【AI】现代人工智能技术的应用与发展
引言
人工智能(AI)已经深入到我们生活的各个方面,涉及医疗、教育、交通、金融等众多领域。随着技术的不断发展,AI的应用和潜力也变得愈加广泛。本文将详细介绍人工智能的应用领域,探讨未来的发展趋势,并通过图表展示其技术演变过程。
论文AIGC检测,降AIGC检测,AI降重,三连私信免费获取:
- Reduce AIGC 9折券!
- Detect AIGC 立减2元券!
- AI降重9折券!
目录
- 引言
- 一、人工智能的定义与历史发展
- 1.1 人工智能的定义
- 1.2 人工智能的历史发展
- 二、人工智能的主要应用领域
- 2.1 医疗健康
- 2.2 自动驾驶
- 2.3 金融行业
- 2.4 自然语言处理(NLP)
- 三、人工智能的未来发展趋势
- 3.1 跨领域融合
- 3.2 强人工智能
- 3.3 道德与法律问题
- 3.4 人机协作
- 四、人工智能技术演变图示
- 总结
一、人工智能的定义与历史发展
1.1 人工智能的定义
人工智能是指通过模拟人类智能的方式,使机器能够执行通常需要人类智慧才能完成的任务。这些任务包括学习、推理、问题解决、语言理解和感知等。
1.2 人工智能的历史发展
-
1950s-1960s:起步阶段
人工智能的概念在20世纪50年代由艾伦·图灵提出。早期的AI研究集中在逻辑推理和符号处理。1956年,约翰·麦卡锡在达特茅斯会议上首次提出了“人工智能”这一术语。 -
1970s-1980s:规则和专家系统
进入70年代后,专家系统成为人工智能的研究重点。专家系统能够通过一组规则和知识库模拟专家的决策过程,广泛应用于医学、金融等领域。 -
1990s-2000s:机器学习和深度学习
机器学习开始成为AI研究的核心。深度学习,尤其是在大数据和高性能计算的支持下,迅速发展并突破了许多技术瓶颈。神经网络的应用在图像处理和自然语言处理方面取得了显著进展。 -
2010s至今:AI的普及与融合
近年来,随着大数据、云计算和GPU技术的发展,人工智能进入了快速发展的阶段,尤其是在自动驾驶、智能医疗、机器人、自然语言处理等领域得到了广泛应用。
二、人工智能的主要应用领域
2.1 医疗健康
人工智能在医疗健康领域的应用不断增多,主要体现在以下几个方面:
-
疾病预测与诊断:AI可以通过分析大量的医疗数据,帮助医生进行疾病预测与早期诊断。例如,AI可以通过分析X光片、CT扫描和MRI图像,检测癌症、心脏病等疾病的早期迹象。
-
个性化治疗:AI能够根据患者的基因组信息、生活习惯等数据,为患者提供个性化的治疗方案。
-
药物研发:AI可以加速药物的研发过程,通过机器学习模型预测药物的效果和副作用,减少实验时间和成本。
2.2 自动驾驶
自动驾驶是人工智能的一个重要应用领域。通过AI技术,自动驾驶汽车能够感知周围环境、做出决策并控制汽车行驶。
-
感知与定位:自动驾驶汽车利用传感器(如激光雷达、摄像头、雷达等)收集周围环境的数据,通过AI进行实时处理,识别行人、车辆、交通标志等信息。
-
决策与控制:AI通过深度学习和强化学习算法做出行驶决策,控制车辆的加速、刹车、转向等。
-
路径规划与预测:AI根据道路条件、交通情况等数据,实时规划最佳行驶路径并预测其他车辆的行为。
2.3 金融行业
人工智能在金融领域的应用广泛,涉及以下几个方面:
-
风险管理与预测:AI通过分析历史数据,帮助金融机构识别潜在的风险并进行预测。例如,AI可以通过分析市场趋势、客户行为等数据预测股市变化或违约风险。
-
智能投顾:AI能够根据客户的投资偏好、风险承受能力等信息,提供个性化的投资建议。
-
欺诈检测:AI可以实时监控交易行为,通过模式识别和异常检测算法识别潜在的欺诈行为。
2.4 自然语言处理(NLP)
自然语言处理是人工智能的一个重要分支,旨在使机器能够理解、生成和处理人类语言。其主要应用包括:
-
语音识别:通过AI技术,将语音转化为文字,应用于智能助手、语音翻译等领域。
-
机器翻译:AI在机器翻译中的应用,能够帮助用户在不同语言之间进行翻译,提升跨语言沟通效率。
-
