endl;}void Print() const{cout << _year << "-" << _month << "-" << _day << endl;}
private:// 注意这⾥不是初始化,这⾥给的是缺省值,这个缺省值是给初始化列表的// 如果初始化列表没有显⽰初始化,默认就会⽤这个缺省值初始化int _year = 1;int _month = 1;int _day;Time _t = 1;const int _n = 1;int* _ptr = (int*)malloc(12);
};
int main()
{Date d1;d1.Print();return 0;
}
  • 初始化列表中按照成员变量在类中声明顺序进⾏初始化,跟成员在初始化列表出现的的先后顺序⽆关。建议声明顺序和初始化列表顺序保持⼀致。

示例:下⾯程序的运⾏结果是什么()
A. 输出 1 1
B. 输出 2 2
C. 编译报错
D. 输出 1 随机值
E. 输出 1 2
F. 输出 2 1

class A
{
public:A(int a):_a1(a), _a2(_a1){}void Print() {cout << _a1 << " " << _a2 << endl;}
private:int _a2 = 2;int _a1 = 2;
};
int main()
{A aa(1);aa.Print();
}

在这里插入图片描述
所以这道题应该选D,这道题还是很重要的。

3.2 类型转换

  • C++⽀持内置类型隐式类型转换为类类型对象,需要有相关内置类型为参数的构造函数
  • 构造函数前⾯加explicit就不再⽀持隐式类型转换

示例:

class A
{
public:// 构造函数explicit就不再⽀持隐式类型转换// explicit A(int a1)A(int a1):_a1(a1){}//explicit A(int a1, int a2)A(int a1, int a2):_a1(a1),_a2(a2){}void Print(){cout << _a1 << " " << _a2 << endl;}private:int _a1 = 1;int _a2 = 2;
};int main()
{// 用1来构造一个A的临时对象,再用这个临时对象拷贝构造aa1// 编译器优化:遇到连续构造+拷贝构造 -> 优化为直接构造A aa1 = 1;aa1.Print();const A& aa2 = 1;// C++11之后开始支持多参数转化A aa3 = { 2, 2 };return 0;
}

3.3 static成员

  • ⽤static修饰的成员变量,称之为静态成员变量,静态成员变量⼀定要在类外进⾏初始化。

示例:

class A
{
private:// 类内声明static int _scount;
};// 类外初始化
int A::_scount = 0;
  • 静态成员变量为所有类对象所共享,不属于某个具体的对象,不存在对象中,存放在静态区。

示例:对于上面的示例中,我们计算类A的大小:cout << sizeof(A) << endl; 输出的结果是1,之前我们讲过1是为了占位使用的。

  • ⽤static修饰的成员函数,称之为静态成员函数,静态成员函数没有this指针。
  • 静态成员函数中可以访问其他的静态成员,但是不能访问非静态的,因为没有this指针

示例:

在这里插入图片描述

  • 非静态的成员函数,可以访问任意的静态成员变量和静态成员函数。
  • 突破类域就可以访问静态成员,可以通过类名::静态成员 或者 对象.静态成员 来访问静态成员变量和静态成员函数。
  • 静态成员也是类的成员,受public、protected、private 访问限定符的限制。
  • 注意:静态成员变量不能在声明位置给缺省值初始化,因为缺省值是个构造函数初始化列表的,静态成员变量不属于某个对象,不走构造函数初始化列表。

示例:实现一个类,计算程序共创建了多少个类对象

class A
{
public:A(){++_scount;}A(const A& a){++_scount;}~A(){--_scount;}static int GetACount(){return _scount;}private:// 类内声明static int _scount;
};//类外初始化
int A::_scount = 0;int main()
{//静态成员不属于某个对象,可以直接通过类域访问到cout << A::GetACount() << endl;A a1, a2;A a3(a1);cout << A::GetACount() << endl;cout << a1.GetACount() << endl;// 编译报错:error C2248: “A::_scount”: ⽆法访问 private 成员(在“A”类中声明)//cout << A::_scount << endl;return 0;
}

在这里插入图片描述
牛客网的一个例题,不允许使用各种循环和递归,实现 1 + 2 + 3 + … + n ?

