当前位置: 首页 > news >正文

QT网络通信的接口与使用


文章目录

  • 前言
  • 1.服务端实现流程
    • 1.1步骤 1:创建 QTcpServer 并监听端口
    • 1.2步骤 2:处理新连接请求
    • 1.3步骤 3:接收客户端数据
    • 1.4步骤 4:处理客户端断开
  • 2.客户端实现流程
    • 2.1步骤 1:创建 QTcpSocket 并连接服务器
    • 2.2步骤 2:发送数据
    • 2.3步骤 3:接收服务器回复
    • 2.4步骤 4:处理连接和错误
  • 3.关键注意事项
  • 4.TCP粘包问题及其处理
    • 4.1TCP粘包是什么
    • 4.2TCP粘包为什么会产生
    • 4.3TCP粘包的解决方案


前言

在Qt中实现TCP通信主要依赖 QTcpServer(服务端)和 QTcpSocket(客户端和服务端通信)类。

TCP/IP通信(即SOCKET通信)是通过网线将服务器Server端和客户机Client端进行连接,在遵循ISO/OSI模型的四层层级构架的基础上通过TCP/IP协议建立的通讯。控制器可以设置为服务器端或客户端。

服务端(简化版)

class MyServer : public QObject {Q_OBJECT
public:MyServer(QObject *parent = nullptr) : QObject(parent) {server = new QTcpServer(this);connect(server, &QTcpServer::newConnection, this, &MyServer::onNewConnection);server->listen(QHostAddress::Any, 8888);}private slots:void onNewConnection() { /* ... */ }void onReadyRead() { /* ... */ }void onDisconnected() { /* ... */ }private:QTcpServer *server;QList<QTcpSocket*> m_clients;
};

客户端(简化版)

class MyClient : public QObject {Q_OBJECT
public:MyClient(QObject *parent = nullptr) : QObject(parent) {socket = new QTcpSocket(this);connect(socket, &QTcpSocket::connected, this, &MyClient::onConnected);connect(socket, &QTcpSocket::readyRead, this, &MyClient::onReadyRead);socket->connectToHost("127.0.0.1", 8888);}void send(const QString &message) {socket->write(message.toUtf8());}private slots:void onConnected() { /* ... */ }void onReadyRead() { /* ... */ }private:QTcpSocket *socket;
};

运行效果
服务端启动后监听端口,客户端连接并发送数据。
服务端接收数据并回复,客户端显示回复内容。
断开连接后资源自动释放。

1.服务端实现流程

1.1步骤 1:创建 QTcpServer 并监听端口

// 创建TCP服务端对象
QTcpServer *server = new QTcpServer(this);// 监听所有IP的指定端口(例如8888)
if (!server->listen(QHostAddress::Any, 8888)) {qDebug() << "Server could not start. Error:" << server->errorString();
} else {qDebug() << "Server started on port 8888";
}

1.2步骤 2:处理新连接请求

当客户端连接时,QTcpServer 会触发 newConnection 信号,需通过槽函数处理:

// 连接信号到槽函数
connect(server, &QTcpServer::newConnection, this, &MyServer::onNewConnection);// 槽函数实现
void MyServer::onNewConnection() {// 获取新连接的socket对象QTcpSocket *socket = server->nextPendingConnection();// 存储socket以便后续通信(例如添加到列表)m_clients.append(socket);// 处理客户端数据到达的信号connect(socket, &QTcpSocket::readyRead, this, &MyServer::onReadyRead);// 处理断开连接的信号connect(socket, &QTcpSocket::disconnected, this, &MyServer::onDisconnected);
}

1.3步骤 3:接收客户端数据

通过 readyRead 信号读取数据:

void MyServer::onReadyRead() {QTcpSocket *socket = qobject_cast<QTcpSocket*>(sender());if (!socket) return;QByteArray data = socket->readAll();qDebug() << "Received data:" << data;// 示例:回复客户端socket->write("Server received: " + data);
}

