详解Redis的持久化与数据可靠性
Redis持久化与数据可靠性详解(结合实例)
Redis作为内存数据库,持久化是保证数据不丢失的核心机制。它通过将内存数据保存到磁盘,确保服务器重启后能恢复数据。Redis提供RDB、AOF和混合持久化三种方式,下面通过实例和操作步骤,让你彻底掌握这些功能!
一、RDB(快照持久化):给数据拍一张“全息照片”
原理:定期将内存数据生成二进制快照文件(dump.rdb
),类似拍照记录瞬间状态。
适用场景:适合数据备份、大规模恢复,允许少量数据丢失的场景(如缓存系统)。
1. 核心配置(修改redis.conf
):
save 900 1 # 900秒内至少1次写操作触发快照
save 300 10 # 300秒内至少10次写操作触发
save 60 10000 # 60秒内至少10000次写操作触发
dbfilename dump.rdb # RDB文件名
dir ./ # 存储路径
例子:电商平台每小时自动备份用户订单数据,即使宕机最多丢失1小时数据。
2. 手动触发命令:
SAVE
:阻塞主线程生成快照(生产环境禁用)。BGSAVE
:后台异步生成快照(推荐),通过fork
子进程完成
3. 优缺点对比:
优点 | 缺点 |
---|---|
文件小(适合迁移) | 可能丢失最后一次快照后的数据 |
恢复速度快(直接加载二进制) | 大数据量时fork 可能短暂卡顿 |
二、AOF(日志追加):记录每一笔“操作流水账”
原理:记录所有写操作命令(如SET user:1 "Alice"
),以文本形式追加到文件。重启时重放命令恢复数据。
适用场景:对数据安全性要求高的场景(如金融交易)。
1. 核心配置(redis.conf
):
appendonly yes # 开启AOF
appendfsync everysec # 每秒同步一次(平衡性能与安全)
auto-aof-rewrite-percentage 100 # AOF文件增长100%触发重写
auto-aof-rewrite-min-size 64mb # 最小重写文件大小
2. 操作实例:
-
测试AOF持久化:
# 1. 设置键值 SET cart:user1 "iPhone,Book" # 2. 重启Redis docker restart redis # 3. 检查数据是否存在 GET cart:user1 # 应返回"iPhone,Book"
-
AOF重写:合并冗余命令(如100次
INCR counter
→SET counter 100
) 。
3. 优缺点对比:
优点 | 缺点 |
---|---|
数据安全性高(最多丢1秒数据) | 文件体积大(需定期重写) |
可读性强(可手动编辑日志) | 恢复速度较慢(需逐条执行命令) |
三、混合持久化(RDB+AOF):鱼与熊掌兼得
原理:Redis 4.0+支持,生成的新AOF文件前半段是RDB格式全量数据,后半段是增量AOF日志。
适用场景:兼顾恢复速度与数据完整性(如社交平台每日全量备份+实时增量更新)。
1. 配置方法:
aof-use-rdb-preamble yes # 开启混合模式
2. 恢复流程:
- 加载RDB部分快速恢复基础数据
- 重放后续AOF日志补充增量操作
四、实战操作:从零配置Redis持久化
场景:在Docker中部署Redis并开启混合持久化。
步骤:
-
创建配置文件目录:
mkdir -p /mydata/redis/conf cd /mydata/redis/conf touch redis.conf
-
编辑配置文件:
# 启用混合持久化 appendonly yes aof-use-rdb-preamble yes appendfsync everysec # 保留RDB触发条件 save 3600 1 save 300 10
-
启动Redis容器:
docker run -p 6379:6379 --name redis \ -v /mydata/redis/conf/redis.conf:/etc/redis/redis.conf \ -v /mydata/redis/data:/data \ -d redis redis-server /etc/redis/redis.conf
-
验证配置:
docker exec -it redis redis-cli 127.0.0.1:6379> CONFIG GET appendonly # 应返回"yes"
五、数据恢复与故障处理
场景 | 解决方案 |
---|---|
RDB文件损坏 | 使用redis-check-rdb 工具修复 |
AOF文件损坏 | 执行redis-check-aof --fix appendonly.aof 修复 |
混合模式恢复 | 优先加载AOF文件(含RDB头) |
六、选型建议
-
高安全性场景(如交易系统):
- AOF +
appendfsync everysec
- 示例配置:每秒同步,确保最多丢失1秒数据
- AOF +
-
高性能场景(如内容缓存):
- RDB每小时备份
- 示例配置:
save 3600 1
-
通用场景:
- 混合持久化 + RDB每日备份
- 示例配置:
aof-use-rdb-preamble yes
+save 86400 1
总结
- RDB像定期拍快照,适合备份但可能丢数据
- AOF像全程录像,安全但文件大
- 混合模式结合两者优势,是生产环境首选
通过以上配置和实例,你可以根据业务需求灵活选择持久化策略,确保Redis数据安全可靠!遇到问题时,记得用redis-check-rdb
和redis-check-aof
工具修复文件哦!