我们可以通过创建类来实现,创建第几个类就让他加上几。示例:

class Sum
{
public:Sum(){_ret += _i;++_i;}static int GetRet(){return _ret;}
private:static int _i;static int _ret;
};int Sum::_i = 1;
int Sum::_ret = 0;class Solution
{
public:int Sum_Solution(int n) {//VS不支持边长数组,会报错Sum arr[n];return Sum::GetRet();}
};

注意:VS不支持边长数组。
加粗样式
例题:有A、B、C、D四个类

C c;
int main()
{A a;B b;static D d;return 0}

A:D B A C
B:B A D C
C:C D B A
D:A B D C
E:C A B D
F:C D A B

Q1:程序中A,B,C,D构造函数调用顺序为?(E)
A1:这个很简单
Q2程序中A,B,C,D析构函数调⽤顺序为?(B)
A2:这里要注意一点,static修饰的变量是存放在静态区的,static修饰的变量生命周期会变长,即整个main函数栈帧销毁才会销毁D,所以辉县析构B和A,在析构D,由于C是在全局变量中,所以最后析构他(它是最先创建的,先创建的后析构)

3.4 友元

  • 友元提供了⼀种突破类访问限定符封装的方式,友元分为:友元函数和友元类,在函数声明或者类声明的前⾯加friend(没有要求,可放在public中也可以放在private中),并且把友元声明放到⼀个类的里面。
  • 友元函数可以在类定义的任何地方声明,不受类访问限定符限制。
  • 外部友元函数可访问类的私有和保护成员,友元函数仅仅是⼀种声明,他不是类的成员函数。
  • ⼀个函数可以是多个类的友元函数。
  • 友元类中的成员函数都可以是另⼀个类的友元函数,都可以访问另⼀个类中的私有和保护成员。
  • 友元类的关系是单向的,不具有交换性,⽐如A类是B类的友元,但是B类不是A类的友元。
  • 友元类关系不能传递,如果A是B的友元, B是C的友元,但是A不是B的友元。
  • 有时提供了便利。但是友元会增加耦合度,破坏了封装,所以友元不宜多用。

友元函数示例:

// 前置声明,否则A的友元函数声明编译器不认识B
class B;class A
{// 友元声明friend void func(const A& aa, const B& bb);
private:int _a1 = 1;int _a2 = 2;
};class B
{// 友元声明friend void func(const A& aa, const B& bb);
private:int _b1 = 3;int _b2 = 4;
};void func(const A& aa, const B& bb)
{cout << aa._a1 << endl;cout << bb._b1 << endl;
}int main()
{A aa;B bb;func(aa, bb);return 0;
}

友元类示例:

class A
{// 友元声明friend class B;
private:int _a1 = 1;int _a2 = 2;
};class B
{
public:void func1(const A& aa){cout << aa._a1 << endl;cout << _b1 << endl;}void func2(const A& aa){cout << aa._a2 << endl;cout << _b2 << endl;}
private:int _b1 = 3;int _b2 = 4;
};
int main()
{A aa;B bb;bb.func1(aa);bb.func2(aa);return 0;
}

3.5 内部类

  • 如果⼀个类定义在另⼀个类的内部,这个内部类就叫做内部类。内部类是⼀个独⽴的类,跟定义在全局相⽐,他只是受外部类类域限制和访问限定符限制,所以外部类定义的对象中不包含内部类。
  • 内部类默认是外部类的友元类
  • 内部类本质也是⼀种封装,当A类跟B类紧密关联,A类实现出来主要就是给B类使⽤,那么可以考虑把A类设计为B的内部类,如果放到private/protected位置,那么A类就是B类的专属内部类,其他地方都用不了。

示例:

class A
{
public:class B //B默认就是A的友元{public:void func(const A& a){cout << _k << ' ' << a.h << endl;}};
private:static int _k;int h = 1;
};int A::_k = 1;int main()
{//输出结果是4,所以内部类是不占空间的cout << sizeof(A) << endl;A::B b; //实例化BA aa;b.func(aa);return 0;
}

我们把上面那个牛客网的题目优化一下:

class Solution
{
public:class Sum{Sum(){_ret += _i;_i++;}};
public:int Sum_Solution(int n){// 变长数组Sum arr[n];return _ret;}
private:static int _i;static int _ret;
};int Solution::_i = 1;
int Solution::_ret = 0;

