sonar代码检测研究及平台搭建
为了实现提交代码自动检测代码缺陷,本文介绍了一种将jenkins与gitlab集成的自动检测机制,如需应用于生产级开发流程,可在此基础上进行功能丰富和扩展,本文仅进行了原理性搭建。
一、基础环境准备
与sonar配合使用的jenkins和gitlab基础软件安装和部署不在本文写作范围之内,本文将假设已安装部署完毕,本文只涉及相关的设置及使用。下文涉及的sonar将基于docker搭建,关于dokcer安装部署不在本文介绍范围之内,本文将假设读者有docker基础。如需学习docker部署相关知识,见链接https://cloud.tencent.com/developer/article/1351621。
组件名 | 版本号 | |
---|---|---|
SonarQube | 6.7 | |
GitLab-Runner | 14.3.2 |
二、部署SonarQube
2.1 构建镜像
由于后续需要和gitlab集成,本文中基于6.7版本和 sonar-gitlab-plugin-3.0.2.jar 构建新的 SonarQube 镜像。
在服务创建一个sonar目录,在目录下创建Dockerfile文件,将jar包放到Dockerfile同级目录下,编辑Dockerfile文件为以下内容:
FROM sonarqube:6.7
ADD sonar-gitlab-plugin-3.0.2.jar /opt/sonarqube/extensions/plugins/
编辑完毕后,执行以下命令
docker build -t sonarqube:gitlab_1.0 .
执行命令后, docker images 查看新生成的镜像:
在终端中运行docker命令,使用sonarqube镜像运行容器,
docker run \-d \-p 9000:9000 \sonarqube:gitlab_2.0
使用 docker ps -a 查看是否部署成功,如下图显示则部署成功,访问 http://*******:9000 地址,等待出现下面界面。点击“log in”,并使用默认用户和密码 admin / admin登录。
登录成功后,按下图生成访问token。
三、集成gitlab实现代码自动检测
3.1 GitLab 用户令牌生成
在此处输入令牌名称,勾选 api 、read_user,生成的令牌需要马上保存,后续不再显示,
3.2 GitLab Runner 安装
GitLab Runner 是一个处理构建的应用程序,我们需要通过它执行我们在 GitLab CI 中定义的 Job,由于后续编写的 Job 依赖于 Maven 环境,因此选择直接在宿主机上安装 GitLab,
下载安装源:
curl -L https://packages.gitlab.com/install/repositories/runner/gitlab-runner/script.rpm.sh | sudo bash
使用yum安装
yum install gitlab-runner
安装成功后,进行gitlab-runner注册。
完成注册后,即可在刚刚的地址中看见该 Runner 的信息:
gitlab-runner register \--non-interactive \--url "http://gitlab.fingard.cn/" \--registration-token "sRm8sLqrrCSj_aR3aUZC" \--executor "shell" \--description "runner" \--tag "tag1" \--locked="false" \
参数说明:
- url :gitlab地址
- registration-token: 注册令牌
- executor :(ssh, docker+machine, docker-ssh+machine, kubernetes, docker, parallels, virtualbox, docker-ssh, shell),执行类型,可根据实际需求进行选择,一般选择shell即可。
- description : gitlab-runner的描述
- tag : 与后续编写的 .gitlab-ci.yml 中的 tags 要一致,因此需要慎重填写
3.3 集成 GitLab-CI
进入项目后,根据如图所示进行配置:
.gitlab-ci.yml 配置文件内容如下:
mage: maven:3.6.3-jdk-8variables:SONAR_TOKEN: "${sonar_token}"
# SONAR_TOKEN: "2c49ac76adf45494c22dffdf3bde025e531a9868"SONAR_HOST_URL: "http://10.60.45.170:9000"GIT_DEPTH: 0
stages:- build_push- feedback_to_gitlab#执行 SonarQube 分析,并将检测结果推送至 SonarQube
sonarqube_analysis:stage: build_push
# only:
# - merge_requests
# - masterexcept:- masterscript:- mvn --batch-mode compile sonar:sonar -Dsonar.host.url=$SONAR_HOST_URL -Dsonar.login=$SONAR_TOKENtags:- tag1
3.4 提交验证
在本地idea代码分支提交push后,触发job执行:
登录sonar页面进行代码检测结果查看:
到此为止,gitlab集成sonar进行代码自动检测配置完毕,目前存在的问题是每个项目需要独立注册专属gitlab-runner,共享型的目前存在技术问题还未解决,后续会进行补充。
3.5 问题解决
参考文档:
https://blog.csdn.net/qq_42013035/article/details/107582310
https://blog.csdn.net/weixin_34248258/article/details/92443860
checkstyle插件安装
https://github.com/checkstyle/sonar-checkstyle/releases
参数说明
https://juejin.cn/post/6971013569986953223
相关文章:
sonar代码检测研究及平台搭建
为了实现提交代码自动检测代码缺陷,本文介绍了一种将jenkins与gitlab集成的自动检测机制,如需应用于生产级开发流程,可在此基础上进行功能丰富和扩展,本文仅进行了原理性搭建。 一、基础环境准备 与sonar配合使用的jenkins和gitlab基础软件…...