相关文章:
详解Redis的持久化与数据可靠性
Redis持久化与数据可靠性详解(结合实例) Redis作为内存数据库,持久化是保证数据不丢失的核心机制。它通过将内存数据保存到磁盘,确保服务器重启后能恢复数据。Redis提供RDB、AOF和混合持久化三种方式,下面通过实例和操…...
1、mysql基础篇--概述
关系型数据库(RDBMS) 概念特点:数据模型: 概念 建立在关系模型基础上,有多张表相互连接的二维表组成的数据库 特点: 1、使用表存储,格式统一,便于维护 2、使用sql语言操作&#…...
【Tiny RDM】Redis客户端工具
Tiny RDM Tiny RDM是一款现代化、轻量级、跨平台的Redis客户端,支持Mac、Windows和Linux,目前在Github上已有10kStar。 Github 项目地址: https://github.com/tiny-craft/tiny-rdm 功能特性 极度轻量,基于Webview2,…...
常见框架漏洞攻略-Shiro篇
漏洞名称 Shiro rememberMe反序列化漏洞 漏洞简介 Apache Shiro是⼀个强⼤易⽤的Java安全框架,提供了认证、授权、加密和会话管理等功能。Shiro框架直观、易⽤,同时也能提供健壮的安全性。 漏洞原理 在Shiro框架下,⽤户登陆成功后会⽣成…...
常见框架漏洞之一:Thinkphp5x
ThinkPHP是为了简化企业级应⽤开发和敏捷WEB应⽤开发⽽诞⽣的,是⼀个快速、兼容⽽且简单的轻量级国产PHP开发框架,诞⽣于2006年初,原名FCS,2007年元旦正式更名为 ThinkPHP,遵循Apache2开源协议发布,从Stru…...
MORL4PDEs:基于多目标优化与强化学习的数据驱动偏微分方程发现
摘要:本文提出了一种结合多目标优化与强化学习的数据驱动方法MORL4PDEs,用于从复杂系统观测数据中发现简洁的偏微分方程(PDE)。该方法无需预定义候选函数库,通过神经网络代理生成符号表达式,结合遗传算法优…...
UniApp和微信小程序中v-switch夜间模式动画开关
UniApp兼容版 <template><view><view class"main-container" :style"{ backgroundColor: value ? #45e3f9 : #20114c,transform:scale(${size})}" tap"onClick"><view class"content" :style"{ left: val…...
六十天Linux从0到项目搭建第四天(通配符命令、其他命令、压缩解压工具、shell的感性理解、linux权限解析)
通配符(Wildcard) 是 Shell 提供的特殊字符,用于 匹配文件名或路径名,可以代替一个或多个字符,使得命令能批量操作文件,而无需手动输入每个文件名。 典型用法 * 匹配任意字符 *.txt → 匹配所有 .txt 文…...
RAG优化:python从零实现自适应检索增强Adaptive Retrieval
开篇:当RAG遇上“自适应大脑”,检索从此不再“一根筋”!🧠 想象一下,你的AI助手是个超级聪明的“学霸”,但有时候却像个“一根筋”的机器人——无论你问它什么,它都用同一种方式去回答。问它“什么是XAI?”它给你一堆定义;问它“AI发展太快了吗?”它还是给你一堆定…...
C语言实现的冰墩墩
在windows系统下,vs 2022编译。 其中#include <graphics.h>需要自己下载安装。 环境配置没什么难度,直接上demo。 代码如下: #include <graphics.h> #include <conio.h> #include <math.h> #define PI acos(-1.0…...
【构建CV图像识别系统】从传统方法到深度学习
目录 1. 图像的基本概念1.1 像素与色彩1.2 过滤与卷积 2. 图像分类与检测3. 图像特征的提取3.1 全局特征3.2 局部特征3.2.1 边缘(Edge)3.2.2 角点(Corner)3.2.3 SIFT 特征 4. 传统方法与深度学习在图像识别中的应用4.1 基于传统方…...
在Centos 7环境下安装MySQL
前言:在安装与卸载MySQL时,用户需切换为root,这样安装之后,普通用户也能够使用。 Tips:我们在刚开始学习时,尽量全部使用root进行,适应mysql语句,后面学了用户管理,就可以考虑新建普…...
