当前位置: 首页 > news >正文

操作系统、虚拟化技术与云原生及云原生AI简述

目录

操作系统基础

操作系统定义

操作系统的组成

操作系统的分类

Linux操作系统特性

虚拟化技术

概述

CPU虚拟化

内存虚拟化

I/O虚拟化

虚拟化技术

虚拟化平台管理工具

容器

容器与云原生:详细介绍

容器的特点

什么是云原生?

云原生的特点

容器与云原生的关系

微服务架构

弹性伸缩

常见的容器技术和工具

云原生AI

云原生为 AI 提供支撑

云原生AI架构模式

AI 增强云原生能力


操作系统基础

操作系统定义

OS声明了软件怎么调用硬件,同时支持人机交互

人机交互的过程

shell是人机交互转换的虚拟环境,内核只能识别0、1组成的数据流,底层资源只能识别电流的变化

操作系统的组成

1. 进程管理

进程定义:进程是正在运行的程序的实例,它不仅包含程序代码,还包含程序的当前状态和相应的系统资源。

线程概念:线程是比进程更小的执行单位,能够实现更细粒度的并行计算,提高CPU的使用效率。

调度机制:操作系统通过进程调度算法,如优先级调度、时间片轮转等方法来决定哪些进程使用CPU,确保系统高效运行。

2. 存储管理

内存分配:存储管理负责物理内存的分配与回收,确保各进程公平高效地使用内存资源。

虚拟内存:现代操作系统普遍采用虚拟内存技术,将硬盘空间作为内存使用的延伸,扩展可用的内存容量,使每个进程仿佛拥有独立的内存空间。

保护机制:存储管理还包括隔离保护机制,防止一个进程访问另一个进程的内存空间,保障系统安全。

3. 设备管理

设备驱动程序:设备管理负责管理计算机系统中的所有外设,包括磁盘、显示器、键盘、鼠标等。

资源分配:设备管理还包括资源的分配与回收,例如打印机等独占设备的管理,以确保所有设备高效运作。

缓冲技术:缓冲技术用于缓解高速CPU与低速设备间的速度不匹配问题,确保数据传输的流畅性。

4. 文件管理

文件系统:文件管理提供文件系统的组织和管理,支持文件的存储、检索、修改和删除等操作。

目录结构:文件管理还维护文件的目录结构,使得文件可以分类、分层管理,方便用户和程序查找和使用。

存取控制:文件管理还包括文件的存取控制,确保文件的安全和隐私,防止未经授权的访问。

5. 用户界面管理

命令行界面:早期的操作系统主要提供命令行界面,用户通过输入命令来操作计算机。

图形界面:现代操作系统普遍采用图形界面,通过窗口、图标和菜单等元素提供直观的操作方式。

交互体验:用户界面管理不断优化,提升用户的操作便捷性和整体交互体验。

操作系统的分类

UNIX

Linux

Windows

Windows的操作大家较为熟悉,下面说说Linux

Linux操作系统特性

目前很多平台和设备都使用了POSIX1.0标准

/root:管理员家目录

/home:普通用户家目录

Linux操作系统

社区:openEuler | 开源社区 | openEuler社区官网

实验准备:

  1. 下载openEuler 22.03 LTS SP4,Offline Standard ISO
  2. 升级virtualbox到6.1

Linux用户

管理员用户:root用户,具有最高权限,uid=0

系统用户:具有某一方面的权限,1<=uid<=999

普通用户:student,只对家目录具有管理权限,uid1000到65535

Linux操作

基本操作

快捷键

ctrl+w:回删一部分

ctrl+u:删除到行首

ctrl+c:退出当前执行或未执行的命令(废除当前指令)

命令组成: 命令字 [参数] [选项]

家目录

root用户:/root

普通用户:/home/与用户名同名的子目录

终端提示符:[student@localhost ~]$

~所在的工作目录,~代表当前用户的家目录

$代表当前登录的用户是普通用户

#代表当前登录的用户是root用户

修改密码

  1. 交互式修改:passwd
  2. 非交互式修改:

格式:echo 密码 | passwd --stdin 用户名

--stdin:把标准输出转变为标准输入

echo:回显

用户创建

格式:useradd [选项] 用户名

验证:id [用户名]

选项:

-u 指定用户的uid:useradd -u 10086 zgyd

id zgyd

切换用户

格式: su - 用户名

su - tom

logout

删除用户

格式:userdel [选项] 用户名

userdel zgyd

id zgyd

重启:reboot,shoutdown -r now,init 6

关机:poweroff,shoutdown -h now,init 0

文件目录操作

第一个字符是否为/,是即使绝对路径,否则是相对路径

查看当前的工作目录:pwd (print working directory)

切换路径:cd (change directory)

常用:

切换到上一次所在的工作目录:cd -

切换到家目录:cd ~ 或者 cd

切换到上一级目录:cd ..

