如何深刻理解Reactor和Proactor
前言:
网络框架的设计离不开 I/O 线程模型,线程模型的优劣直接决定了系统的吞吐量、可扩展性、安全性等。目前主流的网络框架,在网络 IO 处理层面几乎都采用了I/O 多路复用方案(又以epoll为主),这是服务端应对高并发的性能利器。
进一步看,当上升到整个网络模块时,另一个常常听说的模式出现了 ---- 「Reactor 模式」,也叫反应器模式,本质是一个事件转发器,是网络模块核心中枢,负责将读写事件分发给对应的读写事件处理者,将连接事件交给连接处理者以及业务事件交给业务线程。
1. 前置知识
1.1 io
可以看到,网络请求先后经历 服务器网卡、内核、连接建立、数据读取、业务处理、数据写回等一系列过程。
其中,连接建立(accept)、数据读取(read)、数据写回(write)等操作都需要操作系统内核提供的系统调用,最终由内核与网卡进行数据交互,这些 IO 调用消耗一般是比较高的,比如 IO 等待、数据传输等。
最初的处理方式是,每个连接都用独立的一个线程来处理这一系列的操作,即 建立连接、数据读写、业务逻辑处理;这样一来最大的弊端在于,N 个连接就需要 N 个线程资源,消耗巨大。
所以,在网络模型演化过程中,不断的对这几个阶段进行拆分,比如,将建立连接、数据读写、业务逻辑处理等关键阶段分开处理。这样一来,每个阶段都可以考虑使用单线程或者线程池来处理,极大的节约线程资源,又能获得超高性能。
1.1.1 阻塞IO
阻塞IO:通常是用户态线程通过系统调用阻塞读取网卡传递的数据,我们知道,在 TCP 三次握手建立连接之后,真正等待数据的到来需要一定时间;
这个时候,在该模式下用户线程会一直阻塞等待网卡数据准备就绪,直到完成数据读写完成;可以看到,用户线程大部分都在等待 IO 事件就绪,造成资源的急剧浪费
1.1.2 非阻塞IO
与阻塞 IO 相反,如果数据未就绪会直接返回,应用层轮询读取/查询,直到成功读取数据。
这里最后一次 read 调用,获取数据的过程,是一个同步的过程,是需要等待的过程。这里的同步指的是内核态的数据拷贝到用户程序的缓存区这个过程。
epoll: 是非阻塞IO的一种特例,也是目前最经典、最常用的高性能IO模型。其具体处理方式是:先查询 IO 事件是否准备就绪,当 IO 事件准备就绪了,则会真正的通过系统调用实现数据读写;
,无论 read 和 send 是阻塞 I/O,还是非阻塞 I/O 都是同步调用。因为在 read 调用时,内核将数据从内核空间拷贝到用户空间的过程都是需要等待的,也就是说这个过程是同步的,如果内核实现的拷贝效率不高,read 调用就会在这个同步过程中等待比较长的时间
1.1.3 异步IO
- 阻塞 I/O 好比,你去饭堂吃饭,但是饭堂的菜还没做好,然后你就一直在那里等啊等,等了好长一段时间终于等到饭堂阿姨把菜端了出来(数据准备的过程),但是你还得继续等阿姨把菜(内核空间)打到你的饭盒里(用户空间),经历完这两个过程,你才可以离开。
- 非阻塞 I/O 好比,你去了饭堂,问阿姨菜做好了没有,阿姨告诉你没,你就离开了,过几十分钟,你又来饭堂问阿姨,阿姨说做好了,于是阿姨帮你把菜打到你的饭盒里,这个过程你是得等待的。
- 异步 I/O 好比,你让饭堂阿姨将菜做好并把菜打到饭盒里后,把饭盒送到你面前,整个过程你都不需要任何等待。
1.2 事件驱动
前面我们提到:将一个正常的请求分成多段来看待,每一段都可以分别进行优化(看场景需要)
经典的一种切分方法是将「连接」和「业务线程」分开处理,当「连接层」有事件触发时提交给「业务线程」,避免了业务线程因「网络数据处于准备中」导致的长时间等待问题,节省线程资源,这就是大名鼎鼎的事件驱动模型。
事件驱动的核心是,以事件为连接点,当有IO事件准备就绪时,以事件的形式通知相关线程进行数据读写,进而业务线程可以直接处理这些数据,这一过程的后续操作方,都是被动接收通知,看起来有点像回调操作;
这种模式下,IO 读写线程、业务线程工作时,必有数据可操作执行,不会在 IO 等待上浪费资源,这便是事件驱动的核心思想。
2 Reactor 模型(同步非阻塞io)
Reactor 翻译过来的意思是「反应堆」,可能大家会联想到物理学里的核反应堆,实际上并不是的这个意思。这里的反应指的是「对事件反应」,也就是来了一个事件,Reactor 就有相对应的反应/响应。