1.4步骤 4:处理客户端断开

void MyServer::onDisconnected() {QTcpSocket *socket = qobject_cast<QTcpSocket*>(sender());if (!socket) return;m_clients.removeOne(socket);socket->deleteLater();qDebug() << "Client disconnected";
}

2.客户端实现流程

2.1步骤 1:创建 QTcpSocket 并连接服务器

QTcpSocket *socket = new QTcpSocket(this);// 连接服务器(假设服务器IP为127.0.0.1,端口8888)
socket->connectToHost("127.0.0.1", 8888);// 监听连接成功信号
connect(socket, &QTcpSocket::connected, this, &MyClient::onConnected);// 监听数据到达信号
connect(socket, &QTcpSocket::readyRead, this, &MyClient::onReadyRead);// 监听错误信号
connect(socket, &QTcpSocket::errorOccurred, this, &MyClient::onError);

2.2步骤 2:发送数据

void MyClient::sendData(const QByteArray &data) {if (socket->state() == QAbstractSocket::ConnectedState) {socket->write(data);socket->flush(); // 确保立即发送}
}

2.3步骤 3:接收服务器回复

void MyClient::onReadyRead() {QByteArray data = socket->readAll();qDebug() << "Server response:" << data;
}

2.4步骤 4:处理连接和错误

void MyClient::onConnected() {qDebug() << "Connected to server!";
}void MyClient::onError(QAbstractSocket::SocketError error) {qDebug() << "Error:" << socket->errorString();
}

3.关键注意事项

  1. 异步通信:
    Qt的TCP操作基于事件循环,所有操作(连接、读写)都是异步的,需通过信号槽处理结果。

  2. 数据分包与粘包:
    TCP是流式协议,需自行处理数据边界(例如定义协议头尾或使用长度前缀)。

  3. 资源管理:
    及时释放断开连接的 QTcpSocket 对象(调用 deleteLater)。

  4. 跨线程操作:
    若在多线程中使用,需将 QTcpSocket 或 QTcpServer 移至子线程(使用 moveToThread)。

4.TCP粘包问题及其处理

4.1TCP粘包是什么

TCP的粘包和拆包问题往往出现在基于TCP协议的通讯中,比如RPC框架、Netty等。

TCP在接受数据的时候,有一个滑动窗口来控制接受数据的大小,这个滑动窗口你就可以理解为一个缓冲区的大小。缓冲区满了就会把数据发送。数据包的大小是不固定的,有时候比缓冲区大有时候小。
如果一次请求发送的数据量比较小,没达到缓冲区大小,TCP则会将多个请求合并为同一个请求进行发送,这就形成了粘包问题;
如果一次请求发送的数据量比较大,超过了缓冲区大小,TCP就会将其拆分为多次发送,这就是拆包,也就是将一个大的包拆分为多个小包进行发送。

这是最好理解的粘包问题的产生原因。还有一些其他的原因比如
1   客户端的发送频率远高于服务器的接收频率,就会导致数据在服务器的tcp接收缓冲区滞留形成粘连,比如客户端1s内连续发送了两个hello world!,服务器过了2s才接收数据,那一次性读出两个hello world!。
2   tcp底层的安全和效率机制不允许字节数特别少的小包发送频率过高,tcp会在底层累计数据长度到一定大小才一起发送,比如连续发送1字节的数据要累计到多个字节才发送,可以了解下tcp底层的Nagle算法。
3   再就是我们提到的最简单的情况,发送端缓冲区有上次未发送完的数据或者接收端的缓冲区里有未取出的数据导致数据粘连。
在这里插入图片描述

4.2TCP粘包为什么会产生

1.TCP会发生粘包问题:TCP 是面向连接的传输协议,TCP 传输的数据是以流的形式,而流数据是没有明确的开始结尾边界,所以 TCP 也没办法判断哪一段流属于一个消息;TCP协议是流式协议;所谓流式协议,即协议的内容是像流水一样的字节流,内容与内容之间没有明确的分界标志,需要认为手动地去给这些协议划分边界。
粘包时:发送方每次写入数据 < 接收方套接字(Socket)缓冲区大小。
拆包时:发送方每次写入数据 > 接收方套接字(Socket)缓冲区大小。

