当前位置: 首页 > news >正文

qemu仿真调试esp32,以及安装版和vscode版配置区别

不得不说,乐鑫在官网的qemu介绍真的藏得很深

首先在首页的sdk的esp-idf页面里找找

然后页面拉倒最下面

入门指南

我这里选择esp32-s3

再点击api指南-》工具

才会看到qemu的介绍

QEMU 模拟器 - ESP32-C3 - — ESP-IDF 编程指南 latest 文档https://docs.espressif.com/projects/esp-idf/zh_CN/latest/esp32c3/api-guides/tools/qemu.html#id2

文档中也么有windows的安装方法。

先跳过下面两个标注的,继续往下看我怎么安装windows的vscode的qemu

++++++++++++++++++++++++++++++++++++++++++++++++++++

下面这个是qemu维护的分支。看看就好,要编译,先掠过

esp-toolchain-docs/qemu/README.md at main · espressif/esp-toolchain-docs · GitHub

https://github.com/espressif/esp-toolchain-docs/blob/main/qemu/README.md

esp-toolchain-docs/qemu/README.md at main · espressif/esp-toolchain-docs · GitHubRepository with documentation related to toolchains and debuggers maintained by Espressif - esp-toolchain-docs/qemu/README.md at main · espressif/esp-toolchain-docshttps://github.com/espressif/esp-toolchain-docs/blob/main/qemu/README.md

++++++++++++++++++++++++++++++++++++++++++++++++++++

=====================插曲==========================

但是乐鑫官网提供的是源代码,我上网找了一个哥们的的文章,有句话说的很好感动了我,选了windows,我干嘛还要去编译。

为了在qemu中模拟esp32,在windows中安装qemu esp32c3 riscv32模拟环境_win11 安装esp32 qemu-CSDN博客文章浏览阅读1.3k次,点赞37次,收藏20次。为了实践方便,准备在windows中安装qemu esp32c3 riscv32模拟环境。说实话,在Windows中安装qemu我认为反而更难一点,比如刚开始为了找Windows下已经编译好的二进制文件,就找了好久。在qemu官网,是提供了源代码,供大家下载编译使用。问题是我都选了Windows,还选编译安装,那我Windows不是白选了吗?选Windows不就是为了图它安装软件简单吗?最终找到一家德国的网站,直接提供编译好的安装文件。_win11 安装esp32 qemu https://blog.csdn.net/skywalk8163/article/details/144491103参照此文

QEMU for Windows – Installers (64 bit)QEMU Binaries for Windowshttps://qemu.weilnetz.de/w64/一个德国人的网站,提供了一个安装包,找一个下载安装就好了

这个是那个哥们提供的地址,已经失效了
wget https://qemu.weilnetz.de/w64/qemu-w64-setup-20241124.exe
我重新找了一下地址
wget https://qemu.weilnetz.de/w64/2024/qemu-w64-setup-20241124.exe
用迅雷下载也一样的

173M,不算小

然后,我没装,因为看了一眼那哥们的文章后面一句话

==========================结束插曲==================================

最后他也还是按照乐鑫官网安装的。看来乐鑫说维护一个qemu分支是有原因的。

我问了一下kimi,kimi给了一个安装脚本,试试啊看


idf_tools.py install qemu-xtensa qemu-riscv32

安装了,看下结果

然后项目里运行idf install

整个项目就被重新编译了一遍。等下再看看

编译完,直接运行

idf.py qemu monitor

helloworld就被完美运行了,命令行里看到的和实际跑硬件的代码逻辑输出是一样的

//

下来我在vscode中试试qemu

然后,一直不成功,提示没有安装qemu,经过不懈努力,终于搞明白怎么回事了

不同命令行环境的差异
VSCode 的默认终端是 PowerShell,而 PowerShell 和 CMD 使用不同的环境变量引用方式。
在 CMD 中,使用 %IDF_PATH% 来引用环境变量。
在 PowerShell 中,使用 $env:IDF_PATH 来引用环境变量。