【机器学习基础 4】 Pandas库
一、Pandas库简介 Pandas 是一个开源的 Python 数据分析库,主要用于数据清洗、处理、探索与分析。其核心数据结构是 Series(一维数据)和 DataFrame(二维表格数据),可以让我们高效地操作结构化数据。Pandas …...
干部监督预警系统的定义与功能
一、干部监督预警系统是什么? 干部监督预警系统是通过整合多源数据(如干部档案、履职表现、廉政记录、舆情反馈等),利用大数据分析、人工智能等技术,对干部行为进行实时监测、风险评估和分级预警的数字化管理工具。 二…...
可视化图解算法:链表的奇偶重排(排序链表)
1. 题目 描述 给定一个单链表,请设定一个函数,将链表的奇数位节点和偶数位节点分别放在一起,重排后输出。 注意是节点的编号而非节点的数值。 数据范围:节点数量满足 0≤n≤105,节点中的值都满足 0≤val≤10000 要…...
获取小红书笔记详情接口的详细指南
一、引言 小红书作为一个集社交、购物、分享于一体的综合性平台,拥有海量的用户和丰富的笔记内容。小红书笔记详情API接口为开发者提供了一种高效获取笔记详细信息的方法,包括笔记的标题、正文、图片、视频、标签、点赞数、评论数等。这些数据可以帮助开…...
麒麟系统运维指令
麒麟系统运维指令 麒麟系统运维指令1、 查看系统版本2、查看系统信息3、用户与权限管理4. 网络相关命令5. 包管理6. 文件操作7. 进程管理 麒麟系统运维指令 1、 查看系统版本 目的指令查看操作系统版本信息cat /etc/os-release查看操作系统版本信息hostnamectl查看内核版本un…...
pyqt SQL Server 数据库查询
一、概述 本项目旨在开发一个基于 Python 和 PyQt6 的数据库查询工具,该工具能够连接到 SQL Server 数据库,显示数据库中的表名,支持用户输入 SQL 查询语句进行数据查询,并将查询结果展示在表格中。同时,为了提升用户…...
抓包软件【Fiddler】
我叫补三补四,很高兴见到大家,欢迎一起学习交流和进步 今天来讲一讲Fiddler 什么是Fidder Fiddler是一款非常流行并且实用的HTTP抓包工具,原理是在电脑上开启一个HTTP代理服务器,然后转发所有的HTTP请求和响应。是用C#开发的工具…...
SpringCould微服务架构之Docker(1)
项目中微服务比较多的时候,一个一个手动的部署太麻烦了,所以就需要用到Docker。 项目部署中的问题: Docker是一种快速交付应用、运行应用的技术。...
计算图(Computation Graph)
在强化学习中,TensorFlow的计算图(Computation Graph)是用于描述模型结构和训练流程的核心机制。 1. 计算图的基本概念 定义:计算图是TensorFlow中表示数学运算和数据流动的有向图。图中的节点(Nodes)代表…...
邮件营销:如何设置合适的发送频率
在邮件营销里,把握好发送频率特别关键,这直接关系到客户愿不愿意搭理你的邮件,以及邮件营销能不能达到预期效果。下面这几个步骤和建议,能帮你找到合适的邮件发送频率: 一、了解目标受众 分析客户行为:查…...
React项目中,递归写法获取tree的id集合
后端接口返回一个childrens的树,最后要拿到的是每个childrens下第一个对象的id集合,用于编辑页的回显 采用的是递归写法!!!!!!!! const categoryIds: Array&…...
深入解析Linux网络、安全与容器技术
1. Netfilter:Linux内核的包处理框架 Netfilter 是Linux内核中用于控制网络数据包的核心机制,负责处理数据包的过滤、修改和转发。其核心功能包括: 包过滤(Packet Filtering):根据规则允许或拒绝数据包通过…...
AF3 Rotation 类解读
Rotation 类(rigid_utils 模块)是 AlphaFold3 中用于 3D旋转 的核心组件,支持两种旋转表示: 1️⃣ 旋转矩阵 (3x3) 2️⃣ 四元数 (quaternion, 4元向量) 👉 设计目标: 允许灵活选择 旋转矩阵 或 四元数 封装了常用的 旋转操作(组合、逆旋转、应用到点上等) 像 torch.…...
数据预处理习题
简述常用的文本数据类型。 结构化文本:如数据库中的表格数据、JSON/XML格式数据,具有明确的字段和层级关系。非结构化文本:如自然语言文本(新闻、社交媒体内容)、长文档(书籍、论文)࿰…...