. 代表当前的工作路径

查看子文档的信息:ls (list)

格式:ls [选项] 文档路径

选项:

-l 详细属性信息

-d 查看文档本身的信息

-h 以易读单位显示文档信息 human-readable

-a 显示所有文件的信息

隐藏文件:以 ‘.’ 开头的文件

查看文本内容:cat

head:看到文本的前几行信息 (默认看到10行)

tail:看到文本的后几行信息 (默认看到10行)

目录创建mkdir (make directory)

格式:mkdir [选项] 目录

选项:

-p 递归创建多级目录(白色是文本文件,蓝色是目录)

文件创建:touch

touch 文件名

复制:cp (copy)

格式:cp [选项] 源路径 目标路径

选项:

-r 递归复制,源路径是目录

-f force,强制复制

移动:mv (move)

格式:mv 源路径 目标路径

路径不变的运动是重命名操作

删除:rm (remove)

格式:rm [选项] 路径

选项:

-r 递归删除,源路径是目录

-f force,强制删除

帮助

  1. -h或者--help
  2. man帮助手册

编辑器vim

三种模式

插入模式:

---- i(a)交互指令 ---- 插入模式 [ecs回退]

命令行模式:

---- ‘:’ 交互式指令 ---- 插入模式 [ecs回退]

末行模式:

  1. wq:保存退出
  2. w:保存不退出
  3. q:不保存退出
  4. q!强制不保存退出
  5. wq!:强制保存退出

p -- post:粘贴

跳转:gg(到首行),G(到末行)

复制:nyy

删除:ndd

粘贴:p

搜索:/[word],n向下搜索,N向上搜索

替换

  1. s/old/new/g 替换当前行的old为new
  2. n,m/old/new/g 替换第n-m行的old为new
  3. % s/old/new/g 替换全文的old为new

(g是整行的概念)

网络管理

  1. 配置文件

vim /etc/sysconfig/network-scripts/ifcfg-enp0s3

  1. nmcli(Network Manager Client)命令行

查看网卡信息 nmcli connection show(nmcli c s)

配置网络ip nmcli connection modify “enp0s8” ipv4.method manual ipv4.addresses 192.168.xx.xx/24 autoconnect yes

nmcli 连接 编辑 “网卡名称” ipv4.方法 手动 ipv4.地址 ip地址/子网掩码 自动 连接 开启

重新激活网卡 nmcli connection up enp0s8

  1. nmtui(Network Manager Tool UI)伪图形工具

nmtui 进入伪图形编辑界面编辑

验证:

  1. ifconfig
  2. ip a

永久修改主机名

查看主机名 hostname

长主机名 node1.example.com

短主机名 node1

配置文件(重启生效)vim /etc/hostname

命令法 hostnamectl

hostnamectl set-hostname node1.example.com

bash

查看路由表

命令:route -n

Destination:目的地,显示路由的目的地或者网段

Gateway:网关地址,如果为0.0.0.0表示网络可以直接访问,无需其他设备转发

Genmask:子网掩码

flags:标志,代表路由的不同属性

U:up,代表路由是可达的

H:host,表示目标是一个主机

G:路由指向网关

Metric:路由距离,到达指定网络所需的中转数

Ref:引用计数,0表示目前没有进程在使用这条路由

USE:使用计数,此路由项被路由软件查看的次数

Iface:接口,转发的网络设备即网卡名称

配置一条路由到达39.156.66.10主机路由项,通过enp0s3接口发送给10.0.2.2网关;查 看路由表,再删除此路由表:

route add -host 39.156.66.10 gw 10.0.2.2 dev enp0s3

route -n

route del -host 39.156.66.10 gw 10.0.2.2 dev enp0s3

虚拟化技术

概述

虚拟化技术

计算虚拟化(CPU、内存),网络虚拟化,内存虚拟化

虚拟化的作用:将底层资源和系统进行解耦,将物理资源抽象形成资源池,将抽象后的资源分 配给上层的应用。

虚拟化的类型

全虚拟化:虚拟化管理器会将所有的资源全部虚拟化,虚拟机无法感知主机所使用的是物理资源还是逻辑资源。兼容性好。但是cpu的开销较高。

半虚拟化:虚拟化管理器只针对计算资源做虚拟化,设备io的资源直接使用底层的物理资源。节省cpu的开销,但是兼容性较差。

硬件辅助虚拟化:使用相关的硬件辅助CPU进行虚拟化,解决CPU的高消耗。优势在于保证性能和节省开销。

对物理机来讲虚拟机是一个文件

CPU虚拟化

一个CPU一般有两个线程,线程就是vCPU(超线程技术,vcpu(线程)是cpu的两倍)

内存虚拟化

A是地址,客户机G开头

I/O虚拟化

网卡

虚拟化技术

kvm(性能、轻量级)

kvm内嵌在操作系统内核

Xen (安全)

虚拟化平台管理工具

虚拟化平台管理工具是用于管理和监控虚拟机的软硬件资源,提供创建、配置、迁移等功能的软件系统。以下是一些主流的虚拟化平台管理工具:

1.Eucalyptus:

授权协议包括GPLv3和自定义商业授权协议。

社区版免费使用,企业版按处理器核心总数收费。

2.OpenNebula:

采用Apache 2.0授权协议,不需要许可证。

社区版免费使用,企业版以订阅模式提供服务,按物理服务器总数收费。

3.OpenQRM:

社区版使用GPLv2授权协议,企业版使用自定义的商业授权协议。

基本、标准和高级服务的价格分别为480、960、1920欧元每月。

4.XenServer:

Citrix XenServer系列产品均使用自定义的商业授权协议。

免费版本和开源版本的Xen Cloud Platform可以免费使用,高级版、企业版和白金版按物理服务器数量收费。

5.Oracle VM:

Oracle VM Server基于Xen开发,使用GPLv2协议发布。

Oracle VM Manager使用自定义的商业授权协议,Oracle VM VirtualBox的二进制版本也使用自定义的商业授权协议。

6.CloudStack:

社区版采用GPLv3授权协议,企业版使用自定义的商业授权协议。

社区版免费使用,企业版提供增强功能和技术支持。

7.ConVirt:

社区版使用GPLv2授权协议,企业版使用自定义的商业授权协议。

社区版免费使用,企业版提供增强功能和技术支持,按物理服务器数量收费。

容器

容器也是一种虚拟化技术(虚拟机能做的容器)

客服端:识别用户指令并执行

docker指令是新设定,不遵循原有命令,用自己的指令

docker的核心是镜像

docker host:所有任务最终的执行(引擎)

docker deamon(文件,deamon.json,在执行任务时做镜像管理)

image(本地镜像源):创建的镜像存在物理机上,要使用时打包

registry:开源镜像仓库

docker仓库三种类型:本地(docker引擎内部,引擎在哪本地仓库就在哪)

远端镜像仓库(介于本地和中央仓库的第三方仓库,一般由公益组织、企业维护,用于下载提速)

中央仓库(docker官方维护,收集全球所有镜像仓库)

私有仓库(不在三种类型里,本质上自己使用的仓库,位置可以在用户本地,也可以是用户指定位置)(私有仓库需要线连接后进行上传和下载)

(当用户提交运行请求时,deamon会查询本地仓库检查是否由本地镜像,如果没有,就查用户配置的所有仓库或远端仓库)

(如果同时配置多个仓库,则按照配置文件的次序依次查找,如果都没找到,就发送请求到中央仓库,如果中央仓库也没有就报错,在中间任意一个环节找到就下载并运行)

docker Client:客户端,负责所有指令的接受和任务的下发执行

Docker API:负责接受请求,并且交给对应的进程进行任务执行

Containerd:负责容器的资源管理和镜像的管理工作

docker-network:负责docker网络环境的管理,主要是将底层宿主机的网络映射给容器进行使用

docker volume:docker卷管理器,负责docker的存储管理将宿主机的存储空间映射给容器使用

shim、runC:负责识别和执行指令的工具

RunC和Runtime都是负责对指令进行解析和执行的

Container:实际的最终容器

容器与云原生:详细介绍

随着云计算的迅猛发展,越来越多的企业将应用迁移到云端。在这个过程中,容器技术和云原生架构逐渐成为主流选择。

容器的特点

轻量级:与传统虚拟机相比,容器不需要额外的操作系统,因此更加轻量级

快速启动:由于容器共享宿主机的操作系统内核,启动速度非常快。

一致性:容器镜像可以在开发、测试和生产环境中保持一致,减少了环境差异带来的问题。

隔离性:每个容器都是相互隔离的,不会互相影响。但是容器间也不是完全隔离,隔离程度比虚拟机差一点。

可移植性:容器可以在任何支持容器技术的平台上运行。

什么是云原生?

云原生(Cloud Native)是一种构建和运行应用程序的方法,充分利用云计算模型的优势,如弹性伸缩、自动化管理和微服务架构等。

云原生的特点

微服务架构:将应用程序拆分成多个小型、独立部署的服务,每个服务都可以独立扩展和维护。

持续集成/持续交付(CI/CD):通过自动化工具实现代码的频繁集成和交付,提高开发效率和质量。

弹性伸缩:根据负载自动调整资源,确保应用的高可用性和性能。

无状态设计:应用的各个部分尽量做到无状态,以便更容易扩展和管理。

API驱动:通过API进行通信,使得系统更加灵活和可扩展。

容器与云原生的关系

容器技术是实现云原生架构的重要工具之一。通过容器,开发者可以更容易地实现微服务架构、持续集成/持续交付(CI/CD)以及弹性伸缩等云原生特性。具体来说:

微服务架构

独立部署:每个微服务可以打包成一个独立的容器镜像,独立部署和扩展。

服务发现:容器编排工具(如Kubernetes)提供了服务发现机制,方便微服务之间的通信。

持续集成/持续交付(CI/CD)