情感分析:AI能够分析文本或语音中的情感倾向,广泛应用于社交媒体、客户反馈分析等领域。
三、人工智能的未来发展趋势
3.1 跨领域融合
随着人工智能技术的不断发展,AI将与物联网(IoT)、大数据、5G等技术深度融合,推动更多创新应用的落地。例如,在智能城市建设中,AI可以与IoT设备协同工作,提升城市管理的效率与精确度。
3.2 强人工智能
目前的AI主要是弱人工智能,即只能在特定任务上表现优异。未来的研究目标是实现强人工智能,使机器具备广泛的认知能力,能够处理各类任务并进行自我学习和改进。
3.3 道德与法律问题
随着人工智能的广泛应用,如何确保AI的道德性和合法性成为一个重要话题。AI的决策透明性、公正性、隐私保护等问题需要得到有效解决。
3.4 人机协作
未来的AI将不仅仅是替代人类的工作,更是与人类协作,提升工作效率和质量。例如,在生产线上的机器人协作和智能助手的辅助等。
四、人工智能技术演变图示
以下是人工智能技术的演变过程图示,通过时间轴展现AI从最初的概念到当前的应用状态:
总结
人工智能的应用正在改变我们的生活和工作方式。从医疗到自动驾驶,再到金融行业,AI已经无处不在。随着技术的不断进步,AI未来将带来更多创新和变革。我们期待在未来看到AI在更多领域的深度应用,也期待它在提高生产力和改善生活质量方面发挥更大的作用。
希望本文能够帮助您更好地理解人工智能的发展及其应用。如果您有任何问题或建议,欢迎在评论区留言交流。
相关文章:
【AI】现代人工智能技术的应用与发展
引言 人工智能(AI)已经深入到我们生活的各个方面,涉及医疗、教育、交通、金融等众多领域。随着技术的不断发展,AI的应用和潜力也变得愈加广泛。本文将详细介绍人工智能的应用领域,探讨未来的发展趋势,并通…...
小程序渲染之谜:如何解决“加载中...”不消失的 Bug(glass-easel)
🎉 小程序渲染之谜:如何解决“加载中…”不消失的 Bug 🎉 引言 在小程序开发中,渲染问题总能让人抓狂。😫 这次,我遇到了一个奇怪的 bug:产品详情页的内容已经正常显示,但页面却一…...
C语言结构体全面解析 | 从入门到精通
📚 C语言结构体全面解析 | 从入门到精通 整理:算法练习生| 转载请注明出处 📑 目录 结构体的定义与使用结构体变量的参数传递结构体数组结构体指针typedef关键字结构体初始化 1️⃣ 结构体的定义与使用 为什么需要结构体? 当…...
Trae与Builder模式初体验
说明 下载的国际版:https://www.trae.ai/ 建议 要选新模型 效果 还是挺不错的,遇到问题反馈一下,AI就帮忙解决了,真是动动嘴(打打字就行了),做些小的原型效果或演示Demo很方便呀ÿ…...
麒麟服务器操作系统QT系列软件工具手册
QtCreator****功能介绍 QtCreator 概述 Qt Creator是跨平台的 Qt IDE, Qt Creator 是 Qt 被 [Nokia](https://baike.baidu.com/item/Nokia/264012" /t “_blank) 收购后推出的一款新的轻量级[集成开发环境](https://baike.baidu.com/item/集成开发环境/298524” /t “_…...
【HeadFirst系列之HeadFirstJava】第18天之深入理解原型模式:从问题到解决方案(含 Java 代码示例)
深入理解原型模式:从问题到解决方案(含 Java 代码示例) 在软件开发中,我们经常需要创建对象,而有些对象的创建成本较高或者结构较为复杂。如何在不破坏封装的前提下,高效地创建对象? 这正是**原…...
JetsonOrin源码安装部署PaddlePaddle
Jetson Orin 源码安装部署Paddle 部署环境 系统架构: Arm CUDA: 11.4 cmake: 3.18.0 python:3.8 注意环境中的版本问题,之前装onnxruntime的时候cmake被升级到了3.31.0,但是编译Paddle时会报错,因此特意降级回了官方推荐的3.18.0 具体环…...