这样写是不是更简单、优美了。

3.6 匿名对象

  • 用类型(实参) 定义出来的对象叫做匿名对象,相比之前我们定义的 类型 对象名(实参) 定义出来的叫有名对象。
  • 匿名对象⽣命周期只在当前⼀行,⼀般临时定义⼀个对象当前用⼀下即可,就可以定义匿名对象。

示例:

class A
{
public:A(int a = 0):_a(a){cout << "A(int a = 0)" << endl;}~A(){cout << "~A()" << endl;}
private:int _a;
};class Solution
{
public:int Sum_Solution(int n) {return n;}
};int main()
{A aa1;//不可以这样定义对象,因为编译器⽆法识别下⾯是⼀个函数声明,还是对象定义//这里VS没有报错,也没有调用它的构造和析构函数,说明编译器把它当做是函数声明//A aa2();//但是我们可以这么定义匿名对象,匿名对象的特点不⽤取名字//但是他的⽣命周期只有这⼀⾏,我们可以看到下⼀⾏他就会⾃动调⽤析构函数A();A(1);// 匿名对象在这样场景下就很好⽤,当然还有⼀些其他使⽤场景Solution().Sum_Solution(10);return 0;
}

3.7 对象拷贝时的编译器优化

  • 现代编译器会为了尽可能提⾼程序的效率,在不影响正确性的情况下会尽可能减少⼀些传参和传参过程中可以省略的拷⻉。
  • 如何优化C++标准并没有严格规定,各个编译器会根据情况⾃⾏处理。当前主流的相对新⼀点的编译器对于连续⼀个表达式步骤中的连续拷⻉会进⾏合并优化,有些更新更"激进"的编译还会进⾏跨⾏跨表达式的合并优化。

这一点未完待续!!!

相关文章:

C++知识整理day3类与对象(下)——赋值运算符重载、取地址重载、列表初始化、友元、匿名对象、static

文章目录 1.赋值运算符重载1.1 运算符重载1.2 赋值运算符重载 2.取地址重载2.1 const成员函数2.2 取地址运算符重载 3.类与对象的补充3.1 再探构造函数---初始化列表3.2 类型转换3.3 static成员3.4 友元3.5 内部类3.6 匿名对象3.7 对象拷贝时的编译器优化 1.赋值运算符重载 赋…...

【计算机网络】实验6:IPV4地址的构造超网及IP数据报

实验 6&#xff1a;IPV4地址的构造超网及IP数据报 一、 实验目的 加深对IPV4地址的构造超网&#xff08;无分类编制&#xff09;的了解。 加深对IP数据包的发送和转发流程的了解。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实验内容 1、了解IPV4地址的构造超网…...

【服务器问题】xshell 登录远程服务器卡住( 而 vscode 直接登录不上)

打开 xshell ssh 登录远程服务器&#xff1a;卡在下面这里&#xff0c;迟迟不继续 当 SSH 连接卡在 Connection established. 之后&#xff0c;但没有显示远程终端提示符时&#xff0c;这通常意味着连接已经成功建立&#xff0c;说明不是网络连接和服务器连接问题&#xff0c;…...

node.js基础学习-querystring模块-查询字符串处理(三)

一、前言 querystring是 Node.js 中的一个内置模块&#xff0c;主要用于处理 URL 查询字符串。它提供了一些实用的方法来解析和格式化查询字符串&#xff0c;使得在处理 HTTP 请求中的查询参数等场景时非常方便。 还可以防止sql注入 二、解析查询字符串&#xff08;parse方法&a…...

【C++】深入优化计算题目分析与实现

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;第一题&#xff1a;圆的计算我的代码实现代码分析改进建议改进代码 老师的代码实现代码分析可以改进的地方改进代码 &#x1f4af;第二题&#xff1a;对齐输出我的代码实现…...

【一起学习三维GIS】Cesium基础功能和项目讲解

一、Cesium整体介绍 Cesium正式发布于 2014 年&#xff0c;是一个完全开源的基于 WebGL 的 JavaScript框架&#xff0c;无需安装插件即可创建具有最佳性能、精度、视觉质量和易用性的世界级三维地球影像和地图&#xff0c;并且具有丰富的开源社区内容。 Cesium 作为一个较为…...

【docker】Overlay网络

什么是 Overlay 网络&#xff1f; Overlay 网络是一种 Docker 网络驱动&#xff0c;允许容器在不同主机间通信。 它依赖分布式存储&#xff08;如 Swarm、Etcd 或 Consul&#xff09;来管理网络配置和路由。 Overlay 网络的核心特点 跨主机通信&#xff1a;容器可以跨物理主…...