自动化构建:使用容器镜像作为构建单元,可以自动化构建和测试。

自动化部署:通过容器编排工具,可以自动化部署和回滚应用。

弹性伸缩

自动扩展:容器编排工具可以根据负载自动扩展或缩减容器实例,确保应用的高可用性和性能。

资源管理:容器技术可以更细粒度地管理资源,提高资源利用率。

常见的容器技术和工具

Docker:最流行的容器化平台,提供了创建、部署和运行容器的工具。还有container。

Kubernetes:开源的容器编排引擎,用于自动化部署、扩展和管理容器化应用。

Helm:Kubernetes的包管理工具,简化了复杂应用的部署。

Prometheus:监控系统,用于收集和查询时间序列数据,特别适用于容器化环境。

Istio:服务网格解决方案,提供了流量管理、安全和监控等功能。

云原生AI

云原生为 AI 提供支撑

资源管理与弹性伸缩:云原生中的容器技术(如 Docker)能将 AI 应用及其依赖打包成独立、可移植的单元,便于在不同环境部署。Kubernetes 则可对容器化的 AI 应用进行编排和管理,根据模型训练或推理时的负载情况,自动、动态地分配和调整计算资源(如 CPU、GPU 、内存等 )。例如在 AI 模型训练高峰期,自动增加计算节点数量;训练结束或负载降低时,及时回收资源,避免浪费,提升资源利用率。像在大型图像识别模型训练中,可按需快速扩展 GPU 资源,训练完成后释放,降低成本。

应用快速部署与持续集成 / 持续交付(CI/CD) :云原生借助 CI/CD 流水线,能实现 AI 模型从开发、测试到部署的全流程自动化。开发人员将代码推送到代码仓库后,自动触发构建、测试容器镜像,再部署到生产环境。这大幅缩短 AI 应用从开发到上线的周期,加快模型迭代速度,让新功能、优化后的模型能快速投入使用。例如,AI 算法优化后,通过 CI/CD 流程可在短时间内部署到线上服务。

高效的环境管理与可移植性 :容器提供了一致的运行环境,确保 AI 应用在开发、测试和生产环境中的一致性,避免 “环境不一致” 导致的问题。同时,云原生支持跨不同云平台(公有云、私有云、混合云)以及本地环境的部署,增强了 AI 应用的可移植性。比如,企业可先在私有云进行 AI 模型开发和测试,成熟后无缝迁移到公有云大规模部署。

服务网格与微服务架构:服务网格(如 Istio)用于管理和监控 AI 应用的微服务之间的通信,提供流量控制、服务发现、链路追踪等功能。将 AI 应用拆分为多个微服务,可独立开发、部署和扩展各个部分,提高系统的灵活性和可维护性。例如,在智能推荐系统中,用户行为分析、推荐算法计算等功能可作为不同微服务,通过服务网格协调通信,实现高效运行。

云原生AI架构模式

基础设施层

计算资源:部署 CPU 服务器、GPU 服务器,为 AI 模型训练(如图像识别模型训练调用 GPU)与推理提供底层算力

存储资源:采用分布式存储(如 Ceph),存储 AI 数据(原始训练数据、训练生成的模型文件等)

网络资源:构建底层网络,支撑容器、服务间的通信需求

容器与编排层

Docker 容器:将 AI 应用代码、依赖库等封装为独立镜像,确保环境隔离与可移植性

Kubernetes(K8s):资源调度:基于 AI 应用负载(如训练任务高峰期),动态分配 CPU、GPU、内存资源,训练结束后回收资源

应用编排:管理容器化 AI 应用的部署,保障服务高可用性,如自动重启故障容器

CI/CD 流水线层

代码仓库:使用 Git 存储 AI 算法代码、模型代码

CI/CD 工具(如 Jenkins、GitLab CI/CD):自动化构建:代码提交后,自动构建 AI 应用容器镜像

自动化测试:对镜像执行单元测试、集成测试,验证 AI 功能正确性

自动化部署:将测试通过的镜像部署至生产环境,加速优化后模型的上线效率

环境与部署层

多环境支持:开发环境:本地或私有云,供 AI 团队开发、调试模型

测试环境:独立环境,验证 AI 模型功能与性能

生产环境:支持公有云、混合云部署,实现 AI 服务大规模落地

容器运行时:在不同环境中运行容器,确保 AI 应用在开发、测试、生产环境的一致性

服务网格与微服务层

微服务拆分:将 AI 应用拆解为用户行为分析、模型推理、数据预处理等微服务

服务网格(如 Istio):流量管理:控制微服务间流量,实现负载均衡、灰度发布等策略

服务发现:自动识别微服务实例,保障服务间通信正常

链路追踪:监控微服务调用链路,分析性能瓶颈,优化 AI 服务运行效率

AI 增强云原生能力

智能资源调度 :利用 AI 算法(如强化学习、深度学习 )分析云原生环境中应用的历史资源使用情况、实时负载数据等,预测未来资源需求。基于预测结果,提前、动态地调整资源分配,实现更合理的资源调度。比如,根据电商平台 AI 推荐系统在不同时间段的流量和资源需求模式,提前分配资源,避免业务高峰时资源不足导致性能下降。

故障预测与自愈 :通过机器学习算法对云原生系统中各种组件(服务器、网络设备、容器等)的运行数据(如日志、性能指标 )进行分析和学习,建立故障预测模型。在故障发生前提前预警,甚至自动采取措施进行修复,如自动重启故障容器、切换到备用服务器等,保障云服务的高可用性。例如,依据服务器硬件的温度、电压等指标变化预测硬件故障,提前进行维护或更换。