清华大学:DeepSeek从入门到精通系列教程1-9讲(持续更新中)|大礼包免费下载
导 读INTRODUCTION 今天分享由清华大学新闻与传播学院、人工智能学院双聘教授沈阳老师团队倾力打造的《DeepSeek从入门到精通系列教程1-9讲(持续更新中)》,包含:《DeepSeek:从入门到精通》《DeepSeek如何赋能职场应用》…...
使用Python可视化图结构:从GraphML文件生成节点关系图(lightrag 生成)
引言 在数据可视化领域,图结构(Graph)常用于展示实体间的复杂关系。例如,文学分析中的角色关系、社交网络中的用户互动等。本文将通过一个实际案例,演示如何使用 NetworkX 和 Matplotlib 从 GraphML 文件生成节点关系…...
排序复习_代码纯享
头文件 #pragma once #include<iostream> #include<vector> #include<utility> using std::vector; using std::cout; using std::cin; using std::endl; using std::swap;//插入排序 //1、直接插入排序(稳定) void InsertSort(vecto…...
Docker Hub Mirror 终极解决方案——0成本,超高速!
CNB Docker Mirror (cdm) CNB Docker Mirror 是一个基于 CNB 的 Docker 镜像加速工具,提供本地镜像加速功能。 功能特性 镜像加速:在本地启动连接到 CNB 环境的 Docker 镜像加速服务,然后通过配置 Docker 客户端实现镜像加速下载自动重连&…...
2000-2019年各省地方财政车船税数据
2000-2019年各省地方财政车船税数据 1、时间:2000-2019年 2、来源:国家统计局、统计年鉴 3、指标:行政区划代码、地区、年份、地方财政车船税 4、范围:31省 5、指标说明:车船税作为地方财政的重要组成部分&#x…...
c#处理算数溢出的情况
在C#中,算术运算的溢出处理可以通过 checked 和 unchecked 关键字控制,默认行为是 静默截断(unchecked模式),但可以通过配置或代码块显式调整。以下是详细说明: 1. 默认行为(unchecked模式&…...
Java「Deque」 方法详解:从入门到实战
Java Deque 各种方法解析:从入门到实战 在 Java 编程中,Deque(双端队列)是一个功能强大的数据结构,允许开发者从队列的两端高效地添加、删除和检查元素。作为 java.util 包中的一部分,Deque 接口继承自 Qu…...
简记_FPGA 硬件最小系统设计
一、FPGA板级设计的五要素 1.1、电源电路 核心电压:一般为固定值 IO电压:FPGA的IO分为多个bank,同一个bank的不同IO引脚电压相同,不同bank的电压可以不同 辅助电压:除了核心电压和IO电压,FPGA工作所需的…...
C++题目
1、内存管理 1.内存模型 栈:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。 堆:就是那些由new分配的内存块,其释放由程序员控制(一个new对应一个delete)…...
Vulhub-jangow-01-1.0.1通关攻略
第0步: 打开靶机,按下shift,出现下图界面 在此页面按下e键,进入如下界面, 将ro 替换为 rw signie init/bin/bash 替换完毕后,按下Ctrl键X键,进入如下页面 ip a查看网卡信息 编辑配置文件网卡信…...
入剖析 Android Compose 框架的关键帧动画(keyframes、Animatable)(二十三)
深入剖析 Android Compose 框架的关键帧动画(keyframes、Animatable) 引言 在当今的 Android 应用开发领域,用户体验已成为衡量一款应用成功与否的关键因素之一。而动画作为提升用户体验的重要手段,能够为应用增添生动性和交互性…...
java中的枚举类型和c,c++的有区别吗?c,c++的枚举,结构体,联合体,三种数据有什么区别和联系
Java 枚举类型与 C、C 枚举类型的区别 1. 类型安全 Java:Java 的枚举类型是类型安全的。枚举常量是枚举类型的实例,编译器会严格检查传递的参数是否为该枚举类型的有效常量。例如: java Apply enum Color { RED, GREEN, BLUE } // 编译器会检…...
