蓝桥杯单片机内存爆了怎么办
蓝桥杯单片机内存爆了怎么办
文章目录
- 蓝桥杯单片机内存爆了怎么办
- 一、参考文章
- 二、内存区
- 3、keil中的体现
- 4、分配原则
- 5、使用示例
一、参考文章
文章1
文章2
文章3
文章4
二、内存区
1 KB(千字节) = 1024 B(字节)
B代表Byte,1Byte=8bit,一个字节8位
简单来说,data就是平常用的变量存储区,他是内部RAM的低128字节,定义变量不加关键字默认都放这了;
bdata也是内部RAM的一部分,采用位寻址,只能进行位操作,不能加加减减,相当于标志位专用;
idata是全部内部RAM,采用间接寻址,速度相对data慢一点,相当于data拓展;
xdata为全部外部扩展RAM,采用DPTR访问,相当于RAM的扩展;
pdata是外部扩展RAM低256字节,分页寻址,就是xdata的低256字节。
code是程序存储区,掉电不丢失,写入后不能修改,你写的代码存放在这里。
3、keil中的体现
编译信息里体现了使用情况:如图data用了83.6Byte,xdata为0,code为2768Byte(2.7kB),具体情况可以双击工程查看map文件,滑到最后。
C51中常用数据类型占字节数:
数据类型 | 占字节(Byte) | 位 | 范围 |
---|---|---|---|
bit | 1/8 | 1 | 0-1 |
char/uchar | 1 | 8 | -128-127 / 0-255 |
int/uint | 2(仅限于51单片机) | 16 | -32768-32767/0-65535 |
float | 4 | 32 | ±3.402823×10³⁸ |
long | 4 | 32 | 232-1 |
也就是说,你每定义一个char类型,编译后data值就加1(可以亲自尝试),int类型加2,加到128(实际达不到)就会爆了,内存不够。
4、分配原则
变量位置分配:
默认data区,根据数据实际大小合理安排数据类型,避免变量过小而占用了大数据类型;
常量、不需要修改的量放在code区,如数码管段码表、ds1302读写地址等;
只有0和1两种情况的变量定义为bit或放到bdata区,如标志位等;
如果不够了,就用idata,再不够,就用xdata。
5、使用示例
要放在哪就在定义时加哪个位置的关键字。
data
:内部直接寻址 RAM
特点:访问速度最快,容量较小(通常 128 字节),用于频繁访问的变量。
示例:
unsigned char data led_status = 0; // 定义在data区的LED状态变量
unsigned int data counter = 0; // 定义在data区的计数器
不加任何关键字默认就是在data,就是我们平常用的。
unsigned char var1; // 存储在data区
int var2; // 存储在data区(2字节)
魔术棒里有这项配置,就是表示默认存储在哪:
idata
:内部间接寻址 RAM
特点:访问速度稍慢,容量较大(通常 256 字节),适合存储不频繁使用的变量。
示例:
unsigned char idata temp_buf[32]; // 定义在idata区的临时缓冲区
unsigned int idata sensor_data; // 定义在idata区的传感器数据
xdata
:外部扩展 RAM
特点:需外接 RAM 芯片(如 6264),容量大但访问速度最慢。
示例:
unsigned char xdata ext_ram[1024]; // 定义在xdata区的外部RAM数组
unsigned int xdata large_data; // 定义在xdata区的大数据变量
code
:程序存储区(ROM)
特点:存放程序代码和常量,掉电不丢失。
示例:
const unsigned char code welcome_msg[] = "Hello, 51 MCU!"; // 存储在code区的字符串
const unsigned int code lookup_table[] = {0x00, 0x01, 0x02}; // 存储在code区的查表数组
bdata
:位寻址 RAM
特点:内部 RAM 的位寻址区(20H~2FH),支持位操作。
示例:
unsigned char bdata flag; // 定义在bdata区的标志变量
sbit led_ctrl = flag^0; // 定义位变量led_ctrl对应flag的第0位
sbit rx_flag = flag^1; // 定义位变量rx_flag对应flag的第1位
- 综合示例
#include <reg52.h>// 定义存储区域
unsigned char data sys_state; // data区:系统状态
unsigned int idata sensor_value; // idata区:传感器值
unsigned char xdata ext_buffer[512]; // xdata区:外部RAM缓冲区
const unsigned char code version = 'V'; // code区:版本号
unsigned char bdata global_flag; // bdata区:全局标志位
sbit error_flag = global_flag^0; // 位操作:错误标志void main() {// 使用不同存储区的变量sys_state = 0x01;sensor_value = 100;ext_buffer[0] = 'A';error_flag = 1; // 设置错误标志位
}
关键说明
优化存储分配
:
频繁访问的变量(如状态寄存器)放 data。
大数组或不常用变量放 idata 或 xdata。
常量、表格放 code,节省 RAM。
需要位操作的变量放 bdata。
注意事项
:
xdata 需要硬件支持(外接 RAM 芯片)。
bdata 区只有 16 字节(128 位),避免滥用。
Keil C51 编译器需通过 #pragma 或 at 指令精确定位存储区域。
相关文章:
蓝桥杯单片机内存爆了怎么办
蓝桥杯单片机内存爆了怎么办 文章目录 蓝桥杯单片机内存爆了怎么办一、参考文章二、内存区3、keil中的体现4、分配原则5、使用示例 一、参考文章 文章1 文章2 文章3 文章4 二、内存区 1 KB(千字节) 1024 B(字节) B代表Byte,1Byte8bit,一个字节8位 …...
