当前位置: 首页 > news >正文

常见排序算法总结 (三) - 归并排序与归并分治

归并排序

算法思想

将数组元素不断地拆分,直到每一组中只包含一个元素,单个元素天然有序。之后用归并的方式收集跨组的元素,最终形成整个区间上有序的序列。

稳定性分析

归并排序是稳定的,拆分数组时会自然地将元素分成有先后顺序的子数组,在归并的过程中如果遇到相等的值,优先收集早出现的子数组中的那个即可。

具体实现

递归

// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组
public static int MAX_N = 50010;
public static int[] temp = new int[MAX_N];// 归并,用于将已经有序的两个数组合并成更大的有序数组
private void merge(int[] arr, int left, int mid,  int right) {int index1 = left, index2 = mid + 1, index = left;// 两个数组都有剩余元素,每次收集值较小的元素while(index1 <= mid && index2 <= right) {temp[index++] = arr[index1] <= arr[index2] ? arr[index1++] : arr[index2++];}// 其中一个数组为空,将另一个数组剩余的所有元素都添加到结果数组的末尾while(index1 <= mid) {temp[index++] = arr[index1++];}while(index2 <= right) {temp[index++] = arr[index2++];}// 结果回写到原数组System.arraycopy(temp, left, arr, left, right - left + 1);
}// 归并排序
private void mergeSort(int[] arr, int left, int right) {// 左右端点相同,数组中只有单个元素认为天然有序if (left == right) {return;}int mid = left + ((right - left) >>> 1); // 计算区间中点作为划分数组的依据// 递归地对左半边数组进行排序mergeSort(arr, left, mid);// 递归地对右半边数组进行排序mergeSort(arr, mid + 1, right);// 归并收集结果merge(arr, left, mid, right);
}

非递归

// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组
public static int MAX_N = 50010;
public static int[] temp = new int[MAX_N];// 归并方法,用于将已经有序的两个数组合并成更大的有序数组
private void merge(int[] arr, int left, int mid,  int right) {int index1 = left, index2 = mid + 1, index = left;// 两个数组都有剩余元素,每次收集值较小的元素while(index1 <= mid && index2 <= right) {temp[index++] = arr[index1] <= arr[index2] ? arr[index1++] : arr[index2++];}// 其中一个数组为空,将另一个数组剩余的所有元素都添加到结果数组的末尾while(index1 <= mid) {temp[index++] = arr[index1++];}while(index2 <= right) {temp[index++] = arr[index2++];}// 结果回写到原数组System.arraycopy(temp, left, arr, left, right - left + 1);
}// 归并排序
private void mergeSort(int[] arr) {int n = arr.length;// 根据步长来迭代,每一轮扩大一倍for (int left, mid, right, step = 1; step < n; step <<= 1) {left = 0; // 左端点从 0 开始while (left < n) {mid = left + step - 1; // 计算区间中点的位置// 另一半区间无法构成,直接进行下一轮if (mid >= n - 1) {break;}// 数组内剩余元素不一定够填满右半边数组,右端点要根据情况来取值right = Math.min(left + (step << 1) - 1, n - 1);merge(arr, left, mid, right);// 移动指针,准备归并右半边数组left = right + 1;}}
}

归并分治

分治是一种算法思想,归并分治顾名思义就是涉及到了归并的分治策略。这部分内容其实和排序关系不大,但是作为归并应用的扩展放在一起整理比较合适的。

算法思想

如果一个问题满足两个条件,那么大概率可以使用归并分治解决:

  • 全局的结果相当于划分成两部分之后,左半边、右半边与跨左右三部分的结果的并集,也就是这个问题可以总中间拆分成子问题。
  • 如果拆分之后小范围上有序,能够使得计算跨左右的答案时更方便。

