当前位置: 首页 > news >正文

【AI系统】昇腾异构计算架构 CANN

昇腾异构计算架构 CANN

本文将介绍昇腾 AI 异构计算架构 CANN(Compute Architecture for Neural Networks),这是一套为高性能神经网络计算需求专门设计和优化的架构。CANN 包括硬件层面的达·芬奇架构和软件层面的全栈支持,旨在提供强大的硬件基础和管理网络模型、计算流及数据流的软件栈,以支撑神经网络在异构处理器上的执行。

通过本文内容的学习,读者将能够理解 CANN 如何为深度学习提供全面的硬件和软件支持,以及如何通过其多层级架构实现高效的 AI 应用开发和性能优化。

总体架构

本节参考文献:《Ascend C 异构并行程序设计》——苏统华,杜鹏,闫长江,2024

昇腾 AI 异构计算架构(Compute Architecture for Neural Networks,CANN)是专门为高性能神经网络计算需求所设计和优化的一套架构。在硬件层面,昇腾 AI 处理器所包含的达·芬奇架构在硬件设计上进行计算资源的定制化设计,在功能实现上进行深度适配,为神经网络计算性能的提升提供了强大的硬件基础。在软件层面,CANN 所包含的软件栈则提供了管理网络模型、计算流以及数据流的功能,支撑起神经网络在异构处理器上的执行流程。

如下图所示,CANN 作为昇腾 AI 处理器的异构计算架构,支持业界多种主流的 AI 框架,包括 MindSpore、TensorFlow、PyTorch、Jittor 等。Ascend C 算子开发语言,开放全量低阶 API 接口使能开发者完成高性能自定义算子开发;开放高阶 API 接口,降低开发难度,开发者可快速实现复杂自定义算子开发。GE 图引擎(Graph Engine),包括图优化、图编译、图执行等,便于开发者使用,优化整网性能。HCCL 集合通信库(Huawei Collective Communication Library),可供开发者直接调用,改善网络拥塞,提升网络资源利用率和运维效率。AOL 算子加速库(Ascend Operator Library),提供基础算子和大模型融合算子 API 接口对外开放,供开发者直接调用,使能大模型极致性能优化。Runtime 运行时,将硬件资源(计算、通信、内存管理等)的 API 接口对外开放,满足开发者对模型开发、系统优化、第三方 AI 框架对接等不同场景诉求。

在这里插入图片描述

CANN 提供了功能强大、适配性好、可自定义开发的 AI 异构计算架构,自顶向下分为 5 部分。

在这里插入图片描述

昇腾计算语言(Ascend Computing Language,简称 AscendCL):AscendCL 接口是昇腾计算开放编程框架,是对底层昇腾计算服务接口的封装。它提供设备(Device)管理、上下文(Context)管理、流(Stream)管理、内存管理、模型加载与执行、算子加载与执行、媒体数据处理、图(Graph)管理等 API 库,供用户开发 AI 应用。

昇腾计算服务层(Ascend Computing Service Layer): 主要提供昇腾算子库 AOL(Ascend Operator Library),通用神经网络(Neural Network,NN)库、线性代数计算库(Basic Linear Algebra Subprograms,BLAS)等高性能算子加速计算;昇腾调优引擎 AOE(Ascend Optimization Engine),通过算子调优 OPAT、子图调优 SGAT、梯度调优 GDAT、模型压缩 AMCT 提升模型端到端运行速度。同时提供 AI 框架适配器 Framework Adaptor 用于兼容 TensorFlow、PyTorch 等主流 AI 框架。

昇腾计算编译层(Ascend Computing Compilation Layer):昇腾计算编译层通过图编译器(Graph Compiler)将用户输入中间表达(Intermediate Representation,IR)的计算图编译成昇腾硬件可执行模型;同时借助张量加速引擎 TBE(Tensor Boost Engine)的自动调度机制,高效编译算子。

昇腾计算执行层(Ascend Computing Execution Layer):负责模型和算子的执行,提供运行时库(Runtime)、图执行器(Graph Executor)、数字视觉预处理(Digital Vision Pre-Processing,DVPP)、 AI 预处理(Artificial Intelligence Pre-Processing,AIPP)、华为集合通信库(Huawei Collective Communication Library,HCCL)等功能单元。