事实上,Reactor 模式也叫 Dispatcher 模式,我觉得这个名字更贴合该模式的含义,即 I/O 多路复用监听事件,收到事件后,根据事件类型分配(Dispatch)给某个进程 / 线程。
Reactor 模式主要由 Reactor 和处理资源池这两个核心部分组成,它俩负责的事情如下:
- Reactor 负责监听和分发事件(主进程或者线程)
- 事件类型包含连接事件、读写事件;处理资源池负责处理事件,如 read -> 业务逻辑 -> send;(工作者进程或线程)
Reactor 模式是灵活多变的,可以应对不同的业务场景,灵活在于:
- Reactor 的数量可以只有一个,也可以有多个;
- 处理资源池可以是单个进程 / 线程,也可以是多个进程 /线程;
根据以上情况就有以下分类 :(多Reactor 单进程 / 线程)无明显优势;
reactor模型主要分类
- 单 Reactor 单进程 / 线程;(Redis)
- 单 Reactor 多线程 / 进程; Muduo
- 多 Reactor 多进程 / 线程;( Nginx)
2.1 单 Reactor 单进程 / 线程
可以看到进程(应用程序)里有 Reactor、Acceptor、Handler 这三个对象:
- Reactor 对象的作用是监听和分发事件;(主)
- Acceptor 对象的作用是获取连接;
- Handler 对象的作用是处理业务;
接下来,介绍下「单 Reactor 单进程」这个方案:
- Reactor 对象通过 epoll (IO 多路复用接口) 监听事件,收到事件后通过 dispatch 进行分发,
- 具体分发给 Acceptor 对象还是 Handler 对象,还要看收到的事件类型;如果是连接建立的事件,则交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
- 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的。(回调事件)
优点
单 Reactor 单进程的方案因为全部工作都在同一个进程内完成,所以实现起来比较简单,不需要考虑进程间通信,也不用担心多进程竞争。
缺点
- 第一个缺点,因为只有一个进程,无法充分利用 多核 CPU 的性能;
- 第二个缺点,Handler 对象在业务处理时,整个进程是无法处理其他连接的事件的,如果业务处理耗时比较长,那么就造成响应的延迟;
单 Reactor 单进程的方案不适用计算机密集型的场景,只适用于业务处理非常快速的场景(这解释为什么redis有百万并发的瓶颈)
2.2 单 Reactor 多线程 / 多进程
- Reactor 对象通过 epoll(IO 多路复用接口) 监听事件,收到事件后通过 dispatch 进行分发,具体分发给 Acceptor 对象还是 Handler 对象,还要看收到的事件类型;
- 如果是连接建立的事件,则交由 Acceptor 对象进行处理,Acceptor 对象会通过 accept 方法 获取连接,并创建一个 Handler 对象来处理后续的响应事件;
- 如果不是连接建立事件, 则交由当前连接对应的 Handler 对象来进行响应;
上面的三个步骤和单 Reactor 单线程方案是一样的,接下来的步骤就开始不一样了:
- Handler 对象不再负责业务处理,只负责数据的接收和发送,Handler 对象通过 read 读取到数据后,会将数据发给子线程里的 Processor 对象进行业务处理;
- 子线程里的 Processor 对象就进行业务处理,处理完后,将结果发给主线程中的 Handler 对象,接着由 Handler 通过 send 方法将响应结果发送给 client**;
优点
- 能够充分利用多核 CPU 的性能
缺点 - 那既然引入多线程,那么自然就带来了多线程竞争资源的问题。
- 因为一个 Reactor 对象承担所有事件的监听和响应,而且只在主线程中运行,在面对瞬间高并发的场景时,容易成为性能的瓶颈的地方
2.3 多 Reactor 多进程 / 线程
- 主线程中的 MainReactor 对象通过 epoll监控连接建立事件,收到事件后通过 Acceptor 对象中的 accept 获取连接,将新的连接分配给某个子线程;