实践案例:Leetcode 493. 翻转对

递归

class Solution {// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组public static int MAX_N = 50010;public static int[] temp = new int[MAX_N];public int reversePairs(int[] nums) {return reversePairs(nums, 0, nums.length - 1);}// 重载一个同名方法,将它改造成方便递归的形式private int reversePairs(int[] nums, int left, int right) {// 只有一个元素的情况下没有答案if(left == right) {return 0;}int mid = left + ((right - left) >>> 1);// 结果等于左半边、右半边与跨左右的结果的并集return reversePairs(nums, left, mid) + reversePairs(nums, mid + 1, right) + merge(nums, left, mid, right);}private int merge(int[] nums, int left, int mid,  int right) {int res = 0;// 当前跨小范围的情况下,更小范围内已经有序for(int i = left, j = mid + 1; i <= mid; i++) {// 确定了当前轮 j 的位置之后,这个指针不会回退,这也是提升性能的根本原因while(j <= right && (long) nums[i] > (long) 2 * nums[j]) {j++;}res += j - mid - 1;}// 常规归并流程int index1 = left, index2 = mid + 1, index = left;while(index1 <= mid && index2 <= right) {temp[index++] = nums[index1] <= nums[index2] ? nums[index1++] : nums[index2++];}while(index1 <= mid) {temp[index++] = nums[index1++];}while(index2 <= right) {temp[index++] = nums[index2++];}System.arraycopy(temp, left, nums, left, right - left + 1);return res;}
}

非递归

class Solution {// 注意预先定义辅助数组,防止递归层数深的情况下花大量时间空间去开数组public static int MAX_N = 50010;public static int[] temp = new int[MAX_N];public int reversePairs(int[] nums) {int res = 0;int n = nums.length;for (int left, mid, right, step = 1; step < n; step <<= 1) {left = 0;while (left < n) {mid = left + step - 1;if (mid >= n - 1) {break;}right = Math.min(left + (step << 1) - 1, n - 1);res += merge(nums, left, mid, right); // 累计每次归并的结果left = right + 1;}}return res;}private int merge(int[] nums, int left, int mid,  int right) {int res = 0;// 当前跨小范围的情况下,更小范围内已经有序for(int i = left, j = mid + 1; i <= mid; i++) {// 确定了当前轮 j 的位置之后,这个指针不会回退,这也是提升性能的根本原因while(j <= right && (long) nums[i] > (long) 2 * nums[j]) {j++;}res += j - mid - 1;}// 常规归并流程int index1 = left, index2 = mid + 1, index = left;while(index1 <= mid && index2 <= right) {temp[index++] = nums[index1] <= nums[index2] ? nums[index1++] : nums[index2++];}while(index1 <= mid) {temp[index++] = nums[index1++];}while(index2 <= right) {temp[index++] = nums[index2++];}System.arraycopy(temp, left, nums, left, right - left + 1);return res;}
}

梳理总结

分治是一种通过不断划分来减小问题规模,而归并是用来收集得到全局结果的方法。上面的例子所使用的都是一分为二的做法,其实每一轮可以划分成更多子问题,演变成多路归并。
正是上面这种不停划分的过程,使得无论是归并排序还是归并分治,都能有效地将暴力搜索需要 O ( N 2 ) O(N ^ 2) O(N2) 量级的方法,优化到 O ( N l o g N ) O(NlogN) O(NlogN) 这个级别。
当然,本质上来说还是空间换时间,这样的操作很明显需要 O ( N ) O(N) O(N) 量级的额外空间。

从使用上来说,归并排序一般不会成为手写排序的选择。但是归并分治则是很多问题的优秀解决方案,需要注意它的使用前提和具体实现。

后记

使用 Leetcode 912. 排序数组 进行测试,归并排序能够比较高高效地完成任务,略逊于计数排序和基数排序(不过其实题目要求使用尽可能少的额外空间,归并排序肯定不属于首选的方案)。

相关文章:

常见排序算法总结 (三) - 归并排序与归并分治

归并排序 算法思想 将数组元素不断地拆分&#xff0c;直到每一组中只包含一个元素&#xff0c;单个元素天然有序。之后用归并的方式收集跨组的元素&#xff0c;最终形成整个区间上有序的序列。 稳定性分析 归并排序是稳定的&#xff0c;拆分数组时会自然地将元素分成有先后…...