常见框架漏洞—中间件IIS
一.IIS6.x篇 1.在Windows server 2003中搭建网站 2.访问网站,并对该网站进行抓包 3.修改提交方式为PUT,然后写入木马 4.修改提交方式为MOVE,令将其更名为脚本⽂档后缀 5.我们在Windows server 2003中可以看到我们上传的shell.asp 6.我们在网…...
群体智能优化算法-蚁狮优化算法(Ant Lion Optimizer, ALO,含Matlab源代码)
一、文章摘要 蚁狮优化算法(Ant Lion Optimizer,ALO)是一种新颖的元启发式算法,由Mirjalili提出,其灵感来源于自然界中蚁狮幼虫构筑陷阱捕猎蚂蚁的行为。该算法通过模拟蚂蚁的随机游走、蚁狮的陷阱机制、陷阱缩小及精…...
【计算机视觉】数据增强
一、数据增强的意义 在深度学习中,数据集往往有限,而模型需要大量的样本来学习特征。数据增强技术通过对图像进行如下变换: 扩充样本数量:利用已有数据生成新的样本。提高模型鲁棒性:使模型适应不同的图像变换&#…...
BERT文本分类实战----美团外卖评论情绪分类
HuggingFace 提供了巨大的模型库,虽然其中的很多模型性能表现出色,但这些模型往往是在广义的数据集上训练的,缺乏针对特定数据集的优化,所以在获得一个合适的模型之后,往往还要针对具体任务的特定数据集进行二次训练&a…...
Chrome 133 版本开发者工具(DevTools)更新内容
Chrome 133 版本开发者工具(DevTools)更新内容 一、持久化的 AI 聊天记录 AI 助手面板会在本地持久化聊天记录,即使重新加载 DevTools 或 Chrome,也可以查看之前与 Gemini 的对话内容。 二、Performance 面板改进 此版本为 Per…...
大模型应用(Java)2025/3/24
大佬视频👉使用Java实现一个基础的大模型RAG问答对话系统_哔哩哔哩_bilibili 需求 让大模型来理解知识库内容,并根据知识库回答。 通过本次应用我学到了: RAG工程的基本处理框架流程(基于java)向量数据库的基础使用…...
基于Sentinel-1A GRD洪涝淹没范围提取(SDWI阈值法和OSTU自动阈值法)
0 前言 两幅灾前和灾后的遥感影像经过SARscape配准、滤波、辐射定标预处理之后,使用GDAL库分别使用SDWI阈值法和OSTU自动阈值法提取洪涝淹没范围 1 ENVI 5.6和SARscape5.6安装 通过网盘分享的文件:ENVI5(1).6 链接: https://pan.baidu.com/s/1mKcEkC3…...
PPT 转高精度图片 API 接口
PPT 转高精度图片 API 接口 文件处理 / 图片处理,将 PPT 文件转换为图片序列。 1. 产品功能 支持将 PPT 文件转换为高质量图片序列;支持 .ppt 和 .pptx 格式;保持原始 PPT 的布局和样式;转换后的图片支持永久访问;全…...
IOS接入微信方法
导入SDK 和配置 SDK 的不做介绍; 1 在IOS 开发者中心 Identifiers 打开‘Associated Domains’ 2 建立一个文件(不带后缀的)apple-app-site-association, teamid在 IOS 开发者中心的会员找,appid在 xcode里面找 {"applin…...
隐式与显式等待的区别及混合使用
隐式等待(Implicit Wait)和显式等待(Explicit Wait)是 Selenium WebDriver 中两种不同的等待机制,用于处理动态加载的页面元素或异步操作。以下是它们的区别、作用范围以及混合使用的注意事项: 1. 核心区别…...
Selenium基本使用(三)隐藏框、获取文本、断言、切换窗口
1、定位文本框,密码框,按钮 案例一: 网站:过期更新 from selenium import webdriver import time dxwebdriver.Chrome() dx.get("过期更新") time.sleep(2) dx.find_element_by_name("userAccount").send_keys("…...
蓝桥杯,利用 Vue.js 构建简易任务管理器
在日常开发中,我们经常需要处理各种任务和计划。一个简单且高效的任务管理器可以帮助我们更好地组织和安排时间。今天,我将向大家展示如何使用 Vue.js 构建一个简易的任务管理器。这个项目不仅能够帮助我们更好地理解 Vue.js 的基本语法和功能࿰…...
vmwaretools解压失败|vmware tools distrib cannot mkdir read only file system|bug汇总
最简单的一条路线:你的解压命令用sudo了吗? 这个方法不能解决的话就看下面内容。本文提供给你全过程思路。 如需转载,标记出处 背景: 之前虚拟机和主机的复制黏贴还能用,今天突然用不了,重新下载安装包&am…...