2.UDP不会发生粘包问题:UDP具有保护消息边界,在每个UDP包中就有了消息头(UDP长度、源端口、目的端口、校验和)。
粘包拆包问题在数据链路层、网络层以及传输层都有可能发生。日常的网络应用开发大都在传输层进行,由于UDP有消息保护边界,不会发生粘包拆包问题,因此粘包拆包问题只发生在TCP协议中

4.3TCP粘包的解决方案

  1. 客户端在发送数据包的时候,每个包都固定长度,比如1024个字节大小,如果客户端发送的数据长度不足1024个字节,则通过补充空格的方式补全到指定长度;
  2. 客户端在每个包的末尾使用固定的分隔符,例如\r\n,如果一个包被拆分了,则等待下一个包发送过来之后找到其中的\r\n,然后对其拆分后的头部部分与前一个包的剩余部分进行合并,这样就得到了一个完整的包;
  3. 将消息分为头部和消息体,在头部中保存有当前整个消息的长度,只有在读取到足够长度的消息之后才算是读到了一个完整的消息;
  4. 通过自定义协议进行粘包和拆包的处理。

优缺点分析

  • 解决方案1:固定数据大小
    虽然这种方式可以解决粘包问题,但这种固定数据大小的传输方式,当数据量比较小时会使用空字符来填充,所以会额外的增加网络传输的负担,因此不是理想的解决方案。
  • 解决方案2:特殊字符结尾
    以特殊符号作为粘包的解决方案的最大优点是实现简单,但存在一定的局限性,比如当一条消息中间如果出现了结束符就会造成半包的问题,所以如果是复杂的字符串要对内容进行编码和解码处理,这样才能保证结束符的正确性。
  • 解决方案4:设置消息头
    此解决方案可以解决粘包问题,并且对于空间的利用也相对高
  • 解决方案4:自定义请求协议
    此解决方案虽然可以解决粘包问题,但消息的设计和代码的实现复杂度比较高,所以也不是理想的解决方案

相关文章:

QT网络通信的接口与使用

文章目录 前言1.服务端实现流程1.1步骤 1&#xff1a;创建 QTcpServer 并监听端口1.2步骤 2&#xff1a;处理新连接请求1.3步骤 3&#xff1a;接收客户端数据1.4步骤 4&#xff1a;处理客户端断开 2.客户端实现流程2.1步骤 1&#xff1a;创建 QTcpSocket 并连接服务器2.2步骤 2…...

基于生成对抗网络(GAN)的图像超分辨率重建:技术与应用

图像超分辨率重建(Super-Resolution, SR)是计算机视觉领域的重要任务,旨在从低分辨率图像中恢复出高分辨率图像。这一技术在医学影像、卫星图像、视频增强等领域具有广泛的应用价值。传统的超分辨率方法依赖于插值或基于模型的重建,效果有限。近年来,生成对抗网络(GAN)通…...

【spring对bean Request和Session的管理流程】

在 Spring 框架中&#xff0c;除了常见的 单例&#xff08;Singleton&#xff09; 和 原型&#xff08;Prototype&#xff09; 作用域外&#xff0c;还支持 Request 和 Session 作用域。这两种作用域主要用于 Web 应用程序中&#xff0c;分别表示 Bean 的生命周期与 HTTP 请求或…...

FastGPT原理分析-数据集创建第二步:处理任务的执行

概述 文章《FastGPT原理分析-数据集创建第一步》已经分析了数据集创建的第一步&#xff1a;文件上传和预处理的实现逻辑。本文介绍文件上传后&#xff0c;数据处理任务的具体实现逻辑。 数据集创建总体实现步骤 从上文可知数据集创建总体上来说分为两大步骤&#xff1a; &a…...