昇腾计算基础层(Ascend Computing Base Layer):主要为其上各层提供基础服务,如共享虚拟内存(Shared Virtual Memory,SVM)、设备虚拟化(Virtual Machine,VM)、主机-设备通信(Host Device Communication,HDC)等。

关键功能特性

推理应用开发

CANN 提供了在昇腾平台上开发神经网络应用的昇腾计算语言 AscendCL(Ascend Computing Language),提供运行资源管理、内存管理、模型加载与执行、算子加载与执行、媒体数据处理等 API,实现利用昇腾硬件计算资源、在昇腾 CANN 平台上进行深度学习推理计算、图形图像预处理、单算子加速计算等能力。简单来说,就是统一的 API 框架,实现对所有资源的调用。

模型训练

CANN 针对训练任务提供了完备的支持,针对 PyTorch、TensorFlow 等开源框架网络模型,CANN 提供了模型迁移工具,支持将其快速迁移到昇腾平台。此外,CANN 还提供了多种自动化调测工具,支持数据异常检测、融合异常检测、整网数据比对等,帮助开发者高效问题定位。

算子开发

CANN 提供了超过 1400 个硬件亲和的高性能算子,可覆盖主流 AI 框架的算子加速需求,同时,为满足开发者的算法创新需求,CANN 开放了自定义算子开发的能力,开发者可根据自身需求选择不同的算子开发方式。

特性与优点

  1. 统一 APP 编程语言:提供一套标准的 AscendCL 编程接口,对应用程序开发者屏蔽底层多种芯片差异,提升用户 APP 编程易用性。

  2. 统一的网络构图接口:提供了标准的昇腾计算 AIR,支持多宽广,支持用户在昇腾处理器上快速部署神经网络业务。

  3. 高性能计算引擎及算子库:通过高性能编程引擎/执行引擎/调优引擎和预置高性能算子库,支持用户快速部署神经网络业务,降低部署成本并最大程度发挥昇腾计算能力。

  4. 基础业务:驱动、虚拟化、媒体、集合通信等能力。

CANN 各层面能力

CANN 包含许多硬件无关的优化,但是到 Low Level 优化层面,由于各家厂商芯片特点不同,每家芯片都存在一些硬件耦合的 Low Level 优化,CANN 也如此,通过 CANN,对上层保持用户使用界面的兼容和统一,尽可能让用户较少感知硬件差异,对下则根据不同代际芯片的特点提升能力。

在这里插入图片描述

昇腾计算语言

昇腾计算开放了编程框架,封装底层昇腾计算服务接口,提升编程易用性,该开放编程框架名字叫做 AscendCL(AscendCL Computing Language)。其中包含了三个部分:

  1. 应用开发接口

该系列接口提供深度学习推理计算、图形图像预处理以及单算子调用及加速能力,通过这些能力实现对昇腾硬件计算的调用。该系列接口通常用于开发离线推理应用,或供第三方框架调用以及供第三方系统开发 lib 调用。

  1. 图开发接口

该系列接口提供了统一的网络构图接口,支持多种框架调用,支持用户在昇腾 AI 处理器上快速部署神经网络业务。通过该系列接口可以支持基于算子原型进行构图,也可以利用 Parsar 进行神经网络解析输出 IR。

  1. 算子开发接口

该系列接口有一个单独的名称——Ascend C。Ascend C 是 CANN 在算子开发场景为开发者提供的编程语言,原生支持 C&C++标准规范,最大化匹配用户的开发习惯。Ascend C 支持结构化的核函数编程,自动流水并行调度以及 CPU/NPU 孪生调试等特性。

在这里插入图片描述

昇腾计算服务层

昇腾计算服务层是基于底层框架封装出来的一些能力集合,包含一套完善的昇腾算子库(Ascend Operator Library,AOL)以及调优工具的集合——昇腾调优引擎(Ascend Optimize Engine,AOE)。算子库中包含了 NN(Neural Network)算子库,BLAS(Basic Linear Algebra Subprograms)算子库,DVPP(Digital Vision Pre-Processing)算子库,AIPP(AI Pre-Processing)算子库,HCCL(Huawei Collective Communication Library)算子库以及融合算子库等,支持单个算子直接调用,也支持将算子集成到框架中进行调用。