文库 | 从嬴图的技术文档聊起

在技术的浩瀚海洋中&#xff0c;一份优秀的技术文档宛如精准的航海图。它是知识传承的载体&#xff0c;是团队协作的桥梁&#xff0c;更是产品成功的幕后英雄。然而&#xff0c;打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼&#xff1f;是否纠结…...

故障诊断 | Transformer-LSTM组合模型的故障诊断(Matlab)

效果一览 文章概述 故障诊断 | Transformer-LSTM组合模型的故障诊断(Matlab) 源码设计 %% 初始化 clear close all clc disp(此程序务必用2023b及其以上版本的MATLAB!否则会报错!) warning off %...

VScode离线下载扩展安装

在使用VScode下在扩展插件时&#xff0c;返现VScode搜索不到插件&#xff0c;网上搜了好多方法&#xff0c;都不是常规操作&#xff0c;解决起来十分麻烦&#xff0c;可以利用离线下载安装的方式安装插件&#xff01;亲测有效&#xff01;&#xff01;&#xff01; 1.找到VScod…...

【AI系统】昇腾异构计算架构 CANN

昇腾异构计算架构 CANN 本文将介绍昇腾 AI 异构计算架构 CANN&#xff08;Compute Architecture for Neural Networks&#xff09;&#xff0c;这是一套为高性能神经网络计算需求专门设计和优化的架构。CANN 包括硬件层面的达芬奇架构和软件层面的全栈支持&#xff0c;旨在提供…...

云服务器重装系统后 一些报错与解决[ vscode / ssh / 子用户]

碰见的三个问题&#xff1a; 1.vscode连接失败 2.登录信息配置 3.新建子用户的一些设置 思考&#xff1a;遇见问题&#xff0c;第一反应 应该如何解决 目录 1. 错误 解决方法 原因 步骤 1&#xff1a;找到known_hosts文件并编辑 步骤 2&#xff1a;通过VSCode终端输入…...

架构设计之路,永无尽头

1. 插件式架构 2. SRP:单一职责原则 3. 链接加载器&#xff1f;&#xff1f;&#xff1f; 4. 端口适配器架构 5. 六边形架构 6. MVC架构 7. 领域驱动架构 8. 敏捷开发 9. 打台球的时候每打一杆是为了下几杆&#xff0c;而不是为了打到洞中。 10. 画出一个图&#xff0…...

【AI系统】Ascend C 语法扩展

Ascend C 语法扩展 Ascend C 的本质构成其实是标准 C加上一组扩展的语法和 API。本文首先对 Ascend C 的基础语法扩展进行简要介绍&#xff0c;随后讨论 Ascend C 的两种 API——基础 API 和高阶 API。 接下来针对 Ascend C 的几种关键编程对象——数据存储、任务间通信与同步…...

驱动篇的开端

准备 在做之后的动作前&#xff0c;因为win7及其以上的版本默认是不支持DbgPrint&#xff08;大家暂时理解为内核版的printf&#xff09;的打印&#xff0c;所以&#xff0c;为了方便我们的调试&#xff0c;我们先要修改一下注册表 创建一个reg文件然后运行 Windows Registr…...

树莓派4B使用opencv读取摄像头配置指南

本文自己记录&#xff0c;给我们lab自己使用&#xff0c;其他朋友们不一定完全适配&#xff0c;请酌情参考。 一. 安装opecnv 我们的树莓派4B默认是armv7l架构&#xff0c;安装的miniconda最新的版本 Miniconda3-latest-Linux-armv7l.sh 仍然是python3.4几乎无法使用&#xff…...

【AI日记】24.12.03 kaggle 比赛 Titanic-6

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】 工作 内容&#xff1a;学习 kaggle 入门比赛 Titanic - Machine Learning from Disaster时间&#xff1a;7 小时评估&#xff1a;继续 读书 书名&#xff1a;美丽新世界时间&#xff1a;1 小时阅读原因&…...