AI重构SEO关键词优化路径

内容概要 人工智能技术的深度应用正在推动SEO优化进入全新阶段。传统关键词优化依赖人工经验与静态规则&#xff0c;存在效率瓶颈与策略滞后性缺陷。AI技术通过智能语义分析系统&#xff0c;能够穿透表层词汇限制&#xff0c;精准捕捉用户搜索意图的语义关联网络&#xff0c;结…...

VMWare Ubuntu 详细安装教程

VMWare Ubuntu 详细安装教程 一、下载安装VMware二、下载 Ubuntu 镜像文件三、安装 Ubuntu四、开启虚拟机 一、下载安装VMware 官网下载地址https://www.vmware.com/products/desktop-hypervisor/workstation-and-fusion知乎大佬的博客原文&#xff0c;含下载地址https://zhua…...

SystemVerilog 数据类型

1、内建数据类型 verilog有两种基本的数据类型&#xff1a;变量和线网&#xff0c;他们各自都可以有四种取值&#xff1a;0 1 z x&#xff1b; RTL代码使用 变量 来存放组合和时序值&#xff1b;变量可以是单bit或者是多bit的无符号数 reg [7:0] m&#xff0c; 32bit的有符号…...

C语言:扫雷

在编程的世界里&#xff0c;扫雷游戏是一个经典的实践项目。它不仅能帮助我们巩固编程知识&#xff0c;还能锻炼逻辑思维和解决问题的能力。今天&#xff0c;就让我们一起用 C 语言来实现这个有趣的游戏&#xff0c;并且通过图文并茂的方式&#xff0c;让每一步都清晰易懂 1. 游…...

特殊行车记录仪DAT视频丢失的恢复方法

行车记录仪是一种常见的车载记录仪&#xff0c;和常见的“小巧玲珑”的行车记录仪不同&#xff0c;一些特种车辆使用的记录仪的外观可以用“笨重”来形容。下边我们来看看特种车载行车记录仪删除文件后的恢复方法。 故障存储: 120GB存储设备/文件系统:exFAT /簇大小:128KB 故…...

_DISPATCHER_HEADER结构中的WaitListHead和_KWAIT_BLOCK的关系

第一部分&#xff1a; // // Wait block // // begin_ntddk begin_wdm begin_nthal begin_ntifs begin_ntosp typedef struct _KWAIT_BLOCK { LIST_ENTRY WaitListEntry; struct _KTHREAD *RESTRICTED_POINTER Thread; PVOID Object; struct _KWAIT_BLOCK *R…...

智能汽车图像及视频处理方案,支持视频实时拍摄特效能力

在智能汽车日新月异的今天&#xff0c;美摄科技作为智能汽车图像及视频处理领域的先行者&#xff0c;凭借其卓越的技术实力和前瞻性的设计理念&#xff0c;为全球智能汽车制造商带来了一场视觉盛宴的革新。美摄科技推出智能汽车图像及视频处理方案&#xff0c;一个集高效性、智…...

Rust + 时序数据库 TDengine:打造高性能时序数据处理利器

引言&#xff1a;为什么选择 TDengine 与 Rust&#xff1f; TDengine 是一款专为物联网、车联网、工业互联网等时序数据场景优化设计的开源时序数据库&#xff0c;支持高并发写入、高效查询及流式计算&#xff0c;通过“一个数据采集点一张表”与“超级表”的概念显著提升性能…...

Android Audio基础(13)——audiomixer

在 Android 平台上&#xff0c;音频混合器 AudioMixer 主要用在 AudioFlinger 里&#xff0c;将多路音频源数据混音&#xff08;包括混音、音量处理、重采样及处理声道等&#xff09;。位于 framework 的音频处理模库 libaudioprocessing&#xff08;frameworks/av/media/libau…...

vivo 湖仓架构的性能提升之旅

作者&#xff1a;郭小龙 vivo互联网 大数据高级研发工程师 导读&#xff1a;本文整理自 vivo互联网 大数据高级研发工程师 郭小龙 在 StarRocks 年度峰会上的分享&#xff0c;聚焦 vivo 大数据多维分析面临的挑战、StarRocks 落地方案及应用收益。 在 即席分析 场景&#xff0c…...