入门到入土,Java学习 day20(多线程下)
void wait() 当前线程等待,直到被其他线程唤醒 void notify() 随机唤醒单个线程 void notifyAll() 唤醒所有线程 阻塞队列 在测试方法中创建带锁队列,然后在对象类中也创建队列但是不赋值,用构造方法将测试方法中的对象赋值 然后用put和t…...
【TCP】三次挥手,四次挥手详解--UDP和TCP协议详解
活动发起人小虚竹 想对你说: 这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!…...
栈(LIFO)算法题
1.删除字符串中所有相邻的重复字符 注意,我们需要重复处理,而不是处理一次相邻的相同元素就结束了。对示例来说,如果只进行一次处理,结果为aaca,但是处理之后又出现了相邻的重复元素,我们还得继续处理&…...
印章/公章识别:PaddleX下的“Seal-Recognition”模型
最近做项目需要对印章进行识别,并提取其中的印章文字,又不希望这个模型太大,还要方便部署,于是乎这个模型是个不错的选择。 一、模型简介 “Seal-Recognition”模型是PaddleX旗下的一款模型(PaddleX 是基于飞桨框架构…...
从LLM出发:由浅入深探索AI开发的全流程与简单实践(全文3w字)
文章目录 第一部分:AI开发的背景与历史1.1 人工智能的起源与发展1.2 神经网络与深度学习的崛起1.3 Transformer架构与LLM的兴起1.4 当前AI开发的现状与趋势 第二部分:AI开发的核心技术2.1 机器学习:AI的基础2.1.1 机器学习的类型2.1.2 机器学…...
DeepSeek入门宝典——行业应用篇
大家好,我是吾鳴。 今天吾鳴要给大家分享一份由51CTO智能研究院出品的DeepSeek报告——《DeepSeek入门宝典——行业应用篇》。这份报告主要从DeepSeek核心能力、行业赋能与应用案例、合作伙伴与生态建设和学习资料与体系化方案做了详细的介绍,报告一共有…...
K8S学习之基础三十一:k8s中RBAC 的核心概念
Kubernetes (k8s) 中的 RBAC(Role-Based Access Control,基于角色的访问控制)是一种用于管理用户和服务账户对集群资源访问权限的机制。RBAC 允许管理员通过定义角色(Role)和角色绑定(RoleBindingÿ…...
JAVA数据库技术(一)
JDBC 简介 JDBC(Java Database Connectivity)是Java平台提供的一套用于执行SQL语句的Java API。它允许Java程序连接到数据库,并通过发送SQL语句来查询、更新和管理数据库中的数据。JDBC为不同的数据库提供了一种统一的访问方式,使…...
【Agent】OpenManus-Flow组件详细分析
1. Flow架构概述 OpenManus 的Flow组件实现了一个灵活的工作流管理系统,主要用于协调多个智能体的协作,以完成复杂任务。Flow组件的核心是基于计划的执行模型,它将任务分解为一系列步骤,然后逐步执行这些步骤,直到任务…...
MySQL环境安装详细教程(Windows/macOS/Linux)
摘要:本文详细介绍了在Windows、macOS和Linux三大操作系统下安装MySQL数据库的完整流程,帮助开发者快速搭建本地MySQL环境。 一、MySQL安装前准备 官网下载 访问MySQL官网 → 选择"Downloads" → 选择"MySQL Community (GPL) Downloads&…...
【人工智能基础2】人工神经网络、卷积神经网络基础、循环神经网络、长短时记忆网络
文章目录 三、人工神经网络1. 神经元感知模型2. 神经网络模型3. 学习规则:修改神经网络的权重和偏置反向传播算法(BP)优化器 - 梯度下降法 四、卷积神经网络基础(CNN)1. 基本原理2. 计算过程 五、循环神经网络(RNN&…...
如何查看windows系统的硬件环境(附方法
方法一:使用命令指示符查询 在“开始”菜单中搜索:命令指示符,并以管理员身份打开, 输入:systeminfo,就可以查看硬件、CPU、处理器等详细内容 systeminfo 方法二:在资源监视器中查看 按住 “…...
基于树莓派的水果分类系统(论文+源码)
针对小型农户的在水果加工销售环节中的分类需求,本文设计并实现了基于树莓派的视觉识别分类系统。本章根据所选水果的具体情况,简述系统各模块的实现方法,设计树莓派的程序算法,并选择合适的器件型号,开发所用的辅助工…...
