当前位置: 首页 > news >正文

二叉树与红黑树核心知识点及面试重点

二叉树与红黑树核心知识点及面试重点


一、二叉树 (Binary Tree)
1. 基础概念
  • 定义:每个节点最多有两个子节点(左子节点和右子节点)

  • 术语

    • 根节点:最顶层的节点

    • 叶子节点:没有子节点的节点

    • 深度:从根到节点的路径长度

    • 高度:从节点到最深叶子节点的路径长度

2. 常见类型
类型特点
满二叉树所有非叶子节点都有两个子节点,且所有叶子在同一层
完全二叉树除最后一层外,其他层必须填满,最后一层从左到右连续填充
二叉搜索树(BST)左子树所有节点值 < 根节点值 < 右子树所有节点值(中序遍历有序)
平衡二叉树任意节点的左右子树高度差不超过1(如AVL树)
3. 遍历方式(重点!)
  • 前序遍历:根 → 左 → 右

    java

    void preOrder(TreeNode root) {if (root == null) return;System.out.print(root.val + " ");preOrder(root.left);preOrder(root.right);
    }

    中序遍历:左 → 根 → 右(BST中序遍历结果为升序)

  • 后序遍历:左 → 右 → 根

  • 层序遍历:按层级从上到下、从左到右(BFS实现)

4. 面试高频问题
  1. 二叉树的最大深度

    java

    int maxDepth(TreeNode root) {return root == null ? 0 : 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
    }

    判断是否为平衡二叉树
    (需同时检查高度差和左右子树是否平衡)

  2. 二叉树的最近公共祖先(LCA)
    (分治思想,递归查找左右子树)


二、红黑树 (Red-Black Tree)
1. 核心性质

红黑树是自平衡的二叉搜索树,满足以下规则:

  1. 节点颜色:每个节点非红即黑

  2. 根节点:必须为黑色

  3. 叶子节点(NIL):虚拟的黑色空节点

  4. 红色节点规则:红色节点的子节点必须为黑色(不能有连续红节点)

  5. 黑高平衡:从任一节点到其叶子节点的所有路径包含相同数量的黑色节点

2. 平衡操作(关键面试点)
  • 左旋/右旋:调整树结构保持平衡

    java

    // 伪代码示例:左旋
    void leftRotate(Node x) {Node y = x.right;x.right = y.left;if (y.left != nil) y.left.parent = x;y.parent = x.parent;// ... 更新父节点指向
    }

    颜色翻转:插入/删除后通过变色和旋转恢复平衡

3. 与AVL树的对比
特性红黑树AVL树
平衡标准黑高平衡(宽松)严格高度平衡(左右子树高度差≤1)
插入/删除最多2次旋转可能需O(log n)次旋转
查询效率O(log n),但常数项比AVL大更快的查询(严格平衡)
应用场景Java HashMap, TreeMap数据库索引等高频查询场景
4. 时间复杂度
操作时间复杂度原因
插入O(log n)自平衡调整
删除O(log n)最多3次旋转
查找O(log n)近似平衡的二叉搜索树
5. 面试高频问题
  1. 红黑树如何保证平衡?
    (结合插入/删除的变色和旋转规则回答)

  2. 为什么Java的HashMap链表长度超过8转红黑树?
    (哈希冲突时,红黑树将查找时间从O(n)优化到O(log n))

  3. 手写红黑树的插入逻辑
    (需掌握case分析,如叔节点为红/黑时的不同处理)


三、实战代码片段
红黑树节点定义

java

class RBNode<K extends Comparable<K>, V> {K key;V value;RBNode<K,V> left, right, parent;boolean color; // RED or BLACK
}
检查红黑树有效性

java

boolean isRBTreeValid(RBNode root) {if (root == null) return true;// 规则2:根节点必须为黑if (root.color != BLACK) return false;// 检查每条路径的黑高相同int blackHeight = getBlackHeight(root);return checkRedBlackRules(root, blackHeight, 0);
}

四、常见面试题
  1. 二叉树

    • 如何序列化/反序列化二叉树?

    • 如何实现二叉树的层次遍历?

    • 判断两棵二叉树是否相同?