原来是这样,两个环境使用的不同,vscode默认是powershell,这个原因造成的。

 

这下终于正确了。

idf.py --version 和 Get-Command idf.py是查看版本和查找安装路径的命令。

、、、、、、、、、、、划重点、、、、、、、、、、、、、、

好了,下面这段话,是我花了一晚上时间,终于把idf的安装版本和vscode版本的差别搞清楚了

两者真的是可混淆,也可独立,如果不清除idf的设计意图,还真的是容易一脸懵逼。

单刀直入,说说后来感悟到的设计意图,人家乐鑫一开始就是把框架和工具分开了,

1.比如我的esp-idf-v5.3.1.zip下载下来就是框架文件,直接解压缩就可以了,就是一个完整的框架,里面包含了idf库,包括一些源文件啥的。components这个文件夹下就是封装了各种功能的代码,我看都是.h和 .c,这么看idf就是开源的了。明白了。

2.第二件事,就是tool工具了,这里我就吐槽了,tool这个文件夹名字让我晕头转向的原因,就是名字不能换一个嘛。。。。。

我们仔细来看,这个其实是一个最最基本的,比如cmake之类的工具,也就是编译器之类的,最基础的自带的一些工具,甚至于没有python,

然后我们讲解安装版和vscode版的区别,

install.bat安装版::我们使用install.bat去安装的时候,会使用操作系统内的python,而不是带一个内置python(vscode版却是内置的)。并且,这个安装主要就都是下载和解压缩复制文件,貌似没有操作系统关联的工作,重点是,这个脚本会把项目需要的工具包,安装到

这个位置,他么的名字也叫tools,位置难找,而且文件夹名字一样,我会误以为框架目录下那个就是工具包。其他那个目录交个base_tools多好,反正后续的工具都是安装在其他位置。

vscode插件版::这个插件版本,在配置插件时候有两个文件夹,一个是框架位置,一个是工具包位置。框架位置是你必须选中的就是刚才那个加压缩后的框架位置,所以,两个版本框架位置可以共用(工具位置按照我现在理解也可以共用,但是我就不尝试了,因为我对比了一下文件夹,默认安装,两个文件夹内容都不一致)。框架就选择解压缩后的就行,然后工具包,就是会自动完成安装的工作,而不需要再去脚本执行命令。这个时候,后续项目用到的文件夹,就是你指定的文件夹了。这个关系搞清楚,就不再混淆了。

、、、、、、、、、、、前面是两个版本的区别和关系、、、、、、、、、、、、、、、、、、

好了,两个版本的关系搞清楚了,就不再有啥困扰的了

vscode在他自己的终端窗口去执行命令,就会按照vscode的配置文件中的目录,也就是你的插件安装指定的tools目录中去下载和安装qemu了。

出现在自己定义的文件夹了。

vscode插件版本,在终端中输入

idf monitor qemu

启动qemu。至于右下角那个讨厌的按钮,好像是vscode自带插件的启动方式,好像还需要配置脚本,太多太乱了,有一个能用就行了,我就不再研究了。

==========================================

再说一下xtensa和riscv32两种架构,在乐鑫里主要对应esp32c3和esp32S3,两种最主要的芯片区别在这,架构不同,性能和耗电也不同,应用的方向也不同。

早期的esp32系列是Xtensa架构,8266是RISC 架构。

这么看乐鑫好像esp32和8266算是第一代,每个架构各一个产品系列

到最近几年第二代主流芯片就是c3和s3这俩最火了,也是每个架构各一个。

我只用过这四个芯片,所以给我的主观感受是这样,好了,本文结束了。

相关文章:

qemu仿真调试esp32,以及安装版和vscode版配置区别

不得不说,乐鑫在官网的qemu介绍真的藏得很深 首先在首页的sdk的esp-idf页面里找找 然后页面拉倒最下面 入门指南 我这里选择esp32-s3 再点击api指南-》工具 才会看到qemu的介绍 QEMU 模拟器 - ESP32-C3 - — ESP-IDF 编程指南 latest 文档https://docs.espressi…...