- 子线程中的 SubReactor 对象将 MainReactor 对象分配的连接加入 select 继续进行监听,并创建一个 Handler 用于处理连接的响应事件。
- 如果有新的事件发生时,SubReactor 对象会调用当前连接对应的 Handler 对象来进行响应。
- Handler 对象通过 read -> 业务处理 -> send 的流程来完成完整的业务流程。
多 Reactor 多线程的方案虽然看起来复杂的,但是实际实现时比单 Reactor 多线程的方案要简单的多,原因如下:
- 主线程和子线程分工明确,主线程只负责接收新连接,
- 子线程负责完成后续的业务处理。主线程和子线程的交互很简单,主线程只需要把新连接传给子线程,子线程无须返回数据,直接就可以在子线程将处理结果发送给客户端。
nginx(多进程)
不是采用标准的,具体差异表现在主进程中仅仅用来初始化 socket,并没有创建 mainReactor 来 accept 连接,而是由子进程的 Reactor 来 accept 连接,通过锁来控制一次只有一个子进程进行 accept(防止出现惊群现象),子进程 accept 新连接后就放到自己的 Reactor 进行处理,不会再分配给其他子进程
Proactor(异步非阻塞io)
Proactor 是异步网络模式, 感知的是已完成的读写事件。在发起异步读写请求时,需要传入数据缓冲区的地址(用来存放结果数据)等信息,这样系统内核才可以自动帮我们把数据的读写工作完成,这里的读写工作全程由操作系统来做,并不需要像 Reactor 那样还需要应用进程主动发起 read/write 来读写数据,操作系统完成读写工作后,就会通知应用进程直接处理数据.
因此,**Reactor 可以理解为「来了事件操作系统通知应用进程,让应用进程来处理」,而 Proactor 可以理解为「来了事件操作系统来处理,处理完再通知应用进程」。**这里的「事件」就是有新连接、有数据可读、有数据可写的这些 I/O 事件这里的「处理」包含从驱动读取到内核以及从内核读取到用户空间。
举个实际生活中的例子,Reactor 模式就是快递员在楼下,给你打电话告诉你快递到你家小区了,你需要自己下楼来拿快递。而在 Proactor 模式下,快递员直接将快递送到你家门口,然后通知你。
无论是 Reactor,还是 Proactor,都是一种基于「事件分发」的网络编程模式,区别在于 Reactor 模式是基于「待完成」的 I/O 事件,而 Proactor 模式则是基于「已完成」的 I/O 事件。
接下来,一起看看 Proactor 模式的示意图:
介绍一下 Proactor 模式的工作流程:
- Proactor Initiator 负责创建 Proactor 和 Handler 对象,并将 Proactor 和 Handler 都通过 Asynchronous Operation Processor 注册到内核;
- Asynchronous Operation Processor 负责处理注册请求,并处理 I/O 操作;Asynchronous Operation Processor 完成 I/O 操作后通知 Proactor;
- Proactor 根据不同的事件类型回调不同的 Handler 进行业务处理;Handler 完成业务处理;
可惜的是,在 Linux 下的异步 I/O 是不完善的, aio 系列函数是由 POSIX 定义的异步操作接口,不是真正的操作系统级别支持的,而是在用户空间模拟出来的异步,并且仅仅支持基于本地文件的 aio 异步操作,网络编程中的 socket 是不支持的,这也使得基于 Linux 的高性能网络程序都是使用 Reactor 方案。
而 Windows 里实现了一套完整的支持 socket 的异步编程接口,这套接口就是 IOCP,是由操作系统级别实现的异步 I/O,真正意义上异步 I/O,因此在 Windows 里实现高性能网络程序可以使用效率更高的 Proactor 方案。
相关文章:
如何深刻理解Reactor和Proactor
前言: 网络框架的设计离不开 I/O 线程模型,线程模型的优劣直接决定了系统的吞吐量、可扩展性、安全性等。目前主流的网络框架,在网络 IO 处理层面几乎都采用了I/O 多路复用方案(又以epoll为主),这是服务端应对高并发的性能利器。 …...