  2. 红黑树

    • 为什么红黑树的效率比AVL树更适合Java集合类?

    • 红黑树的插入删除过程中,有哪些情况需要处理?

    • 如何证明红黑树的高度是O(log n)?


掌握这些核心知识点后,你就能在面试中游刃有余地应对树结构相关问题!红黑树的实现细节较复杂,建议结合可视化工具(如Red-Black Tree Visualizer)加深理解。

相关文章:

二叉树与红黑树核心知识点及面试重点

二叉树与红黑树核心知识点及面试重点 一、二叉树 (Binary Tree) 1. 基础概念 定义&#xff1a;每个节点最多有两个子节点&#xff08;左子节点和右子节点&#xff09; 术语&#xff1a; 根节点&#xff1a;最顶层的节点 叶子节点&#xff1a;没有子节点的节点 深度&#xf…...

Rocket-JWT鉴权

目录 一、概述 二、相关依赖 三、环境准备 3.1 创建项目 3.2 读取私钥信息 3.3 token数据负载 3.4 生成token 四、Web鉴权 4.1 验证载体 4.2 接收请求 五、总结 Welcome to Code Blocks blog 本篇文章主要介绍了 [Rocket-JWT鉴权] ❤博主广交技术好友&#xff0c;喜…...

2025 年网络安全终极指南

我们生活在一个科技已成为日常生活不可分割的一部分的时代。对数字世界的依赖性日益增强的也带来了更大的网络风险。 网络安全并不是IT专家的专属特权&#xff0c;而是所有用户的共同责任。通过简单的行动&#xff0c;我们可以保护我们的数据、隐私和财务&#xff0c;降低成为…...

横扫SQL面试——PV、UV问题

&#x1f4ca; 横扫SQL面试&#xff1a;UV/PV问题 &#x1f31f; 什么是UV/PV&#xff1f; 在数据领域&#xff0c;UV&#xff08;Unique Visitor&#xff0c;独立访客&#xff09; 和 PV&#xff08;Page View&#xff0c;页面访问量&#xff09; 是最基础也最重要的指标&…...

ctf-show-杂项签到题

下载文件&#xff0c;解压需要密码&#xff0c;用010打开没看出什么 然后用Advanced Archive Password Recovery暴力破解&#xff0c;发现没用 怀疑是伪解密&#xff0c;解压出来发现加密受损用随波逐流修复加密文件 打开修复的加密文件直接得flag flag&#xff1a;flag{79d…...

对解释器模式的理解

对解释器模式的理解 一、场景1、题目【[来源](https://kamacoder.com/problempage.php?pid1096)】1.1 题目描述1.2 输入描述1.3 输出描述1.4 输入示例1.5 输出示例 二、不采用解释器模式1、代码2、“缺点” 三、采用解释器模式1、代码2、“优点” 四、思考1、解释器模式的意义…...

高频面试题(含笔试高频算法整理)基本总结回顾64

干货分享&#xff0c;感谢您的阅读&#xff01; &#xff08;暂存篇---后续会删除&#xff0c;完整版和持续更新见高频面试题基本总结回顾&#xff08;含笔试高频算法整理&#xff09;&#xff09; 备注&#xff1a;引用请标注出处&#xff0c;同时存在的问题请在相关博客留言…...

python入门之从安装python及vscode开始

本篇将解决三个问题&#xff1a; 1. 如何下载及安装官方python&#xff1f; 2. 如何下载及安装vscode&#xff1f; 3. 如何配置vscode的python环境&#xff1f; 一、python下载及安装 1.搜索python&#xff0c;找到官网并打开 2.找到download&#xff0c;按需选择版本下载 …...

OpenGL学习笔记(模型材质、光照贴图)

目录 光照与材质光照贴图漫反射贴图采样镜面光贴图 GitHub主页&#xff1a;https://github.com/sdpyy OpenGL学习仓库:https://github.com/sdpyy1/CppLearn/tree/main/OpenGLtree/main/OpenGL):https://github.com/sdpyy1/CppLearn/tree/main/OpenGL 光照与材质 在现实世界里&…...