协方差相关问题

为什么无偏估计用 ( n − 1 ) (n-1) (n−1) 而不是 n n n,区别是什么? 在统计学中,无偏估计是指估计量的期望值等于总体参数的真实值。当我们用样本数据估计总体方差或协方差时,分母使用 ( n − 1 ) (n-1) (n−1) 而不是 n n…...

Android OpenCV 人脸识别 识别人脸框 识别人脸控件自定义

先看效果 1.下载OpenCV 官网地址:opcv官网 找到Android 4.10.0版本下载 下载完毕 解压zip如图: 2.将OpenCV-android_sdk导入项目 我这里用的最新版的Android studio 如果是java开发 需要添加kotlin的支持。我用的studio比较新可以参考下,如果…...

深入解析Linux软硬链接:原理、区别与应用实践

Linux系列 文章目录 Linux系列前言一、软硬链接的概念引入1.1 硬链接1.2 软链接 二、软硬链接的使用场景2.1 软链接2.2 硬链接 三、总结 前言 上篇文章我们详细的介绍了文件系统的概念及底层实现原理,本篇我们就在此基础上探讨Linux系统中文件的软链接&#xff0…...

TDengine 与 taosAdapter 的结合(二)

五、开发实战步骤 (一)环境搭建 在开始 TDengine 与 taosAdapter 结合的 RESTful 接口开发之前,需要先完成相关环境的搭建,包括 TDengine 和 taosAdapter 的安装与配置,以及相关依赖的安装。 TDengine 安装&#xf…...

OBS 中如何设置固定码率(CBR)与可变码率(VBR)?

在使用 OBS 进行录制或推流时,设置“码率控制模式”(Rate Control)是非常重要的一步。常见的控制模式包括: CBR(固定码率):保持恒定的输出码率,适合直播场景。 VBR(可变码率):在允许的范围内动态调整码率,适合本地录制、追求画质。 一、CBR vs. VBR 的差异 项目CBR…...

优艾智合人形机器人“巡霄”,开启具身多模态新时代

近日,优艾智合-西安交大具身智能机器人研究院公布人形机器人矩阵,其中轮式人形机器人“巡霄”首次亮相。 “巡霄”集成移动导航、操作控制与智能交互技术,具备跨场景泛化能,适用于家庭日常服务、电力设备巡检、半导体精密操作及仓…...

蓝桥杯小白打卡第七天(第十四届真题)

小蓝的金属冶炼转换率问题 小蓝有一个神奇的炉子用于将普通金属 (O) 冶炼成为一种特殊金属 (X) 。 这个炉子有一个称作转换率的属性 (V) ,(V) 是一个正整数,这意味着消耗 (V) 个普通金属 (O) 恰好可以冶炼出一个特殊金属 (X) ,当普通金属 (…...

excel经验

Q:我现在有一个excel,有一列数据,大概两千多行。如何在这一列中 筛选出具有关键字的内容,并输出到另外一列中。 A: 假设数据在A列(A1开始),关键字为“ABC”在相邻空白列(如B1)输入公…...

【Pandas】pandas DataFrame astype

Pandas2.2 DataFrame Conversion 方法描述DataFrame.astype(dtype[, copy, errors])用于将 DataFrame 中的数据转换为指定的数据类型 pandas.DataFrame.astype pandas.DataFrame.astype 是一个方法,用于将 DataFrame 中的数据转换为指定的数据类型。这个方法非常…...

【Netty4核心原理④】【简单实现 Tomcat 和 RPC框架功能】

文章目录 一、前言二、 基于 Netty 实现 Tomcat1. 基于传统 IO 重构 Tomcat1.1 创建 MyRequest 和 MyReponse 对象1.2 构建一个基础的 Servlet1.3 创建用户业务代码1.4 完成web.properties 配置1.5 创建 Tomcat 启动类 2. 基于 Netty 重构 Tomcat2.1 创建 NettyRequest和 Netty…...