详解Redis的持久化与数据可靠性
Redis持久化与数据可靠性详解(结合实例) Redis作为内存数据库,持久化是保证数据不丢失的核心机制。它通过将内存数据保存到磁盘,确保服务器重启后能恢复数据。Redis提供RDB、AOF和混合持久化三种方式,下面通过实例和操…...
1、mysql基础篇--概述
关系型数据库(RDBMS) 概念特点:数据模型: 概念 建立在关系模型基础上,有多张表相互连接的二维表组成的数据库 特点: 1、使用表存储,格式统一,便于维护 2、使用sql语言操作&#…...
【Tiny RDM】Redis客户端工具
Tiny RDM Tiny RDM是一款现代化、轻量级、跨平台的Redis客户端,支持Mac、Windows和Linux,目前在Github上已有10kStar。 Github 项目地址: https://github.com/tiny-craft/tiny-rdm 功能特性 极度轻量,基于Webview2,…...
常见框架漏洞攻略-Shiro篇
漏洞名称 Shiro rememberMe反序列化漏洞 漏洞简介 Apache Shiro是⼀个强⼤易⽤的Java安全框架,提供了认证、授权、加密和会话管理等功能。Shiro框架直观、易⽤,同时也能提供健壮的安全性。 漏洞原理 在Shiro框架下,⽤户登陆成功后会⽣成…...
常见框架漏洞之一:Thinkphp5x
ThinkPHP是为了简化企业级应⽤开发和敏捷WEB应⽤开发⽽诞⽣的,是⼀个快速、兼容⽽且简单的轻量级国产PHP开发框架,诞⽣于2006年初,原名FCS,2007年元旦正式更名为 ThinkPHP,遵循Apache2开源协议发布,从Stru…...
MORL4PDEs:基于多目标优化与强化学习的数据驱动偏微分方程发现
摘要:本文提出了一种结合多目标优化与强化学习的数据驱动方法MORL4PDEs,用于从复杂系统观测数据中发现简洁的偏微分方程(PDE)。该方法无需预定义候选函数库,通过神经网络代理生成符号表达式,结合遗传算法优…...
UniApp和微信小程序中v-switch夜间模式动画开关
UniApp兼容版 <template><view><view class"main-container" :style"{ backgroundColor: value ? #45e3f9 : #20114c,transform:scale(${size})}" tap"onClick"><view class"content" :style"{ left: val…...
六十天Linux从0到项目搭建第四天(通配符命令、其他命令、压缩解压工具、shell的感性理解、linux权限解析)
通配符(Wildcard) 是 Shell 提供的特殊字符,用于 匹配文件名或路径名,可以代替一个或多个字符,使得命令能批量操作文件,而无需手动输入每个文件名。 典型用法 * 匹配任意字符 *.txt → 匹配所有 .txt 文…...
RAG优化:python从零实现自适应检索增强Adaptive Retrieval
开篇:当RAG遇上“自适应大脑”,检索从此不再“一根筋”!🧠 想象一下,你的AI助手是个超级聪明的“学霸”,但有时候却像个“一根筋”的机器人——无论你问它什么,它都用同一种方式去回答。问它“什么是XAI?”它给你一堆定义;问它“AI发展太快了吗?”它还是给你一堆定…...
C语言实现的冰墩墩
在windows系统下,vs 2022编译。 其中#include <graphics.h>需要自己下载安装。 环境配置没什么难度,直接上demo。 代码如下: #include <graphics.h> #include <conio.h> #include <math.h> #define PI acos(-1.0…...
【构建CV图像识别系统】从传统方法到深度学习
目录 1. 图像的基本概念1.1 像素与色彩1.2 过滤与卷积 2. 图像分类与检测3. 图像特征的提取3.1 全局特征3.2 局部特征3.2.1 边缘(Edge)3.2.2 角点(Corner)3.2.3 SIFT 特征 4. 传统方法与深度学习在图像识别中的应用4.1 基于传统方…...