视觉_transform

visual_transform 图像分块 (Patch Embedding) 假设输入图像为 x ∈ R ∗ H ∗ ∗ W ∗ ∗ C ∗ x∈R^{*H**W**C*} x∈R∗H∗∗W∗∗C∗ C 是图像的通道数&#xff08;例如&#xff0c;RGB图像的 C3&#xff09; 将图像分割成N个大小为P*CP的patch&#xff0c;每个patch的大…...

Redis的安装及通用命令

二. Redis 的安装及通用命令 1. Ubuntu 安装 Redis (1) 切换到 root 用户: su root(2) 搜索 Redis 软件包 apt search redis(3) 安装 Redis apt install redis(4) 查看 Redis netstat -anp | grep redis(5) 切换到 Redis 目录下 cd /etc/redis/(6) 修改 Redis 配置文件:…...

Python 实现的运筹优化系统代码详解(0-1规划背包问题)

一、引言 在数学建模与实际决策场景的交织领域中&#xff0c;诸多复杂问题亟待高效且精准的解决方案。0-1 规划作为一种特殊且极为重要的优化方法&#xff0c;宛如一把万能钥匙&#xff0c;能够巧妙开启众多棘手问题的解决之门。它专注于处理决策变量仅能取 0 或 1 这两种极端状…...

护网蓝初面试题

《网安面试指南》https://mp.weixin.qq.com/s/RIVYDmxI9g_TgGrpbdDKtA?token1860256701&langzh_CN 5000篇网安资料库https://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247486065&idx2&snb30ade8200e842743339d428f414475e&chksmc0e4732df793fa3bf39…...

音视频学习(三十二):VP8和VP9

VP8 简介 全称&#xff1a;Video Processing 8发布者&#xff1a;原 On2 Technologies&#xff08;2010 被 Google 收购&#xff09;定位&#xff1a;开源视频压缩标准&#xff0c;主要竞争对手是 H.264应用&#xff1a; WebRTC 视频通信HTML5 <video> 标签&#xff08…...

美国mlb与韩国mlb的关系·棒球9号位

MLB&#xff08;Major League Baseball&#xff0c;美国职业棒球大联盟&#xff09;作为全球最高水平的职业棒球联赛&#xff0c;与韩国市场流行的“MLB”时尚品牌之间存在着授权合作关系&#xff0c;但两者在业务范畴和品牌定位上存在显著差异。 一、品牌授权背景&#xff1a;…...

免费在线PUA测试工具:识别情感操控,守护情感健康

免费在线PUA测试工具&#xff1a;识别情感操控&#xff0c;守护情感健康 你是否曾经在感情中感到困惑、不安&#xff0c;甚至怀疑自己&#xff1f;今天为大家推荐一个专业的PUA测试工具&#xff0c;帮助你识别是否正在经历情感操控。 测试工具链接&#xff1a;PUA测试工具 什么…...

nginx中的try_files指令

try_files 是 Nginx 中一个非常有用的指令&#xff0c;用于按顺序检查文件是否存在&#xff0c;并返回第一个找到的文件。如果所有指定的文件都不存在&#xff0c;则执行回退逻辑&#xff0c;如重定向到一个指定的 URI 或返回一个错误代码。 作用 文件查找&#xff1a;按顺序检…...

[特殊字符] 驱动开发硬核特训 · Day 4

主题&#xff1a;从硬件总线到驱动控制 —— I2C 协议与传感器驱动开发全解析 I2C&#xff08;Inter-Integrated Circuit&#xff09;总线是一种广泛用于嵌入式设备的串行通信协议&#xff0c;因其低成本、简单布线和多从设备支持&#xff0c;成为连接各种传感器&#xff08;温…...

Python 实现玻璃期货数据处理、入库与分析:从代码到应用

Python 实现期货数据处理与分析&#xff1a;从代码到应用 引言 在金融市场中&#xff0c;期货数据的处理和分析对于投资者和分析师来说至关重要。Python 凭借其丰富的库和简洁的语法&#xff0c;成为了处理和分析期货数据的强大工具。本文将详细解读一段用于处理期货持仓和行…...