4.6学习总结

包装类 包装类:基本数据类型对应的引用数据类型 JDK5以后新增了自动装箱,自动拆箱 以后获取包装类方法,不需要new,直接调用方法,直接赋值即可 //1.把整数转成二进制,十六进制 String str1 Integer.toBin…...

MySQL学习笔记五

第七章数据过滤 7.1组合WHERE子句 7.1.1AND操作符 输入&#xff1a; SELECT first_name, last_name, salary FROM employees WHERE salary < 4800 AND department_id 60; 输出&#xff1a; 说明&#xff1a;MySQL允许使用多个WHERE子句&#xff0c;可以以AND子句或OR…...

成为社交场的导演而非演员

一、情绪的本质&#xff1a;社交信号而非自我牢笼 进化功能&#xff1a;情绪是人类进化出的原始社交工具。愤怒触发群体保护机制&#xff0c;悲伤唤起同情支持&#xff0c;喜悦巩固联盟关系。它们如同可见光谱&#xff0c;快速传递生存需求信号。双刃剑效应&#xff1a;情绪的…...

怎么使用vue3实现一个优雅的不定高虚拟列表

前言 很多同学将虚拟列表当做亮点写在简历上面&#xff0c;但是却不知道如何手写&#xff0c;那么这个就不是加分项而是减分项了。实际项目中更多的是不定高虚拟列表&#xff0c;这篇文章来教你不定高如何实现。 什么是不定高虚拟列表 不定高的意思很简单&#xff0c;就是不…...

LemonSqueezy: 1靶场渗透

LemonSqueezy: 1 来自 <LemonSqueezy: 1 ~ VulnHub> 1&#xff0c;将两台虚拟机网络连接都改为NAT模式 2&#xff0c;攻击机上做namp局域网扫描发现靶机 nmap -sn 192.168.23.0/24 那么攻击机IP为192.168.23.182&#xff0c;靶场IP192.168.23.225 3&#xff0c;对靶机进…...

2025 年山东保安员职业资格考试要点梳理​

山东作为人口大省&#xff0c;保安市场规模庞大。2025 年考试报考条件常规。报名通过山东省各市公安机关指定的培训机构或政务服务窗口&#xff0c;提交资料与其他地区类似。​ 理论考试注重对山东地域文化特色相关安保知识的考查&#xff0c;如在孔庙等文化圣地安保中&#x…...

ARM处理器内核全解析:从Cortex到Neoverse的架构与区别

ARM处理器内核全解析&#xff1a;从Cortex到Neoverse的架构与区别 ARM作为全球领先的处理器架构设计公司&#xff0c;其内核产品线覆盖了从高性能计算到低功耗嵌入式应用的广泛领域。本文将全面解析ARM处理器的内核分类、架构特点、性能差异以及应用场景&#xff0c;帮助读者深…...

网络缓冲区

网络缓冲区分为内核缓冲区和用户态网络缓冲区 我们重点要实现用户态网络缓冲区 1.设计用户态网络缓冲区的原因 ①.生产者和消费者的速度不匹配问题&#xff0c; 需要缓存数据。 ②.粘包处理问题&#xff0c; 不能确保一次系统调用读取或写入完整数据包。 2.代码实现(cha…...

数据仓库的核心架构与关键技术(数据仓库系列二)

目录 一、引言 二、数据仓库的核心架构 三、数据仓库的关键技术 1 数据集成与治理 2 查询优化与性能提升 3 数据共享服务 BI&#xff1a;以Tableau为例 SQL2API&#xff1a;以麦聪QuickAPI为例 4 实时数据处理 四、技术的协同作用 五、总结与展望 六、预告 一、引言…...

基于PyQt5与OpenCV的图像处理系统设计与实现

1. 系统概述 本系统是一个集成了多种经典图像处理算法的图形用户界面(GUI)应用程序,采用Python语言开发,基于PyQt5框架构建用户界面,利用OpenCV库实现核心图像处理功能。 系统支持11种图像处理操作,每种操作都提供参数实时调节功能,并具备原始图像与处理后图像的双视图对…...