在Centos 7环境下安装MySQL
前言:在安装与卸载MySQL时,用户需切换为root,这样安装之后,普通用户也能够使用。 Tips:我们在刚开始学习时,尽量全部使用root进行,适应mysql语句,后面学了用户管理,就可以考虑新建普…...
【机器学习基础 4】 Pandas库
一、Pandas库简介 Pandas 是一个开源的 Python 数据分析库,主要用于数据清洗、处理、探索与分析。其核心数据结构是 Series(一维数据)和 DataFrame(二维表格数据),可以让我们高效地操作结构化数据。Pandas …...
干部监督预警系统的定义与功能
一、干部监督预警系统是什么? 干部监督预警系统是通过整合多源数据(如干部档案、履职表现、廉政记录、舆情反馈等),利用大数据分析、人工智能等技术,对干部行为进行实时监测、风险评估和分级预警的数字化管理工具。 二…...
可视化图解算法:链表的奇偶重排(排序链表)
1. 题目 描述 给定一个单链表,请设定一个函数,将链表的奇数位节点和偶数位节点分别放在一起,重排后输出。 注意是节点的编号而非节点的数值。 数据范围:节点数量满足 0≤n≤105,节点中的值都满足 0≤val≤10000 要…...
获取小红书笔记详情接口的详细指南
一、引言 小红书作为一个集社交、购物、分享于一体的综合性平台,拥有海量的用户和丰富的笔记内容。小红书笔记详情API接口为开发者提供了一种高效获取笔记详细信息的方法,包括笔记的标题、正文、图片、视频、标签、点赞数、评论数等。这些数据可以帮助开…...
麒麟系统运维指令
麒麟系统运维指令 麒麟系统运维指令1、 查看系统版本2、查看系统信息3、用户与权限管理4. 网络相关命令5. 包管理6. 文件操作7. 进程管理 麒麟系统运维指令 1、 查看系统版本 目的指令查看操作系统版本信息cat /etc/os-release查看操作系统版本信息hostnamectl查看内核版本un…...
pyqt SQL Server 数据库查询
一、概述 本项目旨在开发一个基于 Python 和 PyQt6 的数据库查询工具,该工具能够连接到 SQL Server 数据库,显示数据库中的表名,支持用户输入 SQL 查询语句进行数据查询,并将查询结果展示在表格中。同时,为了提升用户…...
抓包软件【Fiddler】
我叫补三补四,很高兴见到大家,欢迎一起学习交流和进步 今天来讲一讲Fiddler 什么是Fidder Fiddler是一款非常流行并且实用的HTTP抓包工具,原理是在电脑上开启一个HTTP代理服务器,然后转发所有的HTTP请求和响应。是用C#开发的工具…...
SpringCould微服务架构之Docker(1)
项目中微服务比较多的时候,一个一个手动的部署太麻烦了,所以就需要用到Docker。 项目部署中的问题: Docker是一种快速交付应用、运行应用的技术。...
计算图(Computation Graph)
在强化学习中,TensorFlow的计算图(Computation Graph)是用于描述模型结构和训练流程的核心机制。 1. 计算图的基本概念 定义:计算图是TensorFlow中表示数学运算和数据流动的有向图。图中的节点(Nodes)代表…...
邮件营销:如何设置合适的发送频率
在邮件营销里,把握好发送频率特别关键,这直接关系到客户愿不愿意搭理你的邮件,以及邮件营销能不能达到预期效果。下面这几个步骤和建议,能帮你找到合适的邮件发送频率: 一、了解目标受众 分析客户行为:查…...
React项目中,递归写法获取tree的id集合
后端接口返回一个childrens的树,最后要拿到的是每个childrens下第一个对象的id集合,用于编辑页的回显 采用的是递归写法!!!!!!!! const categoryIds: Array&…...
深入解析Linux网络、安全与容器技术
1. Netfilter:Linux内核的包处理框架 Netfilter 是Linux内核中用于控制网络数据包的核心机制,负责处理数据包的过滤、修改和转发。其核心功能包括: 包过滤(Packet Filtering):根据规则允许或拒绝数据包通过…...
AF3 Rotation 类解读
Rotation 类(rigid_utils 模块)是 AlphaFold3 中用于 3D旋转 的核心组件,支持两种旋转表示: 1️⃣ 旋转矩阵 (3x3) 2️⃣ 四元数 (quaternion, 4元向量) 👉 设计目标: 允许灵活选择 旋转矩阵 或 四元数 封装了常用的 旋转操作(组合、逆旋转、应用到点上等) 像 torch.…...