自动化运维与优化 :AI 可用于自动化分析云原生系统的运维数据,发现潜在问题和优化点。例如,利用自然语言处理技术理解运维人员输入的问题描述,自动搜索知识库并给出解决方案;通过对系统配置、性能数据的分析,自动生成配置优化建议,提升系统性能和稳定性。

智能流量管理 :借助 AI 技术对云原生应用的流量进行分析和管理。例如,根据用户特征、业务需求等因素,智能分配流量到不同的服务实例或版本,实现灰度发布、金丝雀发布等策略,降低新功能上线风险;同时,在流量突发时,智能调整流量分配,保障关键业务的服务质量。

相关文章:

操作系统、虚拟化技术与云原生及云原生AI简述

目录 操作系统基础 操作系统定义 操作系统的组成 操作系统的分类 Linux操作系统特性 虚拟化技术 概述 CPU虚拟化 内存虚拟化 I/O虚拟化 虚拟化技术 虚拟化平台管理工具 容器 容器与云原生&#xff1a;详细介绍 容器的特点 什么是云原生&#xff1f; 云原生的特点 容器与云原生的…...

Java EE期末总结(第二章)

目录 一、JSP页面里的page指令 二、JSP脚本元素 1、全局声明<%!……%> 2、表达式<%……%> 3、脚本程序段<%……%> 三、文件包含指令include 四、引入标签库指令taglib 五、JSP动作标签 1、包含文件动作标签 2、请求转发动作标签 3、JavaBean动作标签 …...

FreeRTOS任务查询和信息统计API

下面例举几个常见的任务查询API&#xff08;其余可参考FreeRTOS开发手册&#xff09;&#xff1a; UBaseType_t Priority; Priority uxTaskPriorityGet(QUERYTask_Handler); printf("Task Pri %d \r\n",Priority); TaskStatus_t * TaskStatusArray; UBaseType_t …...

SQLark(百灵连接):一款面向信创应用开发者的数据库开发和管理工具

SQLark&#xff08;百灵连接&#xff09;是一款面向信创应用开发者的数据库开发和管理工具&#xff0c;用于快速查询、创建和管理不同类型的数据库系统。 目前可以支持达梦数据库、Oracle 以及 MySQL。 SQL 智能编辑器 基于语法语义解析实现代码补全能力&#xff0c;为你提供…...

Linux | 安装超级终端串口软件连接i.MX6ULL开发板(8)

01 它的安装步骤也非常简单,安装语言选择中文简体,点击确定,如下图所示。 点击下一步,如下图所示。 02...

Qt 事件系统负载测试:深入理解 Qt 事件处理机制

Qt 事件系统负载测试&#xff1a;深入理解 Qt 事件处理机制 文章目录 Qt 事件系统负载测试&#xff1a;深入理解 Qt 事件处理机制摘要引言实现原理1. 自定义事件类型2. 事件队列管理3. 性能指标监控4. 事件发送机制 性能监控实现1. 负载计算2. 内存监控3. 延迟计算 使用效果优化…...

如何评价Manus?

Manus是由Monica公司发布的全球首款通用型AI Agent产品,定位于一个性能强大的通用型助手,能够独立思考、规划并执行复杂任务,直接交付完整的任务成果。‌‌ Manus 这个名字灵感来源于拉丁格言 “Mens et Manus”(意为“头脑与双手”),寓意它既能动脑也能动手。 Manus的核…...

AI浪潮下的IT职业转型:医药流通行业传统IT顾问的深度思考

AI浪潮下的IT职业转型&#xff1a;医药流通行业传统IT顾问的深度思考 一、AI重构IT行业的技术逻辑与实践路径 1.1 医药流通领域的智能办公革命 在医药批发企业的日常运营中&#xff0c;传统IT工具正经历颠覆性变革。以订单处理系统为例&#xff0c;某医药集团引入AI智能客服…...

2011-2019年各省地方财政国土资源气象等事务支出决策数数据

2011-2019年各省地方财政国土资源气象等事务支出决策数数据 1、时间&#xff1a;2007-2019年 2、来源&#xff1a;国家统计局、统计年鉴 3、指标&#xff1a;行政区划代码、地区、年份、地方财政国土资源气象等事务支出决策数 4、范围&#xff1a;31省 5、指标说明&#x…...

《微服务概念进阶》精简版

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 什么是微服务&#xff08;进阶精简版&#x…...

免费送源码:Java+SSM+Android Studio 基于Android Studio游戏搜索app的设计与实现 计算机毕业设计原创定制

摘要 本文旨在探讨基于SSM框架和Android Studio的游戏搜索App的设计与实现。首先&#xff0c;我们详细介绍了SSM框架&#xff0c;这是一种经典的Java Web开发框架&#xff0c;由Spring、SpringMVC和MyBatis三个开源项目整合而成&#xff0c;为开发企业级应用提供了高效、灵活、…...

栈回溯和离线断点

栈回溯和离线断点 栈回溯&#xff08;Stack Backtrace&#xff09; 栈回溯是一种重建函数调用链的技术&#xff0c;对于分析栈溢出的根本原因非常有价值。 实现方式 // 简单的栈回溯实现示例&#xff08;ARM Cortex-M架构&#xff09; void stack_backtrace(void) {uint32_…...