昇腾调优引擎用于在推理、训练等场景对模型、算子、子图等进行调优,充分利用硬件资源,不断提升网络的性能。支持整图调优,调度调优,以及分布式场景下通信梯度的调优。调优是门槛相对较高的一项开发活动,以算子调优为例,需要开发者了解诸如片内高速缓存大小、数据搬运逻辑、调度策略等,人工调优是一项耗时耗力的工作,昇腾调优引擎通过将一些常见调优手段、分析方法固化到工具中,使开发者只需通过调优工具对模型进行分析,生成知识库,再运行模型时性能将有一定程度的提升。

在这里插入图片描述

昇腾计算编译层

昇腾计算编译层包含对计算图的编译和对算子的编译。向上可以与各类 AI 框架对接,为其提供构图接口,并通过提供各类解析器解析框架的计算图(比如 TensorFlow Parser)。解析好的 IR 在图编译阶段做一些计算无关的优化,如图准备(形状推导,常量折叠,死边消除等等),图优化(图融合、图切分、流水执行、缓存复用、算子引擎选择、cost model 建立等)、图编译(整图内存复用、连续内存分配、Task 生成等)。算子编译阶段负责 UB(Unified Buffer)融合,CCE-C 代码生成等。

在这里插入图片描述

昇腾计算执行层

包括 DVPP、Graph Executor、HCCL、AIPP 以及 Runtime 等组件。其中 Runtime 包含了对执行流管理、上下文管理、事件管理、任务管理以及其他资源申请及管理等能力。Graph Executor 中包含对计算图的加载和执行能力。HCCL 则包含对子通信域的管理,Rank 管理、梯度切分、集合通信等能力。DVPP 和 AIPP 则在两种不同维度上对数据做预处理操作。

在这里插入图片描述

昇腾计算基础层

昇腾计算基础层包含于驱动和 OS 相关的基础能力,包括资源管理(Resource Management Service,RMS)、通信管理(Communication Management Service,CMS)、设备管理(Device Management Service,DMS)、驱动(Driver,DRV)、公共服务(Utility)等组件。

其中 RMS 负责管理与调度昇腾设备的计算、Device 内存等关键资源;CMS 负责提供片内、片间高效通信;DMS 负责对昇腾设备进行配置、切分、升级、故障检测等管理;DRV 负责使能硬件;UTILITY 负责提供基础库和系统维测能力。

昇腾计算基础层提供的关键竞争力包括:

  1. 高性能:微秒级确定性调度,数据零拷贝登记书打造高性能数据面;

  2. 高可信:五道安全防线构建昇腾解决方案可信底座;

  3. 归一化:一套架构-接口-代码支持多芯、多板、多场景;

  4. 弹性:端/边/云灵活适应,虚机/容器/裸金属快速部署,算力细粒度按需切分。

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~

相关文章:

【AI系统】昇腾异构计算架构 CANN

昇腾异构计算架构 CANN 本文将介绍昇腾 AI 异构计算架构 CANN(Compute Architecture for Neural Networks),这是一套为高性能神经网络计算需求专门设计和优化的架构。CANN 包括硬件层面的达芬奇架构和软件层面的全栈支持,旨在提供…...

云服务器重装系统后 一些报错与解决[ vscode / ssh / 子用户]

碰见的三个问题: 1.vscode连接失败 2.登录信息配置 3.新建子用户的一些设置 思考:遇见问题,第一反应 应该如何解决 目录 1. 错误 解决方法 原因 步骤 1:找到known_hosts文件并编辑 步骤 2:通过VSCode终端输入…...

架构设计之路,永无尽头

1. 插件式架构 2. SRP:单一职责原则 3. 链接加载器??? 4. 端口适配器架构 5. 六边形架构 6. MVC架构 7. 领域驱动架构 8. 敏捷开发 9. 打台球的时候每打一杆是为了下几杆,而不是为了打到洞中。 10. 画出一个图&#xff0…...

【AI系统】Ascend C 语法扩展

Ascend C 语法扩展 Ascend C 的本质构成其实是标准 C加上一组扩展的语法和 API。本文首先对 Ascend C 的基础语法扩展进行简要介绍,随后讨论 Ascend C 的两种 API——基础 API 和高阶 API。 接下来针对 Ascend C 的几种关键编程对象——数据存储、任务间通信与同步…...

驱动篇的开端

准备 在做之后的动作前,因为win7及其以上的版本默认是不支持DbgPrint(大家暂时理解为内核版的printf)的打印,所以,为了方便我们的调试,我们先要修改一下注册表 创建一个reg文件然后运行 Windows Registr…...