神经网络之损失函数

引言&#xff1a;损失函数 &#xff08;Loss Function&#xff09;是机器学习和深度学习中非常重要的一个概念。用于衡量模型的预测值与真实值之间的差异&#xff0c;从而指导模型优化其参数以最小化这种差异。 一、损失函数作用 量化误差&#xff1a;损失函数是将预测值和真实…...

在Ubuntu内网环境中为Gogs配置HTTPS访问(通过Apache反向代理使用IP地址)

一、准备工作 确保已安装Gogs并运行在HTTP模式(默认端口3000) 确认服务器内网IP地址(如192.168.1.100) 二、安装Apache和必要模块 sudo apt update sudo apt install apache2 -y sudo a2enmod ssl proxy proxy_http rewrite headers 三、创建SSL证书 1. 创建证书存储目录…...

printf

printf() 是 C 和 C 标准库中的一个输出函数&#xff0c;位于 <cstdio> 头文件中。下面为你详细介绍它的相关知识点。 1. 基本使用 printf() 函数的作用是按照指定格式将数据输出到标准输出设备&#xff08;通常是控制台&#xff09;。其基本语法如下&#xff1a; cpp …...

Leetcode 311 Sparse Matrix Multiplication 稀疏矩阵相乘

Problem Given two sparse matrices A and B, return the result of AB. You may assume that A’s column number is equal to B’s row number. Example: A [[ 1, 0, 0],[-1, 0, 3] ]B [[ 7, 0, 0 ],[ 0, 0, 0 ],[ 0, 0, 1 ] ]| 1 0 0 | | 7 0 0 | | 7 0 0 | AB …...

mysql和sqlite关于data数据的识别问题

<input type"date" name"birthday" value""> # 表单传入的日期 birthday request.form.get(birthday) # 获取日期 birthday Column(birthday, Date, comment出生日期, nullableTrue) # 数据库的数据字段模型 birthday_str request…...

2024 天梯赛——工业园区建设题解

思路 将点 i i i 视为固定点&#xff0c; 点 j j j 视为灵活点&#xff0c;其中 s i 1 s_{i} 1 si​1&#xff0c; s j 0 s_{j} 0 sj​0。维护四个队列&#xff0c;其中 q 0 q_{0} q0​ 和 q 1 q_{1} q1​ 分别维护还没有被选用的固定点 和 灵活点&#xff0c; Q 0 Q…...

亚马逊AI新功能上线:5大亮点解锁精准消费预测

在人工智能技术不断重塑跨境电商生态之际&#xff0c;全球电商巨头亚马逊&#xff08;Amazon&#xff09;再次迈出关键一步。近日&#xff0c;亚马逊正式对其卖家中心推出一系列基于AI的新功能&#xff0c;聚焦于消费数据预测、用户行为洞察、库存智能管理与个性化营销服务等方…...

opus+ffmpeg+c++实现录音

说明&#xff1a; opusffmpegc实现录音 效果图&#xff1a; step1:C:\Users\wangrusheng\source\repos\WindowsProject1\WindowsProject1\WindowsProject1.cpp // WindowsProject1.cpp : 定义应用程序的入口点。 //#include "framework.h" #include "Windows…...

ComfyUI的本地私有化部署使用Stable Diffusion文生图

什么是ComfyUI &#xff1f; ComfyUI是一个基于节点流程的Stable Diffusion操作界面。以下是关于它的详细介绍&#xff1a; 特点与优势 高度可定制&#xff1a;提供丰富的节点类型&#xff0c;涵盖文本处理、图像处理、模型推理等功能。用户可根据需求自由组合节点&#xff0…...

【学习笔记17】Windows环境下安装RabbitMQ

一. 下载RabbitMQ&#xff08; 需要按照 Erlang/OTP 环境的版本依赖来下载&#xff09; (1) 先去 RabbitMQ 官网&#xff0c;查看 RabbitMQ 需要的 Erlang 支持&#xff1a;https://www.rabbitmq.com/ 进入官网&#xff0c;在 Docs -> Install and Upgrade -> Erlang V…...

【LeetCode 热题100】55:跳跃游戏(详细解析)(Go语言版)

&#x1f680; LeetCode 热题 55&#xff1a;跳跃游戏&#xff08;Jump Game&#xff09;完整解析 &#x1f4cc; 题目描述 给定一个非负整数数组 nums&#xff0c;你最初位于数组的第一个下标。 数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一…...