常见中间件漏洞攻略-Tomcat篇

一、 CVE-2017-12615-Tomcat put方法任意文件写入漏洞 第一步&#xff1a;开启靶场 第二步&#xff1a;在首页抓取数据包&#xff0c;并发送到重放器 第三步&#xff1a;先上传尝试一个1.txt进行测试 第四步&#xff1a;上传后门程序 第五步&#xff1a;使用哥斯拉连接 二、后…...

基于linuxC结合epoll + TCP 服务器客户端 + 数据库实现一个注册登录功能

1. 整体功能概述 实现了一个简单的用户注册和登录系统&#xff0c;采用客户端 - 服务器&#xff08;C/S&#xff09;架构。 客户端可以选择注册或登录操作&#xff0c;将用户名和密码发送给服务器&#xff0c;服务器接收请求后处理并返回相应的结果给客户端。 服务器使用 SQLit…...

redis7.4.2单机配置

解压源码包 将从官网下载的redis源码压缩包上传到服务器的相关目录下。 [roothcss-ecs-2851 ~]# cd /opt/soft/redis/ [roothcss-ecs-2851 redis]# ls redis-stable.tar.gz解压并进入解压后的目录中。 [roothcss-ecs-2851 redis]# tar -zxvf redis-stable.tar.gz [roothcss-…...

Unity代码热更新和资源热更新

知识点来源&#xff1a;人间自有韬哥在&#xff0c;hybridclr,豆包 目录 一、代码热更新1.代码热更新概述2.HybridCLR 二、资源热更新1.资源热更新概述2.AB包2.1.AB包的加载2.2.卸载AB包2.3.加载AB包依赖包2.4.获取MD52.5.生成对比文件2.6.更新AB包 3.Addressable3.1.AssetRef…...

【MySQL篇】DEPENDENT SUBQUERY(依赖性子查询)优化:从百秒到秒级响应的四种优化办法

&#x1f4ab;《博主介绍》&#xff1a;✨又是一天没白过&#xff0c;我是奈斯&#xff0c;从事IT领域✨ &#x1f4ab;《擅长领域》&#xff1a;✌️擅长阿里云AnalyticDB for MySQL(分布式数据仓库)、Oracle、MySQL、Linux、prometheus监控&#xff1b;并对SQLserver、NoSQL(…...

腾讯四面面经

说明 是的&#xff0c;没听错&#xff0c;确实是腾讯四面&#xff0c;而且是技术面。先声明下&#xff0c;这个面经是帮朋友整理的&#xff0c;都是真实的面经&#xff0c;不得不说&#xff0c;四面确实是有强的的&#xff0c;接下来让我们一起看下 面试部门&#xff1a;s3&a…...

【mysql】唯一性约束unique

文章目录 唯一性约束 1. 作用2. 关键字3. 特点4. 添加唯一约束5. 关于复合唯一约束 唯一性约束 1. 作用 用来限制某个字段/某列的值不能重复。 2. 关键字 UNIQUE3. 特点 同一个表可以有多个唯一约束。唯一约束可以是某一个列的值唯一&#xff0c;也可以多个列组合的值唯…...

如何理解前端工程化

前端工程化详解 一、 定义二、特点1. 模块化‌2. 组件化‌3. 自动化4. 规范化‌ 三、涉及环节1. 项目架构‌2. 版本控制&#xff1a;3.自动化构建4.任务自动化5. 部署与CI/CD‌ 五、 前端工程化的实际应用六、前端工程化的优势:七、总结‌ 一、 定义 前端工程化是指将前端开发…...