探索轻量高性能的 Rust HTTP 服务器框架 —— Hyperlane

探索轻量高性能的 Rust HTTP 服务器框架 —— Hyperlane 随着互联网应用对性能和实时性要求的不断提升&#xff0c;选择一个高效且易于扩展的 HTTP 服务器框架变得尤为重要。今天&#xff0c;我们将介绍一个专为 Rust 开发者设计的框架 —— Hyperlane。该框架不仅支持 HTTP 请…...

第四章 表单(3)- 表单验证

在Blazor中&#xff0c;表单的验证可以通过两种方式实现&#xff0c;一种是使用Blazor所提供表单验证特性&#xff0c;另一种是使用ValidationMessageStore进行验证。 表单验证的基础使用(内置特性) 一、内置特性表单验证的开启 Blazor中&#xff0c;使用表单组件<EditFo…...

手撕AVL树

引入&#xff1a;为何要有AVL树&#xff0c;二次搜索树有什么不足&#xff1f; 二叉搜索树有其自身的缺陷&#xff0c;假如往树中插入的元素有序或者接近有序&#xff0c;二叉搜索树就会退化成单支树&#xff0c;时间复杂度会退化成O(N)&#xff0c;因此产生了AVL树&#xff0c…...

Linux驱动开发练习案例

1 开发目标 1.1 架构图 操作系统&#xff1a;基于Linux5.10.10源码和STM32MP157开发板&#xff0c;完成tf-a(FSBL)、u-boot(SSBL)、uImage、dtbs的裁剪&#xff1b; 驱动层&#xff1a;为每个外设配置DTS并且单独封装外设驱动模块。其中电压ADC测试&#xff0c;采用linux内核…...

Redis 下载 — Ubuntu22.04稳定版,配置

官方文档 &#xff1a; https://redis.io/docs/latest/operate/oss_and_stack/install/install-redis/ Nano学习 &#xff1a; 【Linux环境下最先应该掌握的文本编辑器nano】https://www.bilibili.com/video/BV1p8411z7dJ?vd_source5ce003da2a16f44ea73ec9bbc30389e4 Redis配置…...

有没有可以帮助理解高数的视频或者书籍资料?

高数的学习是一个入门很高&#xff0c;但是一旦入门之后&#xff0c;就会变得比较简单的科目。 可是&#xff0c;我们应该怎么入门高数呢&#xff1f;在当年刚开始学习高数的时候&#xff0c;我也有过这样的困惑。 但是&#xff0c;后来我发现&#xff0c;我总是可以在经历一…...

了解拦截器

目录 什么是拦截器 拦截器的基本使用 拦截器的使用步骤 拦截器路径设置 拦截器执行流程 一、什么是拦截器 拦截器是Spring框架提供的核心功能之一&#xff0c;主要用来拦截用户的请求&#xff0c;在指定方法前后&#xff0c;根据业务需要执行预先设定的代码。 开发人员可以…...

Linux / Windows 下 Mamba / Vim / Vmamba 安装教程及安装包索引

目录 背景0. 前期环境查询/需求分析1. Linux 平台1.1 Mamba1.2 Vim1.3 Vmamba 2. Windows 平台2.1 Mamba2.1.1 Mamba 12.1.2 Mamba 2- 治标不治本- 终极版- 高算力版 2.2 Vim- 治标不治本- 终极版- 高算力版 2.3 Vmamba- 治标不治本- 终极版- 高算力版 3. Linux / Windows 双平…...

prism WPF 对话框

项目结构 1.创建对话框 用户控件 Views \ DialogView.xaml <UserControl x:Class"PrismWpfApp.Views.DialogView"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"…...

eventEmitter实现

没有做任何异常处理,简单模拟实现 事件对象的每一个事件都对应一个数组 /*__events {"事件1":[cb1,cb2],"事件2":[cb3,cb4],"事件3":[...],"事件4":[...],};*/class E{__events {};constructor(){}//注册监听回调on(type , callbac…...

Koordinator-NodeInfoCollector

Run 每秒执行一次 func (n *nodeInfoCollector) Run(stopCh <-chan struct{}) {go wait.Until(n.collectNodeInfo, n.collectInterval, stopCh) }collectNodeInfo() 采集node cpu信息采集node numa信息func (n *nodeInfoCollector) collectNodeInfo() {started := time.No…...

洛谷题单3-P5724 【深基4.习5】求极差 最大跨度值 最大值和最小值的差-python-流程图重构

题目描述 给出 n n n 和 n n n 个整数 a i a_i ai​&#xff0c;求这 n n n 个整数中的极差是什么。极差的意思是一组数中的最大值减去最小值的差。 输入格式 第一行输入一个正整数 n n n&#xff0c;表示整数个数。 第二行输入 n n n 个整数 a 1 , a 2 … a n a_1,…...

SignalR给特定User发送消息

1、背景 官网上SignalR的demo很详细&#xff0c;但是有个特别的问题&#xff0c;就是没有详细阐述如何给指定的用户发送消息。 2、解决思路 网上整体解决思路有三个&#xff1a; 1、最简单的方案&#xff0c;客户端连接SignalR的Hub时&#xff0c;只是简单的连接&#xff0c…...