如何使用WRF-Hydro GIS工具,生成运行WRF-Hydro模型的Domain文件,包括流域、地形、河网、湖泊等
WRF-Hydro模型作为一个集成了大气和水文过程的模型,具有一些挑战性的难点,包括: 复杂的耦合过程:WRF-Hydro模型需要同时考虑大气和水文过程的相互作用,包括降水、蒸发、径流等一系列过程的耦合,这使得模型的…...
adb devices报错 ADB server didn‘t ACK
ubuntu下连接手机首次使用adb devices 报错ADB server didn’t ACK adb devices * daemon not running; starting now at tcp:5037 ADB server didnt ACK Full server startup log: /tmp/adb.1000.log Server had pid: 52986 --- adb starting (pid 52986) --- 04-03 17:23:23…...
机器学习——决策树
1.什么要学习决策树? 处处都是选择,并且到处都是岔路口。比如你发现某只股票几天时间内涨了很多,如果是你,你会买进吗?如果买进了,你就得承担后果,要么会大赚一笔,要么会血本无归。总之,用算法替代主观判断,避免情绪化投资决策。 …...
zk源码—2.通信协议和客户端原理二
大纲 1.ZooKeeper如何进行序列化 2.深入分析Jute的底层实现原理 3.ZooKeeper的网络通信协议详解 4.客户端的核心组件和初始化过程 5.客户端核心组件HostProvider 6.客户端核心组件ClientCnxn 7.客户端工作原理之会话创建过程 6.客户端核心组件ClientCnxn (1)客户端核心…...
Python设计模式:构建模式
1. 什么是构建模式 构建模式(Builder Pattern)是一种创建型设计模式,它允许使用多个简单的对象一步步构建一个复杂的对象。构建模式通过将构建过程与表示分离,使得同样的构建过程可以创建不同的表示。换句话说,构建模…...
C++类间的 “接力棒“ 传递:继承(下)
文章目录 5. 继承与友元6.继承与静态成员7.菱形继承8.继承和组合希望读者们多多三连支持小编会继续更新你们的鼓励就是我前进的动力! 本篇接着补充继承方面的内容,同时本篇的菱形继承尤为重要 5. 继承与友元 class Student; class Person { public:fri…...
C++11QT复习 (十六)
文章目录 Day11 移动语义回顾一、移动语义基础概念二、自定义 String 类的移动语义实现输出运算符重载: 三、测试函数:验证移动与拷贝行为四、左值与右值的补充说明右值引用作为函数返回值 五、知识总结如何区分左值与右值? 六、附加说明&…...
Redis客户端命令到服务器底层对象机制的完整流程?什么是Redis对象机制?为什么要有Redis对象机制?
Redis客户端命令到服务器底层对象机制的完整流程 客户端 → RESP协议封装 → TCP传输 → 服务器事件循环 → 协议解析 → 命令表查找 → 对象机制 → 动态编码 → 数据结构操作 → 响应编码 → 网络回传 Redis客户端命令到服务器底层对象机制的完整流程可分为协议封装、命令解…...
鸿蒙NEXT开发节流、防抖工具类(ArkTs)
import { CacheUtil } from ./CacheUtil; import { DateUtil } from ./DateUtil;/*** 节流、防抖工具类(用于点击事件,防止按钮被重复点击)** author 鸿蒙布道师* since 2025/04/07*/ export class ClickUtil {private static throttleTimeou…...
Qt程序 Windows打包
目的 运行Qt的程序,遇上如下问题: 显然是少很多Qt库,那就把Qt库放到这里,Qt提供这一个命令windeployqt.exe. windeployqt windeployqt是Qt框架提供的一个工具,主要用于自动打包Windows平台上的Qt应用程序及其依赖项…...
2025-04-07(DS复习):Databricks DLT 详解
Databricks Delta Live Tables (DLT) 详解 Delta Live Tables (DLT) 是 Databricks 提供的一个智能框架,用于构建可靠、可扩展的数据处理管道。它简化了ETL(提取、转换、加载)和ELT(提取、加载、转换)流程的开发和管理,特别适合在数据湖house架构中实现…...
音视频入门基础:RTCP专题(3)——RTCP协议简介(中)
本文接着《音视频入门基础:RTCP专题(2)——RTCP协议简介(上)》,继续对RTCP协议进行简介。本文的一级标题从“九”开始。 九、Sender and Receiver Reports 本段内容对应《RFC 3550》的第6.4节。根据《RFC …...