嵌入式八股RTOS与Linux---进程间的通信与同步篇

前言 同步异步、阻塞/非阻塞是什么? 同步:在执行某个操作时&#xff0c;调用者必须等待该操作完成并返回结果后&#xff0c;才能继续执行后续的操作异步:在执行某个操作时&#xff0c;调用者发起操作后不必等待其完成&#xff0c;可以立即继续执行后续的操作。操作完成后&am…...

this.centerDialogVisible = true this.$nextTick(()=>{ this.resetForm(); })

这段代码的作用是 打开一个对话框&#xff0c;并在对话框打开后 重置表单。下面是对这段代码的详细解析&#xff1a; 1. 代码作用 this.centerDialogVisible true&#xff1a;控制对话框的显示。this.$nextTick(() > { ... })&#xff1a;在 DOM 更新后执行回调函数&#…...

datawhale组队学习--大语言模型—task4:Transformer架构及详细配置

第五章 模型架构 在前述章节中已经对预训练数据的准备流程&#xff08;第 4 章&#xff09;进行了介绍。本章主 要讨论大语言模型的模型架构选择&#xff0c;主要围绕 Transformer 模型&#xff08;第 5.1 节&#xff09;、详细 配置&#xff08;第 5.2 节&#xff09;、主流架…...

专业级 AI 提示生成工具清单

1. 引言 近年来&#xff0c;随着 GPT-3、GPT-4 等大规模预训练语言模型的广泛应用&#xff0c;提示&#xff08;Prompt&#xff09;工程作为驱动模型输出质量的重要环节&#xff0c;受到了各界的高度关注。精心设计、管理与优化提示&#xff0c;不仅能够大幅提高生成文本的准确…...

Web前端考核 JavaScript知识点详解

一、JavaScript 基础语法 1.1 变量声明 关键字作用域提升重复声明暂时性死区var函数级✅✅❌let块级❌❌✅const块级❌❌✅ 1.1.1变量提升的例子 在 JavaScript 中&#xff0c;var 声明的变量会存在变量提升的现象&#xff0c;而 let 和 const 则不会。变量提升是指变量的声…...

23种设计模式-生成器(Builder)设计模式

工厂方法设计模式 &#x1f6a9;什么是生成器设计模式&#xff1f;&#x1f6a9;生成器设计模式的特点&#x1f6a9;生成器设计模式的结构&#x1f6a9;生成器设计模式的优缺点&#x1f6a9;生成器设计模式的Java实现&#x1f6a9;代码总结&#x1f6a9;总结 &#x1f6a9;什么…...

Thinkphp(TP)框架漏洞攻略

1.环境搭建 vulhub/thinkphp/5-rce docker-compose up -d 2.访问靶场 远程命令执行&#xff1a; ? sindex/think\app/invokefunction&functioncall_user_func_array&vars[0]system&vars[1] []whoami 远程代码执行&#xff1a; ? s/Index/\think\app/invokefunc…...

HTTP/HTTPS 中 GET 请求和 POST 请求的区别与联系

一、基础概念 HTTP (HyperText Transfer Protocol, 超文本传输协议) 是一种用于浏览器与服务器之间进行数据交互的协议。HTTPS (加密的 HTTP) 则通过 SSL/TLS 协议实现通信加密与数据安全性。 二、GET 和 POST 概述 GET 请求: 用于从服务器获取资源。 POST 请求: 用于将数据…...

2021年蓝桥杯第十二届CC++大学B组真题及代码

目录 1A&#xff1a;空间&#xff08;填空5分_单位转换&#xff09; 2B&#xff1a;卡片&#xff08;填空5分_模拟&#xff09; 3C&#xff1a;直线&#xff08;填空10分_数学排序&#xff09; 4D&#xff1a;货物摆放&#xff08;填空10分_质因数&#xff09; 5E&#xf…...