澎峰科技助力中国移动 重磅发布智算“芯合”算力原生基础软件栈2.0

11月30日 &#xff0c;由中国通信学会主办、中国移动研究院承办的2024中国信息通信大会“算力网络算网一体创新发展论坛 ”在成都召开。中国移动研究院携手澎峰科技等产业合作伙伴在本次论坛重磅发布了智算“芯合”算力原生基础软件栈2.0。 芯片是智算生态的基石&#xff0c;基…...

电脑提示报错“Directx error”怎么解决?是什么原因导致的?游戏软件提示“Directx error”错误的解决方案

DirectX Error&#xff08;DX错误&#xff09;通常指的是在使用基于DirectX技术的应用程序&#xff08;尤其是游戏&#xff09;时遇到的问题。这个问题可能由多种因素导致&#xff0c;以下是一些可能的原因及相应的解决方案&#xff1a; 可能的原因 DirectX版本不匹配&#x…...

jmeter 压测常用静默参数解释应用

简介&#xff1a; JMeter静默压测&#xff08;即无界面压测&#xff09;是一种常用的性能测试方法&#xff0c;用于模拟多个用户同时访问系统并测量系统的响应时间和吞吐量等关键性能指标。在JMeter静默压测中&#xff0c;常用的压测参数及其解释如下&#xff1a; 一、基本…...

动态规划-----路径问题

动态规划-----路径问题 下降最小路径和1&#xff1a;状态表示2&#xff1a;状态转移方程3 初始化4 填表顺序5 返回值6 代码实现 总结&#xff1a; 下降最小路径和 1&#xff1a;状态表示 假设&#xff1a;用dp[i][j]表示&#xff1a;到达[i,j]的最小路径 2&#xff1a;状态转…...

LeetCode 438.找到字符串中所有字母异位词

LeetCode 438.找到字符串中所有字母异位词 思路&#x1f9d0;&#xff1a; 需要找到子串异位词&#xff0c;也就是只看该子串是否有相同字母而不管位置是否相同。分析题目发现只需要单调向前找异位词&#xff0c;则可以使用滑动窗口求解&#xff0c;注意这里每当左右边框长度大…...

[C++设计模式] 为什么需要设计模式?

文章目录 什么是设计模式&#xff1f;为什么需要设计模式&#xff1f;GOF 设计模式再次理解面向对象软件设计固有的复杂性软件设计复杂性的根本原因如何解决复杂性&#xff1f;分解抽象 结构化 VS 面向对象(封装)结构化设计代码示例&#xff1a;面向对象设计代码示例&#xff1…...

【ArkTS】使用AVRecorder录制音频 --内附录音机开发详细代码

系列文章目录 【ArkTS】关于ForEach的第三个参数键值 【ArkTS】“一篇带你读懂ForEach和LazyForEach” 【小白拓展】 【ArkTS】“一篇带你掌握TaskPool与Worker两种多线程并发方案” 【ArkTS】 一篇带你掌握“语音转文字技术” --内附详细代码 【ArkTS】技能提高–“用户授权”…...

【知识科普】设计模式之-责任链模式

这里写自定义目录标题 概述责任链模式的详细描述责任链模式的使用场景 使用场景举例1. 审批流程示例&#xff1a;2. 过滤器链示例&#xff1a;3. 事件处理系统示例&#xff1a;4. 插件系统示例&#xff1a; Java代码示例及注释代码解释 概述 责任链模式的详细描述 责任链模式…...

浏览器渲染原理

渲染原理 第一步解析Html第二步样式计算第三步布局第四步分层第五步绘制第六步分块第七步光栅化第八步画常见面试题什么是回流reflow&#xff1f;什么是重绘repaint&#xff1f; 当浏览器的网络线程收到HTML文档之后&#xff0c;会产生一个渲染任务并且会将其传递给渲染主线程的…...

顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测(Maltab)

顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测&#xff08;Maltab&#xff09; 目录 顶刊算法 | 鱼鹰算法OOA-BiTCN-BiGRU-Attention多输入单输出回归预测&#xff08;Maltab&#xff09;效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实…...