Linux中的常用基本指令(下)

Linux常用基本指令 Linux中的基本指令12.head指令13.tail指令简单解释重定向与管道(重要) 14.date指令(时间相关的指令)15.cal指令(不重要)16.find指令(灰常重要&#xff09;17.grep指令(重要)18.which指令和alias指令19.zip/unzip指令&#xff1a;20.tar指令&#xff08;重要&…...

python笔记3

复习及总结 python的软件安装及简单使用——python3.31 pycharm python的输出&#xff1a;print&#xff08;&#xff09; 简单&#xff08;直接&#xff09;输出 print&#xff08;&#xff09;输出到指定文件 fpopen(rC:\Users\M15R3\Desktop\1.txt,a) print("334…...

电商营销活动-抽奖业务

目录 一、抽奖系统的核心功能 二、抽奖系统的业务逻辑 三、抽奖系统的业务优势 四、抽奖系统的业务注意事项 电商营销活动中的抽奖系统业务&#xff0c;是一种通过设立抽奖活动来吸引用户参与、提升用户活跃度和转化率的营销手段。以下是对电商营销活动抽奖系统业务的详细解…...

利用 Redis 与 Lua 脚本解决秒杀系统中的高并发与库存超卖问题

1. 前言 1.1 秒杀系统中的库存超卖问题 在电商平台上&#xff0c;秒杀活动是吸引用户参与并提升销量的一种常见方式。秒杀通常会以极低的价格限量出售某些商品&#xff0c;目的是制造紧迫感&#xff0c;吸引大量用户参与。然而&#xff0c;这种活动的特殊性也带来了许多技术挑…...

《山海经》:北山

《山海经》&#xff1a;北山 北山一经单狐山求如山&#xff08;水马&#xff1a;形状与马相似&#xff0c;滑鱼&#xff1a;背部红色&#xff09;带山&#xff08;䑏疏&#xff1a;似马&#xff0c;一只角&#xff0c;鵸鵌&#xff1a;状乌鸦五彩斑斓&#xff0c;儵鱼&#xff…...

React基础教程(12):useRef的使用

12、useRef useRef 是 React 中的一个 Hook,主要用于访问和操作 DOM 元素以及保存组件的可变引用值。它是一个工具,用来避免重新渲染组件的情况下保持某些状态或引用的值。 使用场景: 使用场景 访问 DOM 元素 当需要直接操作某个 DOM 元素(如聚焦、滚动等)时,可以使用…...

释放超凡性能,打造鸿蒙原生游戏卓越体验

11月26日在华为Mate品牌盛典上&#xff0c;全新Mate70系列及多款全场景新品正式亮相。在游戏领域&#xff0c;HarmonyOS NEXT加持下游戏的性能得到充分释放。HarmonyOS SDK为开发者提供了软硬协同的系统级图形加速解决方案——Graphics Accelerate Kit&#xff08;图形加速服务…...

Linux--Debian或Ubuntu上扩容、挂载磁盘并配置lvm

一、三块12TB组RAID 5 可用容量约24TB 二、安装LVM工具&#xff08;已安装请忽略&#xff09; sudo apt-get install lvm2二、查看可用磁盘 sudo lsblk 或者 sudo fdisk -l三、创建物理卷&#xff08;PV&#xff09; 选中刚做的磁盘组 sudo pvcreat /dev/sdb1四、创建卷组…...

我谈冈萨雷斯对频域滤波的误解——快速卷积与频域滤波之间的关系

在Rafael Gonzalez和Richard Woods所著的《数字图像处理》中&#xff0c;Gonzalez对频域滤波是有误解的&#xff0c;在频域设计滤波器不是非得图像和滤波器的尺寸相同&#xff0c;不是非得在频域通过乘积实现。相反&#xff0c;FIR滤波器设计都是构造空域脉冲响应。一般的原则是…...