OpenCV轮廓检测全面解析:从基础到高级应用

一、概述 轮廓检测是计算机视觉中的基础技术&#xff0c;用于识别和提取图像中物体的边界。与边缘检测不同&#xff0c;轮廓检测更关注将边缘像素连接成有意义的整体&#xff0c;形成封闭的边界。 轮廓检测的核心价值 - 物体识别&#xff1a;通过轮廓可以识别图像中的独立物体…...

微服务入门:Spring Boot 初学者指南

大家好&#xff0c;这里是架构资源栈&#xff01;点击上方关注&#xff0c;添加“星标”&#xff0c;一起学习大厂前沿架构&#xff01; 微服务因其灵活性、可扩展性和易于维护性而成为现代软件架构的重要组成部分。在本博客中&#xff0c;我们将探讨如何使用 Spring Boot 构建…...

Windows环境下开发pyspark程序

Windows环境下开发pyspark程序 一、环境准备 1.1. Anaconda/Miniconda&#xff08;Python环境&#xff09; 如果不怕包的版本管理混乱&#xff0c;可以直接使用已有的Python环境。 需要安装anaconda/miniconda&#xff08;python3.8版本以上&#xff09;&#xff1a;Anaconda…...

嵌入式学习笔记——大小端及跳转到绝对地址

大小端以及跳转到绝对地址 0x100000 嵌入式编程中的大小端详解一、大端模式与小端模式二、判断当前系统是大端还是小端方法一&#xff1a;指针强制类型转换方法二&#xff1a;使用联合体&#xff08;union&#xff09; 三、结构体位段和大小端的影响四、大小端影响内存的 memc…...

eprime相嵌模式实验设计

一、含义与模型结构 该模式的实验设计至少 由两个存储不同实验材料及 属性的List和一个核心实验 过程CEP组成。子list1和 list2相嵌在父List中&#xff0c;CEP 可以调用List中的材料&#xff0c;也 可以调用list1和list2中的材 料。 二、相嵌模式的应用 应用于解决“多重随…...

编译uboot的Makefile编写

make ARCHarm CROSS_COMPILEarm-linux-gnueabihf- distcleanmake ARCHarm CROSS_COMPILEarm-linux-gnueabihf- mx6ull_14x14_ddr512_emmc_defconfigmake V1 ARCHarm CROSS_COMPILEarm-linux-gnueabihf- -j12 这三条命令中 ARCHarm 设置目标为 arm 架构&#xff0c; CROSS_COMP…...

Go语言常用算法实现

以下是Go语言中常用的算法实现&#xff0c;涵盖排序、搜索、数据结构操作等核心算法。 一、排序算法 1. 快速排序 func QuickSort(arr []int) []int {if len(arr) < 1 {return arr}pivot : arr[0]var left, right []intfor i : 1; i < len(arr); i {if arr[i] < pi…...

Windows上使用NSSM注册定时服务

适用和不适用场景 适用场景 持续运行 的脚本或程序&#xff08;如 Laravel 的 schedule:run 每分钟检查任务&#xff09;后台常驻 的任务或服务&#xff08;如监听服务、实时同步&#xff09; 不适用场景 低频次任务&#xff08;如每日/每周备份&#xff09; NSSM 常驻内存…...

【Gorm】模型定义

intro package mainimport ("gorm.io/gorm""gorm.io/driver/sqlite" // GORM 使用该驱动来连接和操作 SQLite 数据库。 )type Product struct {gorm.Model // 嵌入GORM 内置的模型结构&#xff0c;包含 ID、CreatedAt、UpdatedAt、DeletedAt 四个字段Cod…...

程序化广告行业(65/89):AdX/SSP系统深度剖析与实战要点

程序化广告行业&#xff08;65/89&#xff09;&#xff1a;AdX/SSP系统深度剖析与实战要点 大家好&#xff01;一直以来&#xff0c;我都对程序化广告领域充满热情&#xff0c;这个领域发展迅速且不断涌现新的技术和模式。之前我们探讨了程序化广告的一些基础内容&#xff0c;…...