树莓派4B使用opencv读取摄像头配置指南

本文自己记录,给我们lab自己使用,其他朋友们不一定完全适配,请酌情参考。 一. 安装opecnv 我们的树莓派4B默认是armv7l架构,安装的miniconda最新的版本 Miniconda3-latest-Linux-armv7l.sh 仍然是python3.4几乎无法使用&#xff…...

【AI日记】24.12.03 kaggle 比赛 Titanic-6

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】 工作 内容:学习 kaggle 入门比赛 Titanic - Machine Learning from Disaster时间:7 小时评估:继续 读书 书名:美丽新世界时间:1 小时阅读原因&…...

Linux中的常用基本指令(下)

Linux常用基本指令 Linux中的基本指令12.head指令13.tail指令简单解释重定向与管道(重要) 14.date指令(时间相关的指令)15.cal指令(不重要)16.find指令(灰常重要)17.grep指令(重要)18.which指令和alias指令19.zip/unzip指令:20.tar指令(重要&…...

python笔记3

复习及总结 python的软件安装及简单使用——python3.31 pycharm python的输出:print() 简单(直接)输出 print()输出到指定文件 fpopen(rC:\Users\M15R3\Desktop\1.txt,a) print("334…...

电商营销活动-抽奖业务

目录 一、抽奖系统的核心功能 二、抽奖系统的业务逻辑 三、抽奖系统的业务优势 四、抽奖系统的业务注意事项 电商营销活动中的抽奖系统业务,是一种通过设立抽奖活动来吸引用户参与、提升用户活跃度和转化率的营销手段。以下是对电商营销活动抽奖系统业务的详细解…...

利用 Redis 与 Lua 脚本解决秒杀系统中的高并发与库存超卖问题

1. 前言 1.1 秒杀系统中的库存超卖问题 在电商平台上,秒杀活动是吸引用户参与并提升销量的一种常见方式。秒杀通常会以极低的价格限量出售某些商品,目的是制造紧迫感,吸引大量用户参与。然而,这种活动的特殊性也带来了许多技术挑…...

《山海经》:北山

《山海经》:北山 北山一经单狐山求如山(水马:形状与马相似,滑鱼:背部红色)带山(䑏疏:似马,一只角,鵸鵌:状乌鸦五彩斑斓,儵鱼&#xff…...

React基础教程(12):useRef的使用

12、useRef useRef 是 React 中的一个 Hook,主要用于访问和操作 DOM 元素以及保存组件的可变引用值。它是一个工具,用来避免重新渲染组件的情况下保持某些状态或引用的值。 使用场景: 使用场景 访问 DOM 元素 当需要直接操作某个 DOM 元素(如聚焦、滚动等)时,可以使用…...

释放超凡性能,打造鸿蒙原生游戏卓越体验

11月26日在华为Mate品牌盛典上,全新Mate70系列及多款全场景新品正式亮相。在游戏领域,HarmonyOS NEXT加持下游戏的性能得到充分释放。HarmonyOS SDK为开发者提供了软硬协同的系统级图形加速解决方案——Graphics Accelerate Kit(图形加速服务…...

Linux--Debian或Ubuntu上扩容、挂载磁盘并配置lvm

一、三块12TB组RAID 5 可用容量约24TB 二、安装LVM工具(已安装请忽略) sudo apt-get install lvm2二、查看可用磁盘 sudo lsblk 或者 sudo fdisk -l三、创建物理卷(PV) 选中刚做的磁盘组 sudo pvcreat /dev/sdb1四、创建卷组…...

我谈冈萨雷斯对频域滤波的误解——快速卷积与频域滤波之间的关系

在Rafael Gonzalez和Richard Woods所著的《数字图像处理》中,Gonzalez对频域滤波是有误解的,在频域设计滤波器不是非得图像和滤波器的尺寸相同,不是非得在频域通过乘积实现。相反,FIR滤波器设计都是构造空域脉冲响应。一般的原则是…...

Leetcoed:3274

1,题目 2,思路 把俩个字符串坐标拆开比较二进制, 如a1与b2 ,a与b比较为false ,1与2比较为false,最后俩个结果比较返回true 3,代码 class Solution3274 {public boolean checkTwoChessboards(String str1, String str2) {return (str1.char…...