一周热点:微软攻克语音输入、文本输出难题-Phi-4-multimodal
微软Phi-4-multimodal模型是人工智能领域的一个重要进展,它标志着微软在多模态人工智能技术上的突破。以下是对该模型的详细解释: 模型概述 微软Phi-4-multimodal是一个能够同时处理文本、图像和语音的多模态大型语言模型。它通过创新的架构和训练方法,实现了在不同模态之间…...
量化交易学习笔记02:双均线策略
双均线策略示例 个股:中国平安 回测日期:2022-5-1至2023-5-1 短均线:5天 长无线:10天 代码: def initialize(context):# 初始化此策略# 设置我们要操作的股票池, 这里我们只操作一支股票# """标的&qu…...
【WRF-Urban】使用 CGLC-MODIS-LCZ_100m 数据集运行 WRF 时的城市参数化问题
在 WRF 中,LCZ 通过 URBPARM_LCZ.TBL 进行配置,但如果 FRC_URB2D 变量缺失,WRF 会回退到默认的 URBPARM.TBL。 主要问题概述 WRF-Model-cglc-modis-lcz_100m dataset " WARNING, THE URBAN FRACTION WILL BE READ FROM URBPARM.TBL USING DEFAULT URBAN MORPHOLOGY&q…...
Selenium 自动化测试学习总结
大概了解一下即可,现在主要用的自动化工具是 playWright,它可以录制操作。 selenium是老款自动化测试工具,仍有很多可取之处。 安装: pip install selenium即可。然后下载浏览器的驱动包,注意不是浏览器!…...
开源通义万相本地部署方案,文生视频、图生视频、视频生成大模型,支持消费级显卡!
开源通义万相本地部署方案,文生视频、图生视频、视频生成大模型,支持消费级显卡! 万相2.1开源 近日,大模型万相2.1(Wan)重磅开源,此次开源采用Apache2.0协议,14B和1.3B两个参数规格…...
Suno的对手Luno:AI音乐开发「上传参考音频 - 方式一:通过二进制流的方式」 —— 「Luno Api系列|AI音乐API」第11篇
导读 今天来看下Luno Api的上传参考音频 - 方式一:通过二进制流的方式。 参考文件,主要是用于在创作的过程中,希望AI参考这个音乐的曲风和声音来进行创作,那么可以通过上传参考音乐来进行实现。 申请和使用 「已经有API的&…...
微信小程序刷题逻辑实现:技术揭秘与实践分享
页面展示: 概述 在当今数字化学习的浪潮中,微信小程序以其便捷性和实用性,成为了众多学习者刷题备考的得力工具。今天,我们就来深入剖析一个微信小程序刷题功能的实现逻辑,从代码层面揭开其神秘面纱。 小程序界面布局…...
巴耶赫利专业俄语外贸网站建设
巴耶赫利是专业俄语外贸网站建设与俄语搜索引擎Yandex SEO优化服务商。巴耶赫利致力于帮助中国品牌出海俄罗斯,打开俄罗斯市场,提升品牌在俄罗斯的知名度和美誉度。 以下是对巴耶赫利相关服务的详细介绍: 一、巴耶赫利专业俄语外贸网站建设…...
每日Attention学习25——Multi-Scale Attention Fusion
模块出处 [TCSVT 24] [link] [code] DSNet: A Novel Way to Use Atrous Convolutions in Semantic Segmentation 模块名称 Multi-Scale Attention Fusion (MSAF) 模块作用 双级特征融合 模块结构 模块思想 MSAF的主要思想是让网络根据损失学习特征权重,允许模型…...