如何根据设计稿进行移动端适配:全面详解

如何根据设计稿进行移动端适配&#xff1a;全面详解 文章目录 如何根据设计稿进行移动端适配&#xff1a;全面详解1. **理解设计稿**1.1 设计稿的尺寸1.2 设计稿的单位 2. **移动端适配的核心技术**2.1 使用 viewport 元标签2.1.1 代码示例2.1.2 参数说明 2.2 使用相对单位2.2.…...

什么是大型语言模型(LLM)?哪个大模型更好用?

什么是 LLM&#xff1f; ChatGPT 是一种大型语言模型 (LLM)&#xff0c;您可能对此并不陌生。它以非凡的能力而闻名&#xff0c;已证明能够出色地完成各种任务&#xff0c;例如通过考试、生成产品内容、解决问题&#xff0c;甚至在最少的输入提示下编写程序。 他们的实力现已…...

集合学习内容总结

集合简介 1、Scala 的集合有三大类&#xff1a;序列 Seq、集Set、映射 Map&#xff0c;所有的集合都扩展自 Iterable 特质。 2、对于几乎所有的集合类&#xff0c;Scala 都同时提供了可变和不可变的版本&#xff0c;分别位于以下两个包 不可变集合&#xff1a;scala.collect…...

使用typedef和不使用的区别

使用 typedef 定义的函数指针类型 typedef sensor_drv_params_t* (*load_sensor_drv_func)(); 不使用 typedef 的函数指针声明 sensor_drv_params_t* (*load_sensor_drv_func)(); 这两者看似相似&#xff0c;但在语义和用途上有显著区别。下面将详细解释这两种声明的区别、各…...

基于线性回归模型的汽车燃油效率预测

基于线性回归模型的汽车燃油效率预测 1.作者介绍2.线性回归介绍2.1 线性回归简介2.2 线性回归应用场景 3.基于线性回归模型的汽车燃油效率预测实验3.1 Auto MPG Data Set数据集3.2代码调试3.3完整代码3.4结果展示 4.问题分析 基于线性回归模型的汽车燃油效率预测 1.作者介绍 郝…...

Playwright之自定义浏览器目录访问出错:BrowserType.launch: Executable doesn‘t exist

Playwright之自定义浏览器目录访问出错&#xff1a;BrowserType.launch: Executable doesn’t exist 问题描述&#xff1a; 在使用playwright进行浏览器自动化的时候&#xff0c;配置了自定义的浏览器目录&#xff0c;当按照自定义的浏览器目录启动浏览器进行操作时&#xff0c…...

如何拿到iframe中嵌入的游戏数据

在 iframe 中嵌入的游戏数据是否能被获取&#xff0c;取决于以下几个关键因素&#xff1a; 1. 同源策略 浏览器的同源策略是核心限制。如果父页面和 iframe 中的内容同源&#xff08;即协议、域名和端口号完全相同&#xff09;&#xff0c;那么可以直接通过 JavaScript 访问 …...

优选算法第七讲:分治

优选算法第七讲&#xff1a;分治 1.分治_快排1.1颜色分类1.2排序数组1.3数组中第k个最大元素1.4库存管理II 2.分治_归并2.1排序数组2.2交易逆序对的总数2.3计算右侧小于当前元素的个数2.4翻转对 1.分治_快排 1.1颜色分类 1.2排序数组 1.3数组中第k个最大元素 1.4库存管理II 2.…...

OpenBMC:BmcWeb 处理http请求4 处理路由对象

OpenBMC:BmcWeb 处理http请求2 查找路由对象-CSDN博客 Router::handle通过findRoute获取了FindRouteResponse对象foundRoute void handle(const std::shared_ptr<Request>& req,const std::shared_ptr<bmcweb::AsyncResp>& asyncResp){FindRouteResponse …...