【机器学习】分类任务: 二分类与多分类

二分类与多分类&#xff1a;概念与区别 二分类和多分类是分类任务的两种类型&#xff0c;区分的核心在于目标变量&#xff08;label&#xff09;的类别数&#xff1a; 二分类&#xff1a;目标变量 y 只有两个类别&#xff0c;通常记为 y∈{0,1} 或 y∈{−1,1}。 示例&#xff…...

速盾:高防 CDN 可以配置客户端请求超时配置?

在高防 CDN&#xff08;Content Delivery Network&#xff0c;内容分发网络&#xff09;的运行管理中&#xff0c;客户端请求超时配置是一项重要的功能设定&#xff0c;它对于优化网络资源分配、保障服务质量以及维护系统稳定性有着关键意义。 一、客户端请求超时配置的概念 …...

字节青训Marscode——8:找出整形数组中超过一半的数

问题描述 小R从班级中抽取了一些同学&#xff0c;每位同学都会给出一个数字。已知在这些数字中&#xff0c;某个数字的出现次数超过了数字总数的一半。现在需要你帮助小R找到这个数字。 测试样例 样例1&#xff1a; 输入&#xff1a;array [1, 3, 8, 2, 3, 1, 3, 3, 3] 输出…...

Fastapi + vue3 自动化测试平台---移动端App自动化篇

概述 好久写文章了&#xff0c;专注于新框架&#xff0c;新UI界面的实践&#xff0c;废话不多说&#xff0c;开搞 技术架构 后端&#xff1a; Fastapi Airtest multiprocessing 前端&#xff1a; 基于 Vue3、Vite、TypeScript、Pinia、Pinia持久化插件、Unocss 和 Elemen…...

go并发设计模式runner模式

go并发设计模式runner模式 真正运行的程序不可能是单线程运行的&#xff0c;go语言中最值得骄傲的就是CSP模型了&#xff0c;可以说go语言是CSP模型的实现。 假设现在有一个程序需要实现&#xff0c;这个程序有以下要求&#xff1a; 程序可以在分配的时间内完成工作&#xff0…...

[TPAMI 2024]Vision-Language Models for Vision Tasks: A Survey

论文网址&#xff1a;Vision-Language Models for Vision Tasks: A Survey | IEEE Journals & Magazine | IEEE Xplore 论文Github页面&#xff1a;GitHub - jingyi0000/VLM_survey: Collection of AWESOME vision-language models for vision tasks 英文是纯手打的&…...

Qt—QLineEdit 使用总结

文章参考:Qt—QLineEdit 使用总结 一、简述 QLineEdit是一个单行文本编辑控件。 使用者可以通过很多函数,输入和编辑单行文本,比如撤销、恢复、剪切、粘贴以及拖放等。 通过改变 QLineEdit 的 echoMode() ,可以设置其属性,比如以密码的形式输入。 文本的长度可以由 m…...

Flutter 之 InheritedWidget

InheritedWidget 是 Flutter 框架中的一个重要类&#xff0c;用于在 Widget 树中共享数据。它是 Flutter 中数据传递和状态管理的基础之一。通过 InheritedWidget&#xff0c;你可以让子 Widget 在不需要显式传递数据的情况下&#xff0c;访问祖先 Widget 中的数据。这种机制对…...

#JAVA-常用API-爬虫

1.爬虫 我们在正则表达式的讲解中可以使用字符串的方法materchs()来匹配&#xff0c;并且返回一个boolean值 String name "lshhhljh"; System.out.println(name.matches("lsh{3}\\s{3}")); //true现在我们将利用正则表达式来爬取本地或者网站上的文本内…...

Qt Serial Bus 前置介绍篇

文章目录 Qt Serial Bus 简介前言 什么是 Qt Serial Bus&#xff1f;Qt Serial Bus 的核心功能支持的协议1. **CAN 总线**2. **Modbus**3. **自定义协议** 应用场景优势总结 Qt Serial Bus 简介 前言 Qt Serial Bus 是 Qt 框架中的一个模块&#xff0c;用于与工业设备和嵌入式…...

JavaScript(一)

1.JavaScript 基本使用 2.JavaScript简单事件 3.JavaScript修改样式 4.JavaScript数据类型 JavaScript和Java有什么关系 知识点一 JavaScript基本使用 JS写在哪 还有一种写在中间的&#xff0c;也就是<head>里面 JS一些注意事项 JS修改元素内容 #JS获取对象<…...