算法刷题记录——LeetCode篇(2.7) [第161~170题](持续更新)

更新时间&#xff1a;2025-04-06 算法题解目录汇总&#xff1a;算法刷题记录——题解目录汇总技术博客总目录&#xff1a;计算机技术系列博客——目录页 优先整理热门100及面试150&#xff0c;不定期持续更新&#xff0c;欢迎关注&#xff01; 169. 多数元素 给定一个大小为…...

conda安装指定版本python环境

1. 创建指定 Python 版本的环境 使用以下命令创建环境&#xff0c;并将 <env_name> 替换为你的环境名称&#xff0c;<python_version> 替换为具体的 Python 版本&#xff08;如 3.8, 3.9 等&#xff09; conda create -n <env_name> python<python_vers…...

PH热榜 | 2025-04-05

1. Comp AI 标语&#xff1a;开源的 Vanta 和 Drata 替代方案 介绍&#xff1a;这款开源的 Drata 和 Vanta 替代方案&#xff0c;能够帮助你在几周内&#xff0c;轻松满足 SOC 2、ISO 27001 和 GDPR 等合规框架的要求&#xff0c;而不是像往常那样拖延数月。 产品网站&#…...

C++之红黑树

目录​​​​​​​ 一、红黑树的概念 1.1、红黑树的规则 1.2、红黑树如何确保最长路径不超过最短路径的二倍 1.3、红黑树的效率 二、红黑树的实现 2.1、红黑树的结构 2.2、红黑树的插入 2.2.1、红黑树插入一个值的大概过程 2.2.2、情况一&#xff1a;变色 2.2.3、情…...

各个语言对不同数据结构的叫法

一、基础数据结构对比 数组&#xff08;Array&#xff09;‌ C/C‌&#xff1a;固定大小数组&#xff08;int arr&#xff09;&#xff0c;动态数组通过vector&#xff08;C&#xff09;实现 ‌ Java‌&#xff1a;固定数组&#xff08;int[]&#xff09;&#xff0c;动态数组…...

蓝桥杯 web 水果拼盘 (css3)

做题步骤&#xff1a; 看结构&#xff1a;html 、css 、f12 分析: f12 查看元素&#xff0c;你会发现水果的高度刚好和拼盘的高度一样&#xff0c;每一种水果的盘子刚好把页面填满了&#xff0c;所以咱们就只要让元素竖着排列&#xff0c;加上是竖着&#xff0c;排不下的换行…...

算法专题(八):分治-归并排序

目录 一、排序数组 1.1 题目 2.2 思路 2.3 代码实现 二、LCR 170. 交易逆序对的总数 &#xff08;数组中的逆序对&#xff09; 2.1 题目 2.2 思路 方法一&#xff1a;快速统计出某个数前面有多少个数比它大 方法二&#xff1a;快速统计出某个数后面有多少个数比它小 …...

51单片机使用定时器实现LCD1602的时间显示(STC89C52RC)

本文前半部分直接给出实现&#xff08;注意进位问题是秒->分->小时&#xff0c;用 if 嵌套即可实现&#xff09;&#xff0c;后半部分讲解定时器和中断系统。 效果展示&#xff1a; LCD1602电路图&#xff1a; 项目结构&#xff1a; 代码实现&#xff1a; main.c #…...

微软2025年AI技术深度解析:从多模态大模型到企业级代理服务

微软2025年AI技术深度解析&#xff1a;从多模态大模型到企业级代理服务 一、微软AI技术全景概览 在2025年的AI领域&#xff0c;微软通过Azure AI Foundry、多模态大模型、企业级AI代理三大核心技术&#xff0c;构建了覆盖开发、部署、应用全流程的AI生态体系。根据最新财报数…...

24 设计模式总结

设计模式分类&#xff08;意图&#xff09; • 创建型模式&#xff1a;创建对象的机制&#xff0c;从所需要实例化的对象中解耦。 • 结构型模式&#xff1a;将对象或类组装到更大的结构中。 • 行为型模式&#xff1a;负责对象间的交互和分配职责。分类的目的是为了更抽象的了…...