前端学习记录:解决路由缓存问题
问题描述:响应路由参数的变化,使用带有参数的路由时需要注意的是,当用户从 /users/johnoy 导航到 /users/jolyne 时,相同的组件实例将会被重复使用。因为两个路由都渲染同个组件,比起销毁再创建,复用则显得…...
VSTO(C#)Excel开发10:启动和卸载顺序 事件处理 监视变化
初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 源码指引:github源…...
代码随想录Day16
Day16 二叉树part06 LeetCode 530.二叉搜索树的最小绝对差 题目描述 给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。 差值是一个正数,其数值等于两值之差的绝对值。 示例 输入:root [4,2,6,1,3] 输出&…...
第15章:ConvNeXt图像分类实战:遥感场景分类【包含本地网页部署、迁移学习】
目录 1. ConvNeXt 模型 2. 遥感场景建筑识别 2.1 数据集 2.2 训练参数 2.3 训练结果 2.4 本地部署推理 3. 下载 1. ConvNeXt 模型 ConvNeXt是一种基于卷积神经网络(CNN)的现代架构,由Facebook AI Research (FAIR) 团队在2022年提出。…...
LinuX---Shell脚本创建和执行
概述: 它是一个命令行解释器,接收应用程序/用户命令,然后调用操作系统内核。 Shell还是一个功能强大的编程语言,易编写、易调试、灵活性强。 Linux提供的Shell解析器有 atguiguubuntu:~$ cat /etc/shells # /etc/shells: valid …...
django+vue3实现前后端大文件分片下载
效果: 大文件分片下载支持的功能: 展示目标文件信息提高下载速度:通过并发请求多个块,可以更有效地利用网络带宽断点续传:支持暂停后从已下载部分继续,无需重新开始错误恢复:单个块下载失败只…...
KY-038 声音传感器如何工作以及如何将其与 ESP32 连接
想为您的项目赋予声音感!然后跟着做,因为在这个项目中,我们将连接一个声音传感器,用它构建一些有趣的项目。我们使用的 KY-038 声音传感器使用电容式麦克风来检测声波,这为我们提供了稳定性和可靠性的完美平衡。因此,在本文中,我们决定将 KY-038 传感器与 ESP32 连接,并…...
深入剖析二分查找的延伸:在排序数组中查找元素的第一个和最后一个位置
深入剖析二分查找的延伸:在排序数组中查找元素的第一个和最后一个位置 引言 二分查找,作为算法界的“常青树”,以其高效性和简洁性备受青睐。然而,许多初学者仅限于使用它查找单个元素,而对其进阶应用知之甚少。今天…...
UE5中 Character、PlayerController、PlayerState、GameMode和GameState核心类之间的联动和分工·
1. GameMode 与 GameState 关系描述 GameMode:定义游戏规则和逻辑,控制游戏的开始、进行和结束。GameState:存储和同步全局游戏状态,如得分、时间、胜利条件等。 联动方式 GameMode初始化GameState:GameMode在游戏…...
使用Python获取并操作1688自定义API接口
在电子商务领域,1688作为国内领先的B2B平台,提供了丰富的API接口,允许开发者获取商品信息、店铺信息等。其中,custom接口允许开发者进行自定义操作,获取特定的数据。本文将详细介绍如何使用Python调用1688的custom接口…...
【AI】现代人工智能技术的应用与发展
引言 人工智能(AI)已经深入到我们生活的各个方面,涉及医疗、教育、交通、金融等众多领域。随着技术的不断发展,AI的应用和潜力也变得愈加广泛。本文将详细介绍人工智能的应用领域,探讨未来的发展趋势,并通…...
小程序渲染之谜:如何解决“加载中...”不消失的 Bug(glass-easel)
🎉 小程序渲染之谜:如何解决“加载中…”不消失的 Bug 🎉 引言 在小程序开发中,渲染问题总能让人抓狂。😫 这次,我遇到了一个奇怪的 bug:产品详情页的内容已经正常显示,但页面却一…...
C语言结构体全面解析 | 从入门到精通
📚 C语言结构体全面解析 | 从入门到精通 整理:算法练习生| 转载请注明出处 📑 目录 结构体的定义与使用结构体变量的参数传递结构体数组结构体指针typedef关键字结构体初始化 1️⃣ 结构体的定义与使用 为什么需要结构体? 当…...
Trae与Builder模式初体验
说明 下载的国际版:https://www.trae.ai/ 建议 要选新模型 效果 还是挺不错的,遇到问题反馈一下,AI就帮忙解决了,真是动动嘴(打打字就行了),做些小的原型效果或演示Demo很方便呀ÿ…...