Leetcoed:3274

1&#xff0c;题目 2&#xff0c;思路 把俩个字符串坐标拆开比较二进制, 如a1与b2 ,a与b比较为false ,1与2比较为false,最后俩个结果比较返回true 3&#xff0c;代码 class Solution3274 {public boolean checkTwoChessboards(String str1, String str2) {return (str1.char…...

LabVIEW实现串口调试助手

目录 1、串口通信原理 2、硬件环境部署 3、串口通信函数 4、程序架构 5、前面板设计 6、程序框图设计 本专栏以LabVIEW为开发平台,讲解物联网通信组网原理与开发方法,覆盖RS232、TCP、MQTT、蓝牙、Wi-Fi、NB-IoT等协议。 结合实际案例,展示如何利用LabVIEW和常用模块实现物联…...

ASP.NET Core项目中使用SqlSugar连接多个数据库的方式

之前学习ASP.NETCore及SqlSugar时都是只连接单个数据库处理数据&#xff0c;仅需在Program文件中添加ISqlSugarClient的单例即可&#xff08;如下代码所示&#xff09;。 builder.Services.AddSingleton<ISqlSugarClient>(s > {SqlSugarScope sqlSugar new SqlSugar…...

leetcode hot100【Leetcode 72.编辑距离】java实现

Leetcode 72.编辑距离 题目描述 给定两个单词 word1 和 word2&#xff0c;返回将 word1 转换为 word2 所使用的最少操作数。 你可以对一个单词执行以下三种操作之一&#xff1a; 插入一个字符删除一个字符替换一个字符 示例 1: 输入: word1 "horse", word2 &…...

【开源免费】基于Vue和SpringBoot的服装生产管理系统(附论文)

博主说明&#xff1a;本文项目编号 T 066 &#xff0c;文末自助获取源码 \color{red}{T066&#xff0c;文末自助获取源码} T066&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…...

Android13 允许桌面自动旋转

一&#xff09;需求-场景 Android13 实现允许桌面自动旋转 Android13 版本开始后&#xff0c;支持屏幕自动旋转&#xff0c;优化体验和兼容性&#xff0c;适配不同屏幕 主界面可自动旋转 二&#xff09;参考资料 android framework13-launcher3【06手机旋转问题】 Launcher默…...

异常知识及其使用

异常的简单概念 在C中&#xff0c;异常处理是一种机制&#xff0c;用于处理程序运行时发生的意外情况。它允许程序在发生错误时&#xff0c;将控制权转移到一个专门的代码块&#xff0c;而不是让程序直接崩溃。C的异常处理机制包括以下几个关键概念&#xff1a; throw 用途&…...

Spark常问面试题---项目总结

一、数据清洗&#xff0c;你都清洗什么&#xff1f;或者说 ETL 你是怎么做的&#xff1f; 我在这个项目主要清洗的式日志数据&#xff0c;日志数据传过来的json格式 去除掉无用的字段&#xff0c;过滤掉json格式不正确的脏数据 过滤清洗掉日志中缺少关键字段的数据&#xff…...

哈希及其模拟实现

1.哈希的概念 顺序结构以及平衡树中&#xff0c;元素的关键码与其存储位置之间没有对应的关系。因此&#xff0c;在查找一个元素时&#xff0c;必须要经过关键码的多次比较。顺序查找的时间复杂度为O(N)&#xff0c;平衡树中为树的高度&#xff0c;即O(log_2 N)&#xff0c;搜…...

Day 32 动态规划part01

今天正式开始动态规划! 理论基础 无论大家之前对动态规划学到什么程度,一定要先看 我讲的 动态规划理论基础。 如果没做过动态规划的题目,看我讲的理论基础,会有感觉 是不是简单题想复杂了? 其实并没有,我讲的理论基础内容,在动规章节所有题目都有运用,所以很重要!…...

【娱乐项目】竖式算术器

Demo介绍 一个加减法随机数生成器&#xff0c;它能够生成随机的加减法题目&#xff0c;并且支持用户输入答案。系统会根据用户输入的答案判断是否正确&#xff0c;统计正确和错误的次数&#xff0c;并显示历史记录和错题记录。该工具适合用于数学练习&#xff0c;尤其适合练习基…...