Python实现网站资源批量下载【可转成exe程序运行】

Python实现网站资源批量下载【可转成exe程序运行】 背景介绍解决方案转为exe可执行程序简单点说详细了解下 声明 背景介绍 发现 宣讲家网 的PPT很好&#xff0c;作为学习资料使用很有价值&#xff0c;所以想下载网站的PPT课件到本地&#xff0c;但是由于网站限制&#xff0c;一…...

el-upload上传多个文件,一次请求,Django接收

1、:file-list"fileList" :on-change"handleChange" 将文件赋值到fileList 2、 :auto-upload"false" 手动触发上传 写个按钮点击执行这个 this.$refs.upload.submit(); 3、自己写上传&#xff0c;不会再触发上传成功或失败回调 4、 request.FI…...

【错误记录】jupyter notebook打开后服务器错误Forbidden问题

如题&#xff0c;在Anaconda Prompt里输入jupyter notebook后可以打开浏览器&#xff0c;但打开具体项目后就会显示“服务器错误&#xff1a;Forbidden”&#xff0c;终端出现&#xff1a; tornado.web.HTTPError: HTTP 403: Forbidden 查看jupyter-server和jupyter notebook版…...

修改MVCActiveRecord支持匿名函数(用于动态决定数据库连接)

要修改 TMVCActiveRecordMiddleware 以直接接受一个匿名函数&#xff08;用于动态决定数据库连接&#xff09;以及一个配置文件名&#xff0c;你需要对构造函数进行一些调整。这可以通过重载构造函数以接收另一个参数——匿名函数来实现。 构造函数修改步骤 假设你的目标是允…...

SpringMVC(一)

ModelAndView ModelAndView 是 Spring MVC 框架中的一个类&#xff0c;用于在控制器中返回模型数据和视图信息。 模型&#xff1a; 包含应用程序的数据&#xff0c;这些数据将被传递到视图层进行渲染。模型数据通常以键值对的形式存储在一个 map 中。 视图&#xff1a; 指定要渲…...

nginx配置笔记

前言 nginx官方文档: https://nginx.org/en/docs/openresty官方文档: https://github.com/openresty/lua-nginx-module一、配置 1. 配置实例 1.1. 80端口转443 server {listen 80 default_server;listen [::]:80 default_server;rewrite ^ https://$http_host$request_uri?…...

解决idea使用maven打包时无法将本地lib库文件和resource目录中的资源文件打包进jar文件的问题!!!

一、问题复现 1&#xff09;项目结构如下 我们看到项目中手动添加了本地lib资源&#xff0c;同时bootspring的配置文件和mapper文件也放在了resouces目录中。 2&#xff09;上述结构的项目在使用maven打包时&#xff0c;最终生成的jar文件中将不包含lib库文件&#xff0c;甚…...

html button 按钮单选且 高亮

<DIV class"middle"> <div class"containerTarget"> <span class"hover-target1" οnclick"btn(1);">韵达 </span> <span class"hover-target2" οnclick"btn(2);">中通 </span…...

GitLab使用中遇到的一些问题-记录

错误内容一 Warning: Permanently added gitlab.com (ED25519) to the list of known hosts. gitgitlab.com: Permission denied (publickey). Could not read from remote repository. Please make sure you have the correct access rights and the repository exists. …...

【合作原创】使用Termux搭建可以使用的生产力环境(二)

前言 上期文章没看的可以先从上期文章开始看起 【合作原创】使用Termux搭建可以使用的生产力环境&#xff08;一&#xff09;-CSDN博客 目前我们已经完成了FinalShell ssh连接手机Termux的功能了&#xff0c;这期我们继续朝我们的目标前进。今天早上有读者进群以为生成环境指…...

UG NX二次开发(C#)-选择对象居中(不是全部居中)

文章目录 1、前言2、什么是对象居中3、功能实现代码3.1 对象居中3.1 恢复原视图1、前言 在UG NX二次开发过程中,我们经常会用到居中以查看完整的模型,但是对于如果想展示某些对象,而不是全部模型时,那么我们就想将选择的对象(如体对象)居中查看,当查看结束后还能恢复到…...

12.2深度学习_项目实战

十、项目实战 鲍勃开了自己的手机公司。他想与苹果、三星等大公司展开硬仗。 他不知道如何估算自己公司生产的手机的价格。在这个竞争激烈的手机市场&#xff0c;你不能简单地假设事情。为了解决这个问题&#xff0c;他收集了各个公司的手机销售数据。 鲍勃想找出手机的特性(例…...