麒麟服务器操作系统QT系列软件工具手册
QtCreator****功能介绍 QtCreator 概述 Qt Creator是跨平台的 Qt IDE, Qt Creator 是 Qt 被 [Nokia](https://baike.baidu.com/item/Nokia/264012" /t “_blank) 收购后推出的一款新的轻量级[集成开发环境](https://baike.baidu.com/item/集成开发环境/298524” /t “_…...
【HeadFirst系列之HeadFirstJava】第18天之深入理解原型模式:从问题到解决方案(含 Java 代码示例)
深入理解原型模式:从问题到解决方案(含 Java 代码示例) 在软件开发中,我们经常需要创建对象,而有些对象的创建成本较高或者结构较为复杂。如何在不破坏封装的前提下,高效地创建对象? 这正是**原…...
JetsonOrin源码安装部署PaddlePaddle
Jetson Orin 源码安装部署Paddle 部署环境 系统架构: Arm CUDA: 11.4 cmake: 3.18.0 python:3.8 注意环境中的版本问题,之前装onnxruntime的时候cmake被升级到了3.31.0,但是编译Paddle时会报错,因此特意降级回了官方推荐的3.18.0 具体环…...
入门到入土,Java学习 day20(多线程下)
void wait() 当前线程等待,直到被其他线程唤醒 void notify() 随机唤醒单个线程 void notifyAll() 唤醒所有线程 阻塞队列 在测试方法中创建带锁队列,然后在对象类中也创建队列但是不赋值,用构造方法将测试方法中的对象赋值 然后用put和t…...
【TCP】三次挥手,四次挥手详解--UDP和TCP协议详解
活动发起人小虚竹 想对你说: 这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!…...
栈(LIFO)算法题
1.删除字符串中所有相邻的重复字符 注意,我们需要重复处理,而不是处理一次相邻的相同元素就结束了。对示例来说,如果只进行一次处理,结果为aaca,但是处理之后又出现了相邻的重复元素,我们还得继续处理&…...
印章/公章识别:PaddleX下的“Seal-Recognition”模型
最近做项目需要对印章进行识别,并提取其中的印章文字,又不希望这个模型太大,还要方便部署,于是乎这个模型是个不错的选择。 一、模型简介 “Seal-Recognition”模型是PaddleX旗下的一款模型(PaddleX 是基于飞桨框架构…...
从LLM出发:由浅入深探索AI开发的全流程与简单实践(全文3w字)
文章目录 第一部分:AI开发的背景与历史1.1 人工智能的起源与发展1.2 神经网络与深度学习的崛起1.3 Transformer架构与LLM的兴起1.4 当前AI开发的现状与趋势 第二部分:AI开发的核心技术2.1 机器学习:AI的基础2.1.1 机器学习的类型2.1.2 机器学…...
DeepSeek入门宝典——行业应用篇
大家好,我是吾鳴。 今天吾鳴要给大家分享一份由51CTO智能研究院出品的DeepSeek报告——《DeepSeek入门宝典——行业应用篇》。这份报告主要从DeepSeek核心能力、行业赋能与应用案例、合作伙伴与生态建设和学习资料与体系化方案做了详细的介绍,报告一共有…...
K8S学习之基础三十一:k8s中RBAC 的核心概念
Kubernetes (k8s) 中的 RBAC(Role-Based Access Control,基于角色的访问控制)是一种用于管理用户和服务账户对集群资源访问权限的机制。RBAC 允许管理员通过定义角色(Role)和角色绑定(RoleBindingÿ…...
JAVA数据库技术(一)
JDBC 简介 JDBC(Java Database Connectivity)是Java平台提供的一套用于执行SQL语句的Java API。它允许Java程序连接到数据库,并通过发送SQL语句来查询、更新和管理数据库中的数据。JDBC为不同的数据库提供了一种统一的访问方式,使…...
【Agent】OpenManus-Flow组件详细分析
1. Flow架构概述 OpenManus 的Flow组件实现了一个灵活的工作流管理系统,主要用于协调多个智能体的协作,以完成复杂任务。Flow组件的核心是基于计划的执行模型,它将任务分解为一系列步骤,然后逐步执行这些步骤,直到任务…...
MySQL环境安装详细教程(Windows/macOS/Linux)
摘要:本文详细介绍了在Windows、macOS和Linux三大操作系统下安装MySQL数据库的完整流程,帮助开发者快速搭建本地MySQL环境。 一、MySQL安装前准备 官网下载 访问MySQL官网 → 选择"Downloads" → 选择"MySQL Community (GPL) Downloads&…...