XRP 深度解析:从技术到 Meme 币交易指南

撰文&#xff1a;Ignas | DeFi Research 编译&#xff1a;Yuliya&#xff0c;PANews 本文来源Techub News:XRP 深度解析&#xff1a;从技术到 Meme 币交易指南 在当前加密货币市场&#xff0c;一个令人瞩目的现象正在上演&#xff1a;XRP 在短短一个月内暴涨 3.5 倍&#xf…...

机器学习周志华学习笔记-第13章<半监督学习>

机器学习周志华学习笔记-第13章&#xff1c;半监督学习&#xff1e; 卷王&#xff0c;请看目录 13半监督学习13.1 生成式方法13.2 半监督SVM13.3 基于分歧的方法13.4 半监督聚类 13半监督学习 前面我们一直围绕的都是监督学习与无监督学习&#xff0c;监督学习指的是训练样本包…...

【MySql】navicat连接报2013错误

navicat连接mysql报2013错误 报错信息1、检验Mysql数据库是否安装成功2、对Mysql的配置文件进行修改配置2.1、找到配置文件2.2、Linux下修改配置文本 3、连接进入mysql服务4、在mysql下执行授权命令 报错信息 Navicat连接mysql报2013错误 2013-Lost connection to MYSQL serve…...

【微服务】Docker

一、Docker基础 1、依赖的兼容问题&#xff1a;Docker允许开发中将应用、依赖、函数库、配置一起打包&#xff0c;形成可移植镜像Docker应用运行在容器中&#xff0c;使用沙箱机制&#xff0c;相互隔离。 2、如何解决开发、测试、生产环境有差异的问题&#xff1a;Docker镜像…...

renderExtraFooter 添加本周,本月,本年

在 Ant Design Vue 中&#xff0c;a-date-picker 组件提供了一个 renderExtraFooter 属性&#xff0c;可以用来渲染额外的页脚内容。你可以利用这个属性来添加“本周”、“本月”和“本年”的按钮。下面是如何在 Vue 2 项目中实现这一功能的具体步骤&#xff1a; 1.确保安装了…...

警惕开源信息成为泄密源头

文章目录 前言一、信息公开需谨慎1、警惕采购招标泄密。2、警惕信息公开泄密。3、警惕社交媒体泄密。 二、泄密风险需严防1、健全制度&#xff0c;明确责任。2、加强管控&#xff0c;严格审查。3、提高意识&#xff0c;谨言慎行。 前言 大数据时代&#xff0c;信息在网络空间发…...

密码学和CA证书

参考视频 一. 公钥私钥的理解 我们提到的使用公钥私钥进行加密解密只是一种口头表达方式&#xff0c;准确来说应该是公钥和私钥通过加密 算法生成&#xff0c;也需要通过配合加密算法进行解密。而不是直接用公钥和私钥进行加密解密。 二. 对称加密和非对称加密算法 1. 非对…...

Python 入门教程(2)搭建环境 | 2.4、VSCode配置Node.js运行环境

文章目录 一、VSCode配置Node.js运行环境1、软件安装2、安装Node.js插件3、配置VSCode4、创建并运行Node.js文件5、调试Node.js代码 一、VSCode配置Node.js运行环境 1、软件安装 安装下面的软件&#xff1a; 安装Node.js&#xff1a;Node.js官网 下载Node.js安装包。建议选择L…...

Nginx Web服务器管理、均衡负载、访问控制与跨域问题

Nginx Web 服务器的均衡负载、访问控制与跨域问题 Nginx 的配置 1. 安装Nginx 首先安装Nginx apt install nginx -ycaccpurgatory-v:~$ sudo apt install nginx [sudo] password for cacc: Reading package lists... Done Building dependency tree... Done Reading state i…...