嵌入式工程师多线程编程(二)生产者-消费者模式
生产者-消费者模式详解:多线程编程的核心范式 生产者-消费者模式(Producer-Consumer Pattern)是多线程编程中最经典的设计模式之一,它通过解耦生产者和消费者的工作流程,实现了线程间的高效协作与资源管理。本文将深入剖析这一模式的原理、实…...
秒杀系统的性能优化
秒杀任务总体QPS预期是每秒几十万,对tomcat、redis、JVM参数进行优化。 tomcat线程数 4核8G的机器,一般就是开200-300个工作线程,这是个经验值。每秒一个线程处理3-5个请求,200多个线程的QPS可以达到1000左右。线程不能太多&…...
MySQL学习笔记集--索引
索引 索引是数据库中用于提高查询效率的一种数据结构。 它类似于书籍的目录,通过索引可以快速定位到表中的特定行,而无需扫描整个表。 索引的类型 主键索引(Primary Key Index) 自动创建,用于唯一标识表中的每一行。…...
深入理解重排(Reflow)与重绘(Repaint),写出高性能 CSS 动画
在前端开发中,CSS 动画是提升用户体验的重要手段,但很多开发者在使用动画时并不了解浏览器背后的渲染机制,导致动画卡顿甚至影响整体性能。本文将带你深入理解 CSS 中的两大核心概念 —— 重排(Reflow) 与 重绘&#x…...
Elasticsearch 从入门到实战:文档聚合操作及总结
四、文档操作:数据的增删改查 4.1 添加文档 文档(Document)是索引中的最小数据单元,使用 POST 或 PUT 添加: json POST /products/_doc/1 { "name": "华为Mate50 Pro", "price": 6…...
前缀和和差分笔记
前缀和和差分笔记 一维前缀和 示意图如下: 代码: **核心公式:sum[i]sum[i-1]a[i];(计算前缀和的)**#include<bits/stdc.h> using namespace std; const int N10000; #define ll long long int a[N],sum[N]; i…...
SSRF漏洞利用的小点总结和实战演练
含义理解: SSRF(Server-Side Request Forgery,服务器请求伪造)是一种由攻击者构造请求,由服务端发起请求的安全漏洞,一般情况下,SSRF攻击的目标是外网无法访问的内网系统。 攻击者通过篡改URL…...
IAR推动嵌入式开发:云就绪、可扩展的CI/CD和可持续自动化
全球领先的嵌入式系统开发软件解决方案供应商IAR正式发布全新云就绪平台,为嵌入式开发团队提供企业级的可扩展性、安全性和自动化能力。该平台于在德国纽伦堡举办的embedded world 2025展会上正式亮相,标志着将现代DevSecOps工作流集成到嵌入式软件开发中…...
瓦片数据合并方法
影像数据 假如有两份影像数据 1.全球底层影像0-5级别如下: 2.局部高清影像数据级别9-14如下: 合并方法 将9-14文件夹复制到全球底层0-5的目录下 如下: 然后合并xml文件 使得Tileset设置到最高级(包含所有级别)&…...
RISC-V AIA学习---IPI 处理器间中断
对于有多个hart的机器,必须为每个 hart 提供一个由具体实现定义的内存地址。向这个地址写入数据,就能向该 hart 发送一个机器级软件中断(主代码为 3)。换句话说,机器级的 IPI 可以通过这种方式,以机器级软件…...
Automattic 裁员16%,Matt Mullenweg称此举旨在提升盈利能力并增强投资实力
2025年4月3日,Automattic——这家以 WordPress.com、Tumblr 和 WooCommerce 等产品闻名的公司,宣布裁减其全球员工队伍的16%。这一决定是在周三通过公司博客文章和 Slack 内部消息向员工透露的。根据裁员前 Automattic 官网显示的员工人数(1,…...
图解AUTOSAR_SWS_FlexRayInterface
AUTOSAR FlexRay Interface 模块分析 本文档基于AUTOSAR SWS FlexRayInterface规范,对FlexRay Interface模块进行详细分析。 1. FlexRay Interface 模块架构 1.1 模块架构概览 1.2 架构说明 FlexRay Interface模块是AUTOSAR中的ECU抽象层组件,为上层模块提供统一的抽象接…...