LabVIEW实现串口调试助手

目录 1、串口通信原理 2、硬件环境部署 3、串口通信函数 4、程序架构 5、前面板设计 6、程序框图设计 本专栏以LabVIEW为开发平台,讲解物联网通信组网原理与开发方法,覆盖RS232、TCP、MQTT、蓝牙、Wi-Fi、NB-IoT等协议。 结合实际案例,展示如何利用LabVIEW和常用模块实现物联…...

ASP.NET Core项目中使用SqlSugar连接多个数据库的方式

之前学习ASP.NETCore及SqlSugar时都是只连接单个数据库处理数据&#xff0c;仅需在Program文件中添加ISqlSugarClient的单例即可&#xff08;如下代码所示&#xff09;。 builder.Services.AddSingleton<ISqlSugarClient>(s > {SqlSugarScope sqlSugar new SqlSugar…...

leetcode hot100【Leetcode 72.编辑距离】java实现

Leetcode 72.编辑距离 题目描述 给定两个单词 word1 和 word2&#xff0c;返回将 word1 转换为 word2 所使用的最少操作数。 你可以对一个单词执行以下三种操作之一&#xff1a; 插入一个字符删除一个字符替换一个字符 示例 1: 输入: word1 "horse", word2 &…...

【开源免费】基于Vue和SpringBoot的服装生产管理系统(附论文)

博主说明&#xff1a;本文项目编号 T 066 &#xff0c;文末自助获取源码 \color{red}{T066&#xff0c;文末自助获取源码} T066&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析…...

Android13 允许桌面自动旋转

一&#xff09;需求-场景 Android13 实现允许桌面自动旋转 Android13 版本开始后&#xff0c;支持屏幕自动旋转&#xff0c;优化体验和兼容性&#xff0c;适配不同屏幕 主界面可自动旋转 二&#xff09;参考资料 android framework13-launcher3【06手机旋转问题】 Launcher默…...

异常知识及其使用

异常的简单概念 在C中&#xff0c;异常处理是一种机制&#xff0c;用于处理程序运行时发生的意外情况。它允许程序在发生错误时&#xff0c;将控制权转移到一个专门的代码块&#xff0c;而不是让程序直接崩溃。C的异常处理机制包括以下几个关键概念&#xff1a; throw 用途&…...

Spark常问面试题---项目总结

一、数据清洗&#xff0c;你都清洗什么&#xff1f;或者说 ETL 你是怎么做的&#xff1f; 我在这个项目主要清洗的式日志数据&#xff0c;日志数据传过来的json格式 去除掉无用的字段&#xff0c;过滤掉json格式不正确的脏数据 过滤清洗掉日志中缺少关键字段的数据&#xff…...

哈希及其模拟实现

1.哈希的概念 顺序结构以及平衡树中&#xff0c;元素的关键码与其存储位置之间没有对应的关系。因此&#xff0c;在查找一个元素时&#xff0c;必须要经过关键码的多次比较。顺序查找的时间复杂度为O(N)&#xff0c;平衡树中为树的高度&#xff0c;即O(log_2 N)&#xff0c;搜…...

Day 32 动态规划part01

今天正式开始动态规划! 理论基础 无论大家之前对动态规划学到什么程度,一定要先看 我讲的 动态规划理论基础。 如果没做过动态规划的题目,看我讲的理论基础,会有感觉 是不是简单题想复杂了? 其实并没有,我讲的理论基础内容,在动规章节所有题目都有运用,所以很重要!…...

【娱乐项目】竖式算术器

Demo介绍 一个加减法随机数生成器&#xff0c;它能够生成随机的加减法题目&#xff0c;并且支持用户输入答案。系统会根据用户输入的答案判断是否正确&#xff0c;统计正确和错误的次数&#xff0c;并显示历史记录和错题记录。该工具适合用于数学练习&#xff0c;尤其适合练习基…...

XRP 深度解析:从技术到 Meme 币交易指南

撰文&#xff1a;Ignas | DeFi Research 编译&#xff1a;Yuliya&#xff0c;PANews 本文来源Techub News:XRP 深度解析&#xff1a;从技术到 Meme 币交易指南 在当前加密货币市场&#xff0c;一个令人瞩目的现象正在上演&#xff1a;XRP 在短短一个月内暴涨 3.5 倍&#xf…...