排序学习整理(2)

上集回顾 排序学习整理&#xff08;1&#xff09;-CSDN博客 2.3 交换排序 交换排序的基本思想是&#xff1a;根据序列中两个记录键值的比较结果&#xff0c;交换这两个记录在序列中的位置。 特点&#xff1a; 通过比较和交换操作&#xff0c;将键值较大的记录逐步移动到序列…...

【前端】将vue的方法挂载到window上供全局使用,也方便跟原生js做交互

【前端】将vue的方法挂载到window上供全局使用&#xff0c;也方便跟原生js做交互 <template><div><el-button click"start">调用方法</el-button></div> </template> <script> // import { JScallbackProc } from ./JScal…...

单片机的中断系统

作者简介 彭煜轩&#xff0c;男&#xff0c;银川科技学院计算机与人工智能学院&#xff0c;2022级计算机与科学技术8班本科生&#xff0c;单片机原理及应用课程第3组。 指导老师&#xff1a;王兴泽 电子邮件&#xff1a;1696409709qq.com 前言 本篇文章是参考《单片机原理…...

Java基础面向对象(接口高级)

高版本的接口 JDK8.0 普通的公开非抽象方法(默认方法) [public] default 返回值类型 方法名(形参列表){//操作语句 } default: 在此位置身份为非抽象标识 接口中的非抽象方法实现类不需要进行重写且通常不会进行重写 当父类与接口的方法体出现冲突时, 优先执行父类内容 (类优…...

OpenCV圆形标定板检测算法findCirclesGrid原理详解

OpenCV的findCirclesGrid函数检测圆形标定板的流程如下:   findCirclesGrid函数源码: //_image,输入图像 //patternSize,pattern的宽高 //_centers,blobs中心点的位置 //flags,pattern是否对称 //blobDetector,这里使用的是SimpleBlobDetector bool cv::findCirclesGrid(…...

Linux 网卡收包流程如下

Linux 网卡收包流程如下 网卡收到数据包将数据包从网卡硬件缓存移动到服务器内存中(DMA方式&#xff0c;不经过CPU)通过硬中断通知CPU处理CPU通过软中断通知内核处理经过TCP/IP协议栈处理应用程序通过read()从socket buffer读取数据 网卡丢包 我们先看下ifconfig的输出&#…...

普中51单片机——LED流水灯模块

1、GPIO概念 GPIO&#xff08;general purpose intput output&#xff09;是通用输入输出端口的简称&#xff0c;可以通过软件来控制其输入和输出。51 单片机芯片的 GPIO 引脚与外部设备连接起来&#xff0c;从而实现与外部通讯、 控制以及数据采集的功能。 1.1、GPIO分类 &a…...

Linux 各个目录作用

刚毕业的时候学习Linux基础知识&#xff0c;发现了一份特别好的文档快乐的 Linux 命令行&#xff0c;翻译者是happypeter&#xff0c;作者当年也在慕课录制了react等前端相关的视频&#xff0c;通俗易懂&#xff0c;十分推荐 关于Linux的目录&#xff0c;多数博客已有详细介绍…...

【包教包会】CocosCreator3.x——重写Sprite,圆角、3D翻转、纹理循环、可合批调色板、不影响子节点的位移旋转缩放透明度

一、效果演示 重写Sprite组件&#xff0c;做了以下优化&#xff1a; 1、新增自变换&#xff0c;在不影响子节点的前提下位移、旋转、缩放、改变透明度 新增可合批调色板&#xff0c;支持色相、明暗调节 新增圆角矩形、3D透视旋转、纹理循环 所有功能均支持合批、原生平台&…...

腾讯阅文集团Java后端开发面试题及参考答案

Java 的基本数据类型有哪些?Byte 的数值范围是多少? Java 的基本数据类型共有 8 种,可分为 4 类: 整数类型:包括 byte、short、int 和 long。byte 占 1 个字节,其数值范围是 - 128 到 127,用于表示较小范围的整数,节省内存空间,在处理一些底层的字节流数据或对内存要求…...