直流电能表计量解决方案适用于光伏储能充电桩基站等场景

多场景解决方案&#xff0c;准确测量 01 市场规模与增长动力 全球直流表市场预测&#xff1a; 2025年市场规模14亿美元&#xff0c;CAGR超15%。 驱动因素&#xff1a;充电桩、光伏/储能、基站、直流配电 市场增长引擎分析&#xff1a; 充电桩随新能源车迅猛增长&#xff…...

x-cmd install | Slumber - 告别繁琐,拥抱高效的终端 HTTP 客户端

目录 核心优势&#xff0c;一览无遗安装应用场景&#xff0c;无限可能示例告别 GUI&#xff0c;拥抱终端 还在为调试 API 接口&#xff0c;发送 HTTP 请求而苦恼吗&#xff1f;还在各种 GUI 工具之间切换&#xff0c;只为了发送一个简单的请求吗&#xff1f;现在&#xff0c;有…...

git修改已经push的commit的message

1.修改信息 2.修改message 3.强推...

STM32 基础2

STM32中断响应过程 1、中断源发出中断请求。 2、判断处理器是否允许中断&#xff0c;以及该中断源是否被屏蔽。 3、中断优先级排队。 4、处理器暂停当前程序&#xff0c;保护断点地址和处理器的当前状态&#xff0c;根据中断类型号&#xff0c;查找中断向量表&#xff0c;转到…...

【STL 之速通pair vector list stack queue set map 】

考list 的比较少 --双端的啦 pair 想下&#xff0c;程序是什么样的. 我是我们要带着自己的思考去学习DevangLic.. #include <iostream> #include <utility> #include <string>using namespace std;int main() {// 第一部分&#xff1a;创建并输出两个 pair …...

深度学习篇---LSTM+Attention模型

文章目录 前言1. LSTM深入原理剖析1.1 LSTM 架构的进化理解遗忘门简介数学表达式实际作用 输入门简介数学表达式后选候选值实际作用 输出门简介数学表达式最终输出实际作用 1.2 Attention 机制的动态特性内容感知位置无关可解释性数学本质 1.3 LSTM与Attention的协同效应组合优…...

React 多个 HOC 嵌套太深,会带来哪些隐患?

在 React 中&#xff0c;使用多个 高阶组件&#xff08;HOC&#xff0c;Higher-Order Component&#xff09; 可能会导致组件层级变深&#xff0c;这可能会带来以下几个影响&#xff1a; 一、带来的影响 1、调试困难 由于组件被多个 HOC 包裹&#xff0c;React 开发者工具&am…...

企业工厂生产线马达保护装置 功能参数介绍

安科瑞刘鸿鹏 摘要 工业生产中&#xff0c;电压暂降&#xff08;晃电&#xff09;是导致电动机停机、生产中断的主要原因之一&#xff0c;给企业带来巨大的经济损失。本文以安科瑞晃电再起动控制器为例&#xff0c;探讨抗晃电保护器在生产型企业工厂中的应用&#xff0c;分析…...

Redis 的五种数据类型面试回答

这里简单介绍一下面试回答、我之前有详细的去学习、但是一直都觉得太多内容了、太深入了 然后面试的时候不知道从哪里讲起、于是我写了这篇CSDN帮助大家面试回答、具体的深入解析下次再说 面试官你好 我来介绍一下Redis的五种基本数据类型 有String List Set ZSet Map 五种基…...

多线程代码案例(定时器) - 3

定时器&#xff0c;是我们日常开发所常用的组件工具&#xff0c;类似于闹钟&#xff0c;设定一个时间&#xff0c;当时间到了之后&#xff0c;定时器可以自动的去执行某个逻辑 目录 Timer 的基本使用 实现一个 Timer 通过这个类&#xff0c;来描述一个任务 通过这个类&…...

基于大模型的GCSE预测与治疗优化系统技术方案

目录 技术方案文档:基于大模型的GCSE预测与治疗优化系统1. 数据预处理模块功能:整合多模态数据(EEG、MRI、临床指标等),标准化并生成训练集。伪代码流程图2. 大模型架构(Transformer-GNN混合模型)功能:联合建模时序信号(EEG)与空间结构(脑网络)。伪代码流程图3. 术…...