AI赋能ArcGIS Pro——水系网络AI智能提取 | GIS人工智能制图技术解析
我们之前做了做了几期的AIGIS的分享。我们今天要再次做一个分享。 AI赋能ArcGIS Pro——水系网络智能提取全解析 DeepSeek结合ArcGIS Pro制作一个批量建库的脚本工具(代码一字未改,直接运行) 看老外如何玩DeepSeek!15分钟快速创…...
STM32江科大----IIC
声明:本人跟随b站江科大学习,本文章是观看完视频后的一些个人总结和经验分享,也同时为了方便日后的复习,如果有错误请各位大佬指出,如果对你有帮助可以点个赞小小鼓励一下,本文章建议配合原视频使用❤️ 如…...
RAG(检索增强生成)系统,提示词(Prompt)表现测试(数据说话)
在RAG(检索增强生成)系统中,评价提示词(Prompt)设计是否优秀,必须通过量化测试数据来验证,而非主观判断。以下是系统化的评估方法、测试指标和具体实现方案: 一、提示词优秀的核心标准 优秀的提示词应显著提升以下指标: 维度量化指标测试方法事实一致性Faithfulness …...
【leetcode hot 100 763】划分字母区间
解法一:用map记录<字母,字母出现的次数>,循环取出value-1,每次判断已经取出的字母(Set记录)是否还在后面存在(value>1),若存在继续循环,若不存在开启…...
PCB工艺:现代电子产品的核心制造技术
引言 PCB(Printed Circuit Board,印刷电路板)是电子设备的核心组成部分,几乎所有现代电子产品,从智能手机到航天设备,都依赖于PCB实现电路连接。PCB制造工艺的进步直接影响电子产品的性能、可靠性和成本。…...
【UE5 C++课程系列笔记】34——结构体与Json的相互转化
目录 准备工作 一、结构体转Json 二、Json转结构体 三、复杂结构体与Json的转换 主要通过借助FJsonObjectConverter类实现结构体和 JSON 之间的相互转换。 准备工作 首先新建一个结构体如下 添加两个方法分别用于将Struct转为Json、Json转为Struct 一、结构体转Json FStri…...
2025最新系统 Git 教程(二)
第2章 Git基础 2.1 Git 基础 - 获取 Git 仓库 如果你只想通过阅读一章来学习 Git,那么本章将是你的不二选择。 本章涵盖了你在使用 Git 完成各种工作时将会用到的各种基本命令。 在学习完本章之后,你应该能够配置并初始化一个仓库(reposito…...
力扣hot100_动态规划
动态规划 hot100_198. 打家劫舍 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。…...
玄机-第六章-哥斯拉4.0流量分析的测试报告
目录 一、测试环境 二、测试目的 三、操作过程 Flag1 Flag2 Flag3 Flag4 Flag5 Flag6 Flag7 Flag8 Flag9 Flag10 Flag11 Flag12 Flag13 pam_unix.so关键代码 四、结论 一、测试环境 靶场介绍:国内厂商设置的玄机靶场,以应急响应题目著…...
【Hadoop入门】Hadoop生态圈概述:核心组件与应用场景概述
1 Hadoop生态圈概述 Hadoop生态圈是以 HDFS(分布式存储) 和 YARN(资源调度) 为核心,围绕大数据存储、计算、管理、分析等需求发展出的一系列开源工具集合。 核心特点: 模块化:各组件专注解决特定…...
深度学习实战电力设备缺陷检测
本文采用YOLOv11作为核心算法框架,结合PyQt5构建用户界面,使用Python3进行开发。YOLOv11以其高效的实时检测能力,在多个目标检测任务中展现出卓越性能。本研究针对电力设备缺陷数据集进行训练和优化,该数据集包含丰富的电力设备缺…...
随机产生4位随机码(java)
Random类: 用于生成随机数 import java.util.Random; 导入必要的类 generateVerificationCode()方法: 这是一个静态方法,可以直接通过类名调用 返回一个6位数字的字符串,首位不为0 生成首位数字: random.nextInt…...
音视频入门基础:RTCP专题(4)——RTCP协议简介(下)
本文接着《音视频入门基础:RTCP专题(3)——RTCP协议简介(中)》,继续对RTCP协议进行简介。本文的一级标题从“十四”开始。 十四、SDES: Source Description RTCP Packet 本段内容对应《RFC 3550》的第6.5节…...