数据预处理习题
简述常用的文本数据类型。 结构化文本:如数据库中的表格数据、JSON/XML格式数据,具有明确的字段和层级关系。非结构化文本:如自然语言文本(新闻、社交媒体内容)、长文档(书籍、论文)࿰…...
常见框架漏洞—中间件IIS
一.IIS6.x篇 1.在Windows server 2003中搭建网站 2.访问网站,并对该网站进行抓包 3.修改提交方式为PUT,然后写入木马 4.修改提交方式为MOVE,令将其更名为脚本⽂档后缀 5.我们在Windows server 2003中可以看到我们上传的shell.asp 6.我们在网…...
群体智能优化算法-蚁狮优化算法(Ant Lion Optimizer, ALO,含Matlab源代码)
一、文章摘要 蚁狮优化算法(Ant Lion Optimizer,ALO)是一种新颖的元启发式算法,由Mirjalili提出,其灵感来源于自然界中蚁狮幼虫构筑陷阱捕猎蚂蚁的行为。该算法通过模拟蚂蚁的随机游走、蚁狮的陷阱机制、陷阱缩小及精…...
【计算机视觉】数据增强
一、数据增强的意义 在深度学习中,数据集往往有限,而模型需要大量的样本来学习特征。数据增强技术通过对图像进行如下变换: 扩充样本数量:利用已有数据生成新的样本。提高模型鲁棒性:使模型适应不同的图像变换&#…...
BERT文本分类实战----美团外卖评论情绪分类
HuggingFace 提供了巨大的模型库,虽然其中的很多模型性能表现出色,但这些模型往往是在广义的数据集上训练的,缺乏针对特定数据集的优化,所以在获得一个合适的模型之后,往往还要针对具体任务的特定数据集进行二次训练&a…...
Chrome 133 版本开发者工具(DevTools)更新内容
Chrome 133 版本开发者工具(DevTools)更新内容 一、持久化的 AI 聊天记录 AI 助手面板会在本地持久化聊天记录,即使重新加载 DevTools 或 Chrome,也可以查看之前与 Gemini 的对话内容。 二、Performance 面板改进 此版本为 Per…...
大模型应用(Java)2025/3/24
大佬视频👉使用Java实现一个基础的大模型RAG问答对话系统_哔哩哔哩_bilibili 需求 让大模型来理解知识库内容,并根据知识库回答。 通过本次应用我学到了: RAG工程的基本处理框架流程(基于java)向量数据库的基础使用…...
基于Sentinel-1A GRD洪涝淹没范围提取(SDWI阈值法和OSTU自动阈值法)
0 前言 两幅灾前和灾后的遥感影像经过SARscape配准、滤波、辐射定标预处理之后,使用GDAL库分别使用SDWI阈值法和OSTU自动阈值法提取洪涝淹没范围 1 ENVI 5.6和SARscape5.6安装 通过网盘分享的文件:ENVI5(1).6 链接: https://pan.baidu.com/s/1mKcEkC3…...
PPT 转高精度图片 API 接口
PPT 转高精度图片 API 接口 文件处理 / 图片处理,将 PPT 文件转换为图片序列。 1. 产品功能 支持将 PPT 文件转换为高质量图片序列;支持 .ppt 和 .pptx 格式;保持原始 PPT 的布局和样式;转换后的图片支持永久访问;全…...
IOS接入微信方法
导入SDK 和配置 SDK 的不做介绍; 1 在IOS 开发者中心 Identifiers 打开‘Associated Domains’ 2 建立一个文件(不带后缀的)apple-app-site-association, teamid在 IOS 开发者中心的会员找,appid在 xcode里面找 {"applin…...
隐式与显式等待的区别及混合使用
隐式等待(Implicit Wait)和显式等待(Explicit Wait)是 Selenium WebDriver 中两种不同的等待机制,用于处理动态加载的页面元素或异步操作。以下是它们的区别、作用范围以及混合使用的注意事项: 1. 核心区别…...
Selenium基本使用(三)隐藏框、获取文本、断言、切换窗口
1、定位文本框,密码框,按钮 案例一: 网站:过期更新 from selenium import webdriver import time dxwebdriver.Chrome() dx.get("过期更新") time.sleep(2) dx.find_element_by_name("userAccount").send_keys("…...