【Go底层】select原理

目录 1、背景2、go版本3、 selectgo函数解释【1】函数参数解释【2】函数具体解释第一步&#xff1a;遍历pollorder&#xff0c;选出准备好的case第二步&#xff1a;将当前goroutine放到所有case通道中对应的收发队列上第三步&#xff1a;唤醒groutine 4、总结 1、背景 select多…...

QT实战-qt各种菜单样式实现

本文主要介绍了qt普通菜单样式、带选中样式、带子菜单样式、超过一屏幕菜单样式、自定义带有滚动条的菜单样式&#xff0c; 先上图如下&#xff1a; 1.普通菜单样式 代码&#xff1a; m_pmenu new QMenu(this);m_pmenu->setObjectName("quoteListMenu"); qss文…...

Qt 窗口类型、窗口标志和窗口属性

一、窗口类型 Qt 窗口标志枚举类型用于指定小部件的各种窗口系统属性。其中一些标志取决于底层窗口管理器是否支持它们。以下是窗口类型: Qt::QWidget:这是 QWidget 的默认类型。如果它们有父级,这种类型的部件是子部件,如果没有父控件,则为独立窗口。Qt::Window:通常具…...

Windows远程桌面连接到Linux

我的电脑是一台瘦客户端&#xff0c;公司设置的不能安装其他软件&#xff0c;里面只有几个软件&#xff0c;还好有一个远程桌面&#xff08;Remote Desktop Connection&#xff09;&#xff0c;我想连接到另一台Linux的电脑上。 在Linux上安装xrdp&#xff1a; sudo apt insta…...

http(请求方法,状态码,Cookie与)

目录 1.http中常见的Header(KV结构) 2.http请求方法 2.1 请求方法 2.2 telnet 2.3 网页根目录 2.3.1 概念 2.3.2 构建一个首页 2.4 GET与POST方法 2.4.1 提交参数 2.4.2 GET与POST提交参数对比 2.4.3 GET和POST对比 3.状态码 3.1 状态码分类 3.2 3XXX状态码 3.2 …...

海康gige工业相机无驱动取像突破(c#实现,最后更新,你也可以移植到linux下去用)

买了3个海康的相机&#xff0c;最初测试成功的是500万相机。 然后写了一个通用版&#xff0c;害怕有问题&#xff0c;又买了600万的相机&#xff0c;测试果然不及格&#xff0c;花了九牛二虎之力找到一个小问题&#xff0c;就这个 if (changdu > 1000)&#xff1b; 最后又…...

KAN-Transfomer——基于新型神经网络KAN的时间序列预测

1.数据集介绍 ETT(电变压器温度)&#xff1a;由两个小时级数据集&#xff08;ETTh&#xff09;和两个 15 分钟级数据集&#xff08;ETTm&#xff09;组成。它们中的每一个都包含 2016 年 7 月至 2018 年 7 月的七种石油和电力变压器的负载特征。 traffic(交通) &#xff1a;描…...

使用OpenCV和卡尔曼滤波器进行实时活体检测

引言 在现代计算机视觉应用中&#xff0c;实时检测和跟踪物体是一项重要的任务。本文将详细介绍如何使用OpenCV库和卡尔曼滤波器来实现一个实时的活体检测系统。该系统能够通过摄像头捕捉视频流&#xff0c;并使用YOLOv3模型来检测目标对象&#xff08;例如人&#xff09;&…...

Node.js:开发和生产之间的区别

Node.js 中的开发和生产没有区别&#xff0c;即&#xff0c;你无需应用任何特定设置即可使 Node.js 在生产配置中工作。但是&#xff0c;npm 注册表中的一些库会识别使用 NODE_ENV 变量并将其默认为 development 设置。始终在设置了 NODE_ENVproduction 的情况下运行 Node.js。…...

实时数据开发 | Flink的数据分区策略--物理分区操作

物理分区操作 物理分区(physica1partitioning)操作的作用是根据指定的分区策略将数据重新分限到不同节点的 Task 实例上执行。当使用DataSteam提供的 API对数据处理过程中&#xff0c;赖于算子本身对数据的分区控制&#xff0c;如果用户希望自己控制数据分区&#xff0c;例如当…...