类与对象(中)(详解)
【本节目标】 1. 类的6个默认成员函数 2. 构造函数 3. 析构函数 4. 拷贝构造函数 5. 赋值运算符重载 6. const成员函数 7. 取地址及const取地址操作符重载 1.类的6个默认成员函数 如果一个类中什么成员都没有,简称为空类。 空类中真的什么都没有吗&…...
2025-03-21 Unity 网络基础3——TCP网络通信准备知识
文章目录 1 IP/端口类1.1 IPAddress1.2 IPEndPoint 2 域名解析2.1 IPHostEntry2.2 Dns 3 序列化与反序列化3.1 序列化3.1.1 内置类型 -> 字节数组3.1.2 字符串 -> 字节数组3.1.3 类对象 -> 字节数组 3.2 反序列化3.2.1 字节数组 -> 内置类型3.2.2 字节数组 -> 字…...
练习8-8 移动字母
练习8-8 移动字母 day 8 void Shift( char s[] ){int lenstrlen(s);int a[3];for(int i0;i<3;i){a[i]s[i];}for(int i3;i<len;i){s[i-3]s[i];}s[len-3]a[0];s[len-2]a[1];s[len-1]a[2]; }...
BigEvent项目后端学习笔记(二)文章分类模块 | 文章分类增删改查全流程解析(含优化)
📖 模块概述 文章分类模块包括 新增文章分类、文章分类列表、获取文章分类详情、更新文章分类、删除文章分类 功能。本篇对于原项目进行了代码优化,将原先写在 Controller 层的业务逻辑代码迁移至了 Service 层。 🛠️ 技术实现要点 分组校…...
蓝桥杯,冬奥大抽奖
在日常的网页开发中,抽奖功能是一种常见的交互设计,它可以增加用户的参与感和趣味性。今天,我将分享一个简单的抽奖转盘实现,它使用了HTML、CSS和JavaScript,非常适合初学者学习和理解前端开发的基本概念。 一、项目背…...
scNET:整合scRNA-seq和PPI用于学习基因和细胞的embedding
scRNA-seq 技术的最新进展为深入了解各种组织的异质性提供了前所未有的视角。然而,仅靠基因表达数据往往无法捕捉和识别细胞通路和复合物的变化,因为这些变化在蛋白质水平上更容易被察觉。此外,由于scRNA-seq数据存在高噪声水平和零膨胀等固有…...
第四天 开始Unity Shader的学习之旅之Unity中的基础光照
Unity Shader的学习笔记 第四天 开始Unity Shader的学习之旅之Unity中的基础光照 文章目录 Unity Shader的学习笔记前言一、我们是如何看到这个世界的1. 光源2.吸收和散射3.着色 二、标准光照模型1. 自发光2. 高光反射① Phong模型② Blinn-Phong模型 3.漫反射4.环境光 总结 前…...
Lustre 语言的 Rust 生成相关的工作
目前 Lustre V6 编译器支持编译生成的语言为C语言。但也注意到,以 Rust 语言为生成目标语言,也存在若干相关工作。 rustre(elegaanz) 该项工作为 Lustre v6 语言的解析器,使用 Rust 语言实现。生成 Lustre AST。 项…...
std::endl为什么C++ 智能提示是函数?
在使用vscode 的C智能提示后,输入endl 后,提示的却是std::endl(basic_ostream<CharT, Traits> &os), 感觉比较奇怪,各种代码里都是直接用的std::endl 啊, 这里怎么变成函数了呢? 在 C 中,std::en…...
大模型在肺血栓栓塞症风险预测及临床方案制定中的应用研究
目录 一、引言 1.1 研究背景与意义 1.2 研究目的与创新点 二、肺血栓栓塞症概述 2.1 定义与流行病学 2.2 发病机制与病理生理 2.3 临床表现与诊断方法 三、大模型技术原理与应用现状 3.1 大模型技术基础 3.2 在医疗领域的应用进展 3.3 选择大模型进行肺血栓栓塞症预…...
用一颗红黑树同时封装出map和set
目录 1. 红黑树源代码 2. 红黑树模版参数的控制 3. 红黑树节点当中存储的数据 4. 模板参数中仿函数的增加 5. 正向迭代器的实现 6. set模拟实现 7. map的模拟实现 8. 封装后的代码 8.1 红黑树的代码 8.2 正向迭代器的代码 8.3 set的代码 8.4 map的代码 1. 红黑树源…...