机器学习周志华学习笔记-第13章<半监督学习>

机器学习周志华学习笔记-第13章&#xff1c;半监督学习&#xff1e; 卷王&#xff0c;请看目录 13半监督学习13.1 生成式方法13.2 半监督SVM13.3 基于分歧的方法13.4 半监督聚类 13半监督学习 前面我们一直围绕的都是监督学习与无监督学习&#xff0c;监督学习指的是训练样本包…...

【MySql】navicat连接报2013错误

navicat连接mysql报2013错误 报错信息1、检验Mysql数据库是否安装成功2、对Mysql的配置文件进行修改配置2.1、找到配置文件2.2、Linux下修改配置文本 3、连接进入mysql服务4、在mysql下执行授权命令 报错信息 Navicat连接mysql报2013错误 2013-Lost connection to MYSQL serve…...

【微服务】Docker

一、Docker基础 1、依赖的兼容问题&#xff1a;Docker允许开发中将应用、依赖、函数库、配置一起打包&#xff0c;形成可移植镜像Docker应用运行在容器中&#xff0c;使用沙箱机制&#xff0c;相互隔离。 2、如何解决开发、测试、生产环境有差异的问题&#xff1a;Docker镜像…...

renderExtraFooter 添加本周,本月,本年

在 Ant Design Vue 中&#xff0c;a-date-picker 组件提供了一个 renderExtraFooter 属性&#xff0c;可以用来渲染额外的页脚内容。你可以利用这个属性来添加“本周”、“本月”和“本年”的按钮。下面是如何在 Vue 2 项目中实现这一功能的具体步骤&#xff1a; 1.确保安装了…...

警惕开源信息成为泄密源头

文章目录 前言一、信息公开需谨慎1、警惕采购招标泄密。2、警惕信息公开泄密。3、警惕社交媒体泄密。 二、泄密风险需严防1、健全制度&#xff0c;明确责任。2、加强管控&#xff0c;严格审查。3、提高意识&#xff0c;谨言慎行。 前言 大数据时代&#xff0c;信息在网络空间发…...

密码学和CA证书

参考视频 一. 公钥私钥的理解 我们提到的使用公钥私钥进行加密解密只是一种口头表达方式&#xff0c;准确来说应该是公钥和私钥通过加密 算法生成&#xff0c;也需要通过配合加密算法进行解密。而不是直接用公钥和私钥进行加密解密。 二. 对称加密和非对称加密算法 1. 非对…...

Python 入门教程(2)搭建环境 | 2.4、VSCode配置Node.js运行环境

文章目录 一、VSCode配置Node.js运行环境1、软件安装2、安装Node.js插件3、配置VSCode4、创建并运行Node.js文件5、调试Node.js代码 一、VSCode配置Node.js运行环境 1、软件安装 安装下面的软件&#xff1a; 安装Node.js&#xff1a;Node.js官网 下载Node.js安装包。建议选择L…...

Nginx Web服务器管理、均衡负载、访问控制与跨域问题

Nginx Web 服务器的均衡负载、访问控制与跨域问题 Nginx 的配置 1. 安装Nginx 首先安装Nginx apt install nginx -ycaccpurgatory-v:~$ sudo apt install nginx [sudo] password for cacc: Reading package lists... Done Building dependency tree... Done Reading state i…...

排序学习整理(2)

上集回顾 排序学习整理&#xff08;1&#xff09;-CSDN博客 2.3 交换排序 交换排序的基本思想是&#xff1a;根据序列中两个记录键值的比较结果&#xff0c;交换这两个记录在序列中的位置。 特点&#xff1a; 通过比较和交换操作&#xff0c;将键值较大的记录逐步移动到序列…...

【前端】将vue的方法挂载到window上供全局使用,也方便跟原生js做交互

【前端】将vue的方法挂载到window上供全局使用&#xff0c;也方便跟原生js做交互 <template><div><el-button click"start">调用方法</el-button></div> </template> <script> // import { JScallbackProc } from ./JScal…...

单片机的中断系统

作者简介 彭煜轩&#xff0c;男&#xff0c;银川科技学院计算机与人工智能学院&#xff0c;2022级计算机与科学技术8班本科生&#xff0c;单片机原理及应用课程第3组。 指导老师&#xff1a;王兴泽 电子邮件&#xff1a;1696409709qq.com 前言 本篇文章是参考《单片机原理…...