新浪财经股票每天10点自动爬取

老规矩还是先分好三步&#xff0c;获取数据&#xff0c;解析数据&#xff0c;存储数据 因为股票是实时的&#xff0c;所以要加个cookie值&#xff0c;最好分线程或者爬取数据时等待爬取&#xff0c;不然会封ip 废话不多数&#xff0c;直接上代码 import matplotlib import r…...

【CSP】202403-1词频统计

文章目录 算法思路1. 数据结构选择2. 输入处理3. 统计出现的文章数4. 输出结果 代码示例代码优化 样例输入 4 3 5 1 2 3 2 1 1 1 3 2 2 2 2 3 2样例输出 2 3 3 6 2 2算法思路 1. 数据结构选择 vector<int>&#xff1a;用于存储每篇文章的单词列表&#xff08;可能包含…...

CentOs系统部署DNS服务

1. 安装 Bind 软件包 首先需要安装bind以及相关的工具包&#xff0c;在终端中执行以下命令&#xff1a; bash sudo yum install bind bind-utils -y2. 配置主配置文件 Bind 的主配置文件是/etc/named.conf&#xff0c;你可以使用文本编辑器&#xff08;如vim&#xff09;打开…...

LintCode第974题-求矩阵各节点的最短路径(以0为标准)

描述 给定一个由0和1组成的矩阵&#xff0c;求每个单元格最近的0的距离。 两个相邻细胞之间的距离是1。 给定矩阵的元素数不超过10,000。 在给定的矩阵中至少有一个0。 单元格在四个方向上相邻:上&#xff0c;下&#xff0c;左和右。 样例 例1: 输入: [[0,0,0],[0,0,0],[0…...

吴恩达深度学习复盘(6)神经网络的矢量化原理

矢量化基础是线性运算&#xff0c;这里先简单复习一下。线性基本运算基本没什么&#xff0c;大量使用的有点乘和叉乘。 基本例子 1. 矩阵的基本概念 - 矩阵可以看作是一个块或者二维数组&#xff0c;这是对矩阵的一个在计算机计算的直观描述。 2. 向量的点积&#xff08;内积…...

ISIS多区域配置

一、什么是ISIS多区域 ISIS&#xff08;Intermediate System to Intermediate System&#xff09;多区域是指网络被划分为多个逻辑区域&#xff08;Areas&#xff09;&#xff0c;不同区域之间通过特定的ISIS路由器&#xff08;Level-1-2&#xff09;进行路由交互。多区域设计提…...

The emulator process for AVD xxx has terminated

问题描述 离线环境下部署Android虚拟机&#xff0c;启动时报错The emulator process for AVD xxx has terminated&#xff0c;其中xxx为虚拟机名称。 解决过程 可先在C:\Users\admin\AppData\Local\Google\AndroidStudio2024.3\log目录下找到idea.log文件&#xff0c;其中记录…...

Haskell语言的区块链扩展性

Haskell语言的区块链扩展性研究 引言 区块链技术近年来在金融、供应链、物联网等多个领域取得了显著的进展。作为一种分布式账本技术&#xff0c;区块链的核心在于其去中心化、不可篡改和透明性。然而&#xff0c;随着应用的不断深入&#xff0c;区块链面临着可扩展性、性能、…...

第11/100节:三点估算

第11/100节&#xff1a;三点估算 三、完成某信息系统集成项目中的一个最基本的工作单元 A 所需的时间&#xff0c;乐观的估计需 8 天&#xff0c;悲观的估计需 38天&#xff0c;最可能的估计需 20 天&#xff0c;按照三点估算方法进行估算&#xff0c;项目的工期应该为&#xf…...

Tourists

一道圆方树恶心题&#xff0c;*3200&#xff0c;不知道为什么不评黑。 这道题很容易直接想到圆方树&#xff1a;因为两个操作如果在树上&#xff0c;都需要树链剖分 线段树维护。而将这么一个普通图转化为一棵树&#xff0c;也就只有圆方树这种形式了。 于是就可以综合使用圆…...

【动态规划】深入动态规划:连续子结构的算法剖析

文章目录 前言例题一、最大子数组和二、环形子数组的最大和三、 乘积最大子数组四、乘积为正数的最长子数组五、等差数列划分六、最长湍流子数组七、单词拆分八、环绕字符串中唯一的子字符串 结语 前言 什么是是动态规划连续子数组、子串系列算法问题? 连续子数组问题通常聚焦…...

结肠镜3D视频数据集-C3VD论文中文版

文章目录 标题作者摘要一、介绍1.1. 相关工作1.1.1. 内镜重建数据集1.1.2. 注册真实和虚拟内窥镜图像1.1.3. 2D-3D注册1.2. 贡献 二、方法2.1. 幻影模型生产2.2. 数据采集2.3. 注册流程概述2.3.1. 数据预处理2.3.2. 目标深度估计2.3.3. 渲染深度帧2.3.4. 边缘损失和优化 2.4. 模…...