解锁 AWX+Ansible 自动化运维新体验:快速部署实战

Ansible 和 AWX 是自动化运维领域的强大工具组合。Ansible 是一个简单高效的 IT 自动化工具&#xff0c;而 AWX 则是 Ansible 的开源 Web 管理平台&#xff0c;提供图形化界面来管理 Ansible 任务。本指南将带你一步步在 Ubuntu 22.04 上安装 Ansible 和 AWX&#xff0c;使用 M…...

简洁、实用、无插件和更安全为特点的WordPress主题

简站WordPress主题是一款以简洁、实用、无插件和更安全为特点的WordPress主题&#xff0c;自2013年创立以来&#xff0c;凭借其设计理念和功能优势&#xff0c;深受用户喜爱。以下是对简站WordPress主题的详细介绍&#xff1a; 1. 设计理念 简站WordPress主题的核心理念是“崇…...

区块链学习总结

Hardhat 是一个用于 Ethereum 智能合约开发 的开发环境&#xff0c;专为 Solidity 语言编写的智能合约提供工具支持。它能够帮助开发者 编译、部署、测试和调试 智能合约&#xff0c;并提供一个本地的以太坊测试网络。 Hardhat 的核心功能 本地开发网络&#xff08;Hardhat Ne…...

可发1区的超级创新思路(python\matlab实现):基于周期注意力机制的TCN-Informer时间序列预测模型

首先声明,该模型为原创!原创!原创!且该思路还未有成果发表,感兴趣的小伙伴可以借鉴! 一、应用场景 该模型主要用于时间序列数据预测问题,包含功率预测、电池寿命预测、电机故障检测等等 二、模型整体介绍(本文以光伏功率预测为例) 1.1 核心创新点 本模型通过三阶段…...

案例4:鸢尾花分类(pytorch)

一、引言 鸢尾花分类是机器学习领域的经典案例&#xff0c;常用于演示分类算法的基本原理和应用。本案例使用 PyTorch 构建一个简单的神经网络模型&#xff0c;对鸢尾花进行分类。通过该案例&#xff0c;我们可以学习如何使用 PyTorch 进行数据处理、模型构建、训练和评估&…...

本地部署Stable Diffusion生成爆火的AI图片

直接上代码 Mapping("/send") Post public Object send(Body String promptBody) { JSONObject postSend new JSONObject(); System.out.println(promptBody); JSONObject body JSONObject.parseObject(promptBody); List<S…...

CCF-CSP历年真题答案1,2

本文代码主要来自up主圣斗士-DS-ALGO对历年真题的讲解&#xff0c;在此特别感谢。 侵权则删。 10.1_分蛋糕_2017_03 #include <iostream> using namespace std;int main() {int a[1000], n, k; // 定义数组a用于存储蛋糕的重量&#xff0c;整数n表示蛋糕的数量&#xf…...

【MySQL】一篇讲懂什么是聚簇索引和非聚簇索引(二级索引)以及什么是回表?

1.聚簇索引&#xff1a; 叶子节点直接存储了完整的数据行。 每个表只能有一个聚簇索引&#xff0c;通常是主键(Primary Key)。如果没有定义主键&#xff0c;则MySQL会选择一个唯一且非空索引作为聚簇索引。 特点&#xff1a; 数据存储&#xff1a;叶子结点存储完整的数据行…...

炫酷的HTML5粒子动画特效实现详解

炫酷的HTML5粒子动画特效实现详解 这里写目录标题 炫酷的HTML5粒子动画特效实现详解项目介绍技术栈项目架构1. HTML结构2. 样式设计 核心实现1. 粒子类设计2. 动画效果实现星空效果烟花效果雨滴效果 3. 鼠标交互 性能优化效果展示总结 项目介绍 本文将详细介绍如何使用HTML5 C…...

go-zero学习笔记

内容不多&#xff0c;只有部分笔记&#xff0c;剩下的没有继续学下去&#xff0c;包括路由与处理器、日志中间件、请求上下文 文章目录 1、go-zero核心库1.1 路由与处理器1.2 日志中间件1.3 请求上下文 1、go-zero核心库 1.1 路由与处理器 package mainimport ("github…...