IntelliJ IDEA 中 Continue 插件使用 DeepSeek-R1 模型指南

IntelliJ IDEA 中 Continue 插件使用 DeepSeek-R1 模型指南 Continue 是一款开源的 AI 编码助手插件&#xff0c;支持 IntelliJ IDEA 等 JetBrains 系列 IDE。它可以通过连接多种语言模型&#xff08;如 DeepSeek-R1&#xff09;提供实时代码生成、问题解答和单元测试生成等功…...

Valgrind——内存调试和性能分析工具

文章目录 一、Valgrind 介绍二、Valgrind 功能和使用1. 主要功能2. 基本用法2.1 常用选项2.2 内存泄漏检测2.3 详细报告2.4 性能分析2.5 多线程错误检测 三、在 Ubuntu 上安装 Valgrind四、示例1. 检测内存泄漏2. 使用未初始化的内存3. 内存读写越界4. 综合错误 五、工具集1. M…...

京东API智能风控引擎:基于行为分析识别恶意爬虫与异常调用

京东 API 智能风控引擎基于行为分析识别恶意爬虫与异常调用&#xff0c;主要通过以下几种方式实现&#xff1a; 行为特征分析 请求频率&#xff1a;正常用户对 API 的调用频率相对稳定&#xff0c;受到网络延迟、操作速度等因素限制。若发现某个 IP 地址或用户在短时间内对同一…...

Swift 解 LeetCode 250:搞懂同值子树,用递归写出权限系统检查器

文章目录 前言问题描述简单说&#xff1a;痛点分析&#xff1a;到底难在哪&#xff1f;1. 子树的概念搞不清楚2. 要不要“递归”&#xff1f;递归从哪开始&#xff1f;3. 怎么“边遍历边判断”&#xff1f;这套路不熟 后序遍历 全局计数器遍历过程解释一下&#xff1a;和实际场…...

Nginx搭建API网关服务教程-系统架构优化 API统一管理

超实用&#xff01;用Nginx搭建API网关服务&#xff0c;让你的系统架构更稳更强大&#xff01;&#x1f680; 亲们&#xff0c;今天来给大家种草一个超级实用的API网关搭建方案啦&#xff01;&#x1f440; 在如今的Web系统架构中&#xff0c;一个稳定、高性能、可扩展的API网…...

SQL2API是什么?SQL2API与BI为何对数据仓库至关重要?

目录 一、SQL2API是什么&#xff1f; 二、SQL2API的历史演变&#xff1a;从数据共享到服务化革命 1990年代&#xff1a;萌芽于数据仓库的数据共享需求 2010年代初&#xff1a;数据中台推动服务化浪潮 2022年左右&#xff1a;DaaS平台的兴起 2025年代&#xff1a;麦聪定义…...

CentOS 7无法上网问题解决

CentOS 7无法上网问题解决 问题 配置了桥接模式以后&#xff0c;能够ping通本地IP但是无法ping通www.baidu.com 这里的前提是VWare上已经对虚拟机桥接模式网卡做了正确的选择&#xff0c;比如我现在选择的就是当前能够上外网的网卡&#xff1a; 问题根因 DNS未正确配置。…...

优化 Web 性能:使用 WebP 图片(Uses WebP Images)

在 Web 开发中&#xff0c;图片资源的优化是提升页面加载速度和用户体验的关键。Google 的 Lighthouse 工具在性能审计中特别推荐“使用 WebP 图片”&#xff08;Uses WebP Images&#xff09;&#xff0c;因为 WebP 格式在保持视觉质量的同时显著减少文件大小。本文将基于 Chr…...

SQL121 创建索引

-- 普通索引 CREATE INDEX idx_duration ON examination_info(duration);-- 唯一索引 CREATE UNIQUE INDEX uniq_idx_exam_id ON examination_info(exam_id);-- 全文索引 CREATE FULLTEXT INDEX full_idx_tag ON examination_info(tag);描述 现有一张试卷信息表examination_in…...