封装自己的api签名sdk

api平台接口调用&#xff0c;需要通过签名去核对是不是有效的用户&#xff0c;&#xff0c;一般会给两个key&#xff0c;acceeKey 和 secretKey,第一个相当于用户名&#xff0c;第二个相当于密钥&#xff0c;&#xff0c;&#xff0c;前端通过一定的算法&#xff0c;&#xff0…...

ASP.NET Core Web API 中 HTTP状态码的分类及对应的返回方法

文章目录 前言一、HTTP状态码分类及常用方法二、具体返回方法示例1&#xff09; 2xx 成功类2&#xff09;4xx 客户端错误3&#xff09;5xx 服务器错误4&#xff09;其他特殊状态码 三、高级返回方式1&#xff09;使用 IActionResult 与 ActionResult<T>2&#xff09;统一…...

函数和模式化——python

一、模块和包 将一段代码保存为应该扩展名为.py 的文件&#xff0c;该文件就是模块。Python中的模块分为三种&#xff0c;分别为&#xff1a;内置模块、第三方模块和自定义模块。 内置模块和第三方模块又称为库内置模块&#xff0c;有 python 解释器自带&#xff0c;不用单独安…...

LeetCode 1817 查找用户活跃分钟数

深入剖析 LeetCode 用户活跃分钟数统计问题 一、题目详情 给定用户在 LeetCode 的操作日志&#xff0c;日志以二维整数数组logs表示&#xff0c;其中每个logs[i][IDi, timei]&#xff0c;意味着 ID 为IDi的用户在timei分钟时执行了某个操作。多个用户能够同时执行操作&#x…...

matlab从pytorch中导入LeNet-5网络框架

文章目录 一、Pytorch的LeNet-5网络准备二、保存用于导入matlab的model三、导入matlab四、用matlab训练这个导入的网络 这里演示从pytorch的LeNet-5网络导入到matlab中进行训练用。 一、Pytorch的LeNet-5网络准备 根据LeNet-5的结构图&#xff0c;我们可以写如下结构 import…...

网络:华为HCIA学习笔记:ICMP协议

ICMP&#xff08;Internet Control Message Protocol&#xff09;Internet控制消息协议 前言ICMPICMP重定向ICMP差错监测ICMP错误报告ICMP数据包格式ICMP消息类型和编码类型ICMP应用-PingICMP应用-Tracert 总结 前言 Internet控制消息协议ICMP (Internet Control Message Prot…...

Visio | 将(.vsdx)导出为更清楚/高质量的图片(.png) | 在Word里面的visio图

此时大家在用Visio画完图直接复制到word里面后&#xff0c;如果后期需要重新保存高清图片&#xff0c;但是此时图片在word&#xff0c;是不是很多人会选择直接crtlA截图复制&#xff0c;这样出来的图又不清晰又小&#xff0c;完全不符合你导的审美&#xff0c;接下来跟着我&…...

算法设计学习8

实验目的及要求&#xff1a; 通过深入学习树&#xff08;Tree&#xff09;和二叉树&#xff08;Binary Tree&#xff09;这两种重要的数据结构&#xff0c;掌握它们的基本概念、性质和操作&#xff0c;提高对树形结构的理解和应用能力。通过本实验&#xff0c;学生将深化对树和…...

Dive into Deep Learning - 2.4. Calculus (微积分)

Dive into Deep Learning - 2.4. Calculus {微积分} 1. Derivatives and Differentiation (导数和微分)1.1. Visualization Utilities 2. Chain Rule (链式法则)3. DiscussionReferences 2.4. Calculus https://d2l.ai/chapter_preliminaries/calculus.html For a long time, …...

kotlin中const 和val的区别

在 Kotlin 中&#xff0c;const 和 val 都是用来声明常量的&#xff0c;但它们的使用场景和功能有所不同&#xff1a; 1. val: val 用于声明只读变量&#xff0c;也就是不可修改的变量&#xff08;类似于 Java 中的 final 变量&#xff09;。它可以是任何类型&#xff0c;包括…...

Webpack中loader的作用。

文章目录 前言1. 处理样式文件2. 处理 JavaScript 文件3. 处理其他文件总结 前言 在 Webpack 中&#xff0c;Loader 是用于对模块的源代码进行转换的工具&#xff0c;它能够将不同类型的文件&#xff08;如 CSS、图片、字体、TypeScript 等&#xff09;转换为有效的 JavaScrip…...

C++ 极简常用内容

C 极简常用内容 1. 类与对象 定义&#xff1a;封装数据&#xff08;成员变量&#xff09;和行为&#xff08;成员函数&#xff09;的自定义类型。 Demo&#xff1a; class Car { public:string brand;void drive() { cout << brand << " is moving." …...

如何在windows 环境、且没有显卡的情况下用python跑通从ModelScope下载的大模型的调用

文章目录 背景介绍源代码&#xff1a;安装调试过程1.设置第三方镜像源2.预先安装&#xff1a;3.在python中创建代码&#xff1a;4.最终修改程序,将device_map从“cuda”改成“auto”&#xff0c;大模型调用1.5B&#xff08;1___5B)的5.最终跑出结果解释&#xff1a;示例&#x…...