【人工智能基础2】人工神经网络、卷积神经网络基础、循环神经网络、长短时记忆网络
文章目录 三、人工神经网络1. 神经元感知模型2. 神经网络模型3. 学习规则:修改神经网络的权重和偏置反向传播算法(BP)优化器 - 梯度下降法 四、卷积神经网络基础(CNN)1. 基本原理2. 计算过程 五、循环神经网络(RNN&…...
如何查看windows系统的硬件环境(附方法
方法一:使用命令指示符查询 在“开始”菜单中搜索:命令指示符,并以管理员身份打开, 输入:systeminfo,就可以查看硬件、CPU、处理器等详细内容 systeminfo 方法二:在资源监视器中查看 按住 “…...
基于树莓派的水果分类系统(论文+源码)
针对小型农户的在水果加工销售环节中的分类需求,本文设计并实现了基于树莓派的视觉识别分类系统。本章根据所选水果的具体情况,简述系统各模块的实现方法,设计树莓派的程序算法,并选择合适的器件型号,开发所用的辅助工…...
Gemini Robotics:将人工智能带入物理世界
25年3月来自谷歌的技术报告“Gemini Robotics: Bringing AI into the Physical World”。 大型多模态模型的最新进展,已使数字领域出现卓越的通才能力,但将其转化为机器人等物理智体仍然是一项重大挑战。一般有用的机器人需要能够理解周围的物理世界&am…...
2.5[frontEnd]
requestAnimationFrame 是 浏览器原生 API,定义在 window 对象中,属于 Web API 的一部分。无需任何导入即可直接使用,其类型定义包含在 TypeScript 标准库中。 React 组件挂载时执行该 useEffect 初始化节流计时器 lastEmit 和 25ms 触发间隔…...
【动手学深度学习】#2线性神经网络
主要参考学习资料: 《动手学深度学习》阿斯顿张 等 著 【动手学深度学习 PyTorch版】哔哩哔哩跟李牧学AI 目录 2.1 线性回归2.1.1 线性回归的基本元素线性模型损失函数解析解随机梯度下降 2.1.3 最大似然估计 2.2 线性回归从零开始实现2.2.1 生成数据集2.2.2 读取数…...
C语言动态内存管理(上)
欢迎拜访:雾里看山-CSDN博客 本篇主题:C语言动态内存管理(上) 发布时间:2025.3.16 隶属专栏:C语言 目录 为什么需要动态内存管理静态分配的局限性动态分配的优势 动态内存函数malloc函数介绍函数使用 free函数介绍函数使用 calloc…...
图解多头注意力机制:维度变化一镜到底
目录 一、多头注意力机制概述二、代码实现1. pyTorch 实现2. tensorFlow实现 三、维度变化全流程详解1. 参数设定2. 维度变化流程图3. 关键步骤维度变化 四、关键实现细节解析1. 多头拆分与合并2. 注意力分数计算3. 掩码处理技巧 五、完整运行示例六、总结与常见问题1. 核心优势…...
Navicat如何查看密码
近期遇到需要将大部分已存储的navicat数据库转发给其他人,于是乎进行导出文件 奈何对方不用navicat,无法进行文件的导入从而导入链接 搜罗navicat的密码查看,大部分都为php代码解析 以下转载GitHub上看到的一个python代码解析的脚本 这里是对…...
第4节:分类任务
引入: 独热编码(one-hot):对于分类任务的输出,也就是是或不是某类的问题,采取独热编码的形式将y由一离散值转化为连续的概率分布,最大值所在下标为预测类 输入的处理:对于任意一张…...
EasyCVR安防视频汇聚平台助力工业园区构建“感、存、知、用”一体化智能监管体系
在现代工业园区的安全管理和高效运营中,视频监控系统扮演着不可或缺的角色。然而,随着园区规模的扩大和业务的复杂化,传统的视频监控系统面临着诸多挑战,如设备众多难以统一管理、数据存储分散、智能分析能力不足、信息利用率低下…...
计算机网络——DNS
一、什么是DNS? DNS(Domain Name System,域名系统) 是互联网的核心服务,负责将人类可读的域名(如 www.baidu.com)转换为机器可识别的 IP地址(如 14.119.104.254)。它像一…...
STC89C52单片机学习——第20节: [8-2]串口向电脑发送数据电脑通过串口控制LED
写这个文章是用来学习的,记录一下我的学习过程。希望我能一直坚持下去,我只是一个小白,只是想好好学习,我知道这会很难,但我还是想去做! 本文写于:2025.03.15 51单片机学习——第20节: [8-2]串口向电脑发送数据&电脑通过串口控制LED 前言…...