Java基础面向对象(接口高级)

高版本的接口 JDK8.0 普通的公开非抽象方法(默认方法) [public] default 返回值类型 方法名(形参列表){//操作语句 } default: 在此位置身份为非抽象标识 接口中的非抽象方法实现类不需要进行重写且通常不会进行重写 当父类与接口的方法体出现冲突时, 优先执行父类内容 (类优…...

OpenCV圆形标定板检测算法findCirclesGrid原理详解

OpenCV的findCirclesGrid函数检测圆形标定板的流程如下:   findCirclesGrid函数源码: //_image,输入图像 //patternSize,pattern的宽高 //_centers,blobs中心点的位置 //flags,pattern是否对称 //blobDetector,这里使用的是SimpleBlobDetector bool cv::findCirclesGrid(…...

Linux 网卡收包流程如下

Linux 网卡收包流程如下 网卡收到数据包将数据包从网卡硬件缓存移动到服务器内存中(DMA方式&#xff0c;不经过CPU)通过硬中断通知CPU处理CPU通过软中断通知内核处理经过TCP/IP协议栈处理应用程序通过read()从socket buffer读取数据 网卡丢包 我们先看下ifconfig的输出&#…...

普中51单片机——LED流水灯模块

1、GPIO概念 GPIO&#xff08;general purpose intput output&#xff09;是通用输入输出端口的简称&#xff0c;可以通过软件来控制其输入和输出。51 单片机芯片的 GPIO 引脚与外部设备连接起来&#xff0c;从而实现与外部通讯、 控制以及数据采集的功能。 1.1、GPIO分类 &a…...

Linux 各个目录作用

刚毕业的时候学习Linux基础知识&#xff0c;发现了一份特别好的文档快乐的 Linux 命令行&#xff0c;翻译者是happypeter&#xff0c;作者当年也在慕课录制了react等前端相关的视频&#xff0c;通俗易懂&#xff0c;十分推荐 关于Linux的目录&#xff0c;多数博客已有详细介绍…...

【包教包会】CocosCreator3.x——重写Sprite,圆角、3D翻转、纹理循环、可合批调色板、不影响子节点的位移旋转缩放透明度

一、效果演示 重写Sprite组件&#xff0c;做了以下优化&#xff1a; 1、新增自变换&#xff0c;在不影响子节点的前提下位移、旋转、缩放、改变透明度 新增可合批调色板&#xff0c;支持色相、明暗调节 新增圆角矩形、3D透视旋转、纹理循环 所有功能均支持合批、原生平台&…...

腾讯阅文集团Java后端开发面试题及参考答案

Java 的基本数据类型有哪些?Byte 的数值范围是多少? Java 的基本数据类型共有 8 种,可分为 4 类: 整数类型:包括 byte、short、int 和 long。byte 占 1 个字节,其数值范围是 - 128 到 127,用于表示较小范围的整数,节省内存空间,在处理一些底层的字节流数据或对内存要求…...

Kafka如何保证消息可靠?

大家好&#xff0c;我是锋哥。今天分享关于【Kafka如何保证消息可靠&#xff1f;】面试题。希望对大家有帮助&#xff1b; Kafka如何保证消息可靠&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Kafka通过多种机制来确保消息的可靠性&#xff0c;主要包…...

【layui】tabs 控件内通过 iframe 加载url 方式渲染tab页面

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>tabs 内部使用 iframe 嵌套 url 页面</title><link rel"stylesheet" href"../../../libs/layui/layui-2.4.5/dist/css/layui.css"><scr…...

EtherCAT转DeviceNe台达MH2与欧姆龙CJ1W-DRM21通讯案例

一.案例背景 台达MH2设备通常采用EtherCAT通信协议&#xff0c;这种协议在高速实时通信方面表现出色&#xff0c;适合设备之间的快速数据交换和精准控制。而欧姆龙CJ1W-DRM21 模块基于DeviceNet通信协议&#xff0c;DeviceNet在工业现场总线领域应用广泛&#xff0c;侧重于设备…...

清华、智谱团队:「6000亿合成交错语音文本」预训练,问答性能提升近3倍

与基于文本的大语言模型&#xff08;LLM&#xff09;相比&#xff0c;语音语言模型&#xff08;SpeechLM&#xff09;接受语音输入并生成语音输出&#xff0c;能够实现更自然的人机交互。然而&#xff0c;传统的 SpeechLM 因缺乏无监督语音数据和并行语音-文本数据&#xff0c;…...