QuecPython 网络协议之TCP/UDP协议最祥解析

概述 IP 地址与域名 IP 地址是网络中的主机地址&#xff0c;用于两台网络主机能够互相找到彼此&#xff0c;这也是网络通信能够成功进行的基础。IP 地址一般以点分十进制的字符串来表示&#xff0c;如192.168.1.1。 ​ 我们日常访问的网站&#xff0c;其所在的服务器主机都有…...

FPGA_YOLO(二)

上述对cnn卷积神经网络进行介绍,接下来对YOLO进行总结,并研究下怎么在FPGA怎么实现的方案。 对于一个7*7*30的输出 拥有49个cell 每一个cell都有两个bbox两个框,并且两个框所包含的信息拥有30个 4个坐标信息和一个置信度5个,剩下就是20个类别。 FPGA关于YOLO的部署 1…...

Camera2 与 CameraX 闲谈

目录 &#x1f4c2; 前言 1. &#x1f531; Camera2 2. &#x1f531; CameraX 3. &#x1f531; Camera2 与 CameraX 1&#xff09;使用复杂度与开发效率 2&#xff09;控制能力与应用场景 3&#xff09;设备兼容性与稳定性 4&#xff09;更新与维护 4. &#x1f4a0…...

【零基础入门unity游戏开发——2D篇】2D物理系统 —— 2D刚体组件(Rigidbody 2d)

考虑到每个人基础可能不一样,且并不是所有人都有同时做2D、3D开发的需求,所以我把 【零基础入门unity游戏开发】 分为成了C#篇、unity通用篇、unity3D篇、unity2D篇。 【C#篇】:主要讲解C#的基础语法,包括变量、数据类型、运算符、流程控制、面向对象等,适合没有编程基础的…...

【论文#目标检测】YOLO9000: Better, Faster, Stronger

目录 摘要1.引言2.更好&#xff08;Better&#xff09;3.更快&#xff08;Faster&#xff09;4.更健壮&#xff08;Stronger&#xff09;使用 WordTree 组合数据集联合分类和检测评估 YOLO9000 5.结论 Author: Joseph Redmon; Ali Farhadi Published in: 2017 IEEE Conference …...

C++异常处理时的异常类型抛出选择

在 C 中选择抛出哪种异常类型&#xff0c;主要取决于错误的性质以及希望传达的语义信息。以下是一些指导原则&#xff0c;帮助在可能发生异常的地方选择合适的异常类型进行抛出&#xff1a; 1. std::exception 适用场景&#xff1a;作为所有标准异常的基类&#xff0c;std::e…...

centos 7 搭建FTP user-list用户列表

在 CentOS 7 上搭建基于 user_list 的 FTP 用户列表&#xff0c;你可以按以下步骤操作&#xff1a; 1. 安装 vsftpd 服务 若还未安装 vsftpd&#xff0c;可以使用以下命令进行安装&#xff1a; bash yum install -y vsftpd2. 启动并设置开机自启 vsftpd 服务 bash systemctl…...

vulnhub-Tr0ll ssh爆破、wireshark流量分析,exp、寻找flag。思维导图带你清晰拿到所以flag

vulnhub-Tr0ll ssh爆破、wireshark流量分析&#xff0c;exp、寻找flag。思维导图带你清晰拿到所以flag 1、主机发现 arp-scan -l 2、端口扫描 nmap -sS -sV 192.168.66.185 nmap -sS -A -T4 -p- 192.168.66.185 nmap --scriptvuln 192.168.66.185经典扫描三件套&#xff0c;…...

k8s中service概述(二)NodePort

NodePort 是 Kubernetes 中一种用于对外暴露服务的 Service 类型。它通过在集群的每个节点上开放一个静态端口&#xff08;NodePort&#xff09;&#xff0c;使得外部用户可以通过节点的 IP 地址和该端口访问集群内部的服务。以下是关于 NodePort Service 的详细说明&#xff1…...