PyCharm2024.3.5专业版解决Conda executable is not found问题
项目场景: pycharm使用anaconda 内的虚拟环境 pycharm 2024.3.5 专业版 C:\Users\Administrator>conda infoactive environment : transmute_recipe_generatoractive env location : D:\anaconda3\envs\transmute_recipe_generatorshell level : 1user config…...
滑动窗口思想 面试算法高频题
基本思想 滑动窗口思想其实就是快慢型的特例 计算机网络中滑动窗口协议(Sliding Window Protocol),该协议是TCP实现流量控制等的核心策略之一。事实上在与流量控制、熔断、限流、超时等场景下都会首先从滑动窗口的角度来思考问题࿰…...
Linux中特殊的变量
1.$# 含义:表示传入脚本或函数的参数数量。 用法:用于检查用户是否提供了足够的参数。 示例: #!/bin/bash echo "参数数量: $#"2.$? 含义:表示上一条命令的退出状态。如果命令成功执行,值为 0;…...
Linux文件系统与日志分析
目录 一.日志 1.1日志的定义 1.2日志的功能 1.3日志的分类 1.4日志的文件格式 1.5用户日志 1.6一些常见的日志 1.7日志消息的级别 二.系统日志管理 rsyslog 2.1rsyslog的定义 2.2rsyslog 配置文件 2.3rsyslog的实际应用----单独显示某一服务的日志 1.编辑rsyslog配…...
从传统物流到智能调度的全链路升级
一、TMS系统升级的核心目标与整体框架 (一)为什么要升级?传统物流管理的三大痛点 调度效率低下:过去依赖人工分单、手动匹配承运商,订单量大时容易出错,比如不同区域的订单混排导致运输路线绕路ÿ…...
UE5中如何修复后处理动画蓝图带来的自然状态下的metablriger身体绑定形变(如耸肩)问题
【[metablriger] UE5中如何修复后处理动画蓝图带来的自然状态下的metablriger身体绑定形变(如耸肩)问题】 UE5中如何修复后处理动画蓝图带来的自然状态下的metablriger身体绑定形变(如耸肩)问题...
STL_vector_01_基本用法
👋 Hi, I’m liubo👀 I’m interested in harmony🌱 I’m currently learning harmony💞️ I’m looking to collaborate on …📫 How to reach me …📇 sssssdsdsdsdsdsdasd🎃 dsdsdsdsdsddfsg…...
css2学习总结之尚品汇静态页面
css2总结之尚品汇 一、布局 在 PC 端网页中,一般都会有一个固定宽度且水平居中的盒子,来显示网页的主要内容,这是网页 的版心。 版心的宽度一般是 960 ~ 1200 像素之间。 版心可以是一个,也可以是多个。 二、布局相关名词 我…...
Lua 第5部分 表
表( Table )是 Lua 语言中最主要(事实上也是唯一的)和强大的数据结构。 使用表,Lua语言可以以一种简单、统一且高效的方式表示数组、集合、记录和其他很多数据结构。 Lua语言也使用表来表示包( package &am…...
01分数规划
https://ac.nowcoder.com/acm/contest/22353/1011 并不需要高级数据结构,对答案二分即可。 假定当前二分的答案为 x x x,则 ∑ v i ∑ w i ≥ x \frac{ \sum_{v_i} }{\sum_{w_i}} ≥ x ∑wi∑vi≥x 成立时 x x x 才可能是最后的答案。 化简式…...
无人机动力系统全维度解析:技术演进、选型策略与未来趋势
一、动力系统技术理念与设计逻辑 (一)核心技术指标 能量密度:决定续航能力的关键参数,单位为 Wh/kg。当前主流锂聚合物电池能量密度约 250-300Wh/kg,氢燃料电池可达 500-800Wh/kg,航空燃油则高达 12,000W…...
重新审视中国的GB标准(44495 – 44497)
此前,我们深入探讨了中国新推出的智能互联汽车(ICV)网络安全标准GB Standard 44495-2024。我们探讨了该标准对汽车制造商的影响、与UNECE R155和ISO/SAE 21434等全球标准的一致性,以及该标准对未来汽车网络安全的意义。 然而,GB 44495-2024并…...