Gemini Robotics:将人工智能带入物理世界
25年3月来自谷歌的技术报告“Gemini Robotics: Bringing AI into the Physical World”。 大型多模态模型的最新进展,已使数字领域出现卓越的通才能力,但将其转化为机器人等物理智体仍然是一项重大挑战。一般有用的机器人需要能够理解周围的物理世界&am…...
2.5[frontEnd]
requestAnimationFrame 是 浏览器原生 API,定义在 window 对象中,属于 Web API 的一部分。无需任何导入即可直接使用,其类型定义包含在 TypeScript 标准库中。 React 组件挂载时执行该 useEffect 初始化节流计时器 lastEmit 和 25ms 触发间隔…...
【动手学深度学习】#2线性神经网络
主要参考学习资料: 《动手学深度学习》阿斯顿张 等 著 【动手学深度学习 PyTorch版】哔哩哔哩跟李牧学AI 目录 2.1 线性回归2.1.1 线性回归的基本元素线性模型损失函数解析解随机梯度下降 2.1.3 最大似然估计 2.2 线性回归从零开始实现2.2.1 生成数据集2.2.2 读取数…...
C语言动态内存管理(上)
欢迎拜访:雾里看山-CSDN博客 本篇主题:C语言动态内存管理(上) 发布时间:2025.3.16 隶属专栏:C语言 目录 为什么需要动态内存管理静态分配的局限性动态分配的优势 动态内存函数malloc函数介绍函数使用 free函数介绍函数使用 calloc…...
图解多头注意力机制:维度变化一镜到底
目录 一、多头注意力机制概述二、代码实现1. pyTorch 实现2. tensorFlow实现 三、维度变化全流程详解1. 参数设定2. 维度变化流程图3. 关键步骤维度变化 四、关键实现细节解析1. 多头拆分与合并2. 注意力分数计算3. 掩码处理技巧 五、完整运行示例六、总结与常见问题1. 核心优势…...
Navicat如何查看密码
近期遇到需要将大部分已存储的navicat数据库转发给其他人,于是乎进行导出文件 奈何对方不用navicat,无法进行文件的导入从而导入链接 搜罗navicat的密码查看,大部分都为php代码解析 以下转载GitHub上看到的一个python代码解析的脚本 这里是对…...
第4节:分类任务
引入: 独热编码(one-hot):对于分类任务的输出,也就是是或不是某类的问题,采取独热编码的形式将y由一离散值转化为连续的概率分布,最大值所在下标为预测类 输入的处理:对于任意一张…...
EasyCVR安防视频汇聚平台助力工业园区构建“感、存、知、用”一体化智能监管体系
在现代工业园区的安全管理和高效运营中,视频监控系统扮演着不可或缺的角色。然而,随着园区规模的扩大和业务的复杂化,传统的视频监控系统面临着诸多挑战,如设备众多难以统一管理、数据存储分散、智能分析能力不足、信息利用率低下…...
计算机网络——DNS
一、什么是DNS? DNS(Domain Name System,域名系统) 是互联网的核心服务,负责将人类可读的域名(如 www.baidu.com)转换为机器可识别的 IP地址(如 14.119.104.254)。它像一…...
STC89C52单片机学习——第20节: [8-2]串口向电脑发送数据电脑通过串口控制LED
写这个文章是用来学习的,记录一下我的学习过程。希望我能一直坚持下去,我只是一个小白,只是想好好学习,我知道这会很难,但我还是想去做! 本文写于:2025.03.15 51单片机学习——第20节: [8-2]串口向电脑发送数据&电脑通过串口控制LED 前言…...
1.5[hardware][day5]
Link类跳转指令可以拆分为两个部分,一个是跳转,即下一个PC的生成,如果将分支条件的比较放到译码级来进行,则这部分只涉及取值级和译码级流水;另一个是Link操作,简单来说就是写寄存器,这部则主要…...
Java 多线程编程:提升系统并发处理能力!
多线程是 Java 中实现并发任务执行的关键技术,能够显著提升程序在多核处理器上的性能以及处理多任务的能力。本文面向初级到中级开发者,从多线程的基本定义开始,逐步讲解线程创建、状态管理、同步机制、并发工具以及新兴的虚拟线程技术。每部…...
Mininet 的详细设计逻辑
Mininet 是一个轻量级网络仿真工具,其核心目标是在单台物理机上快速构建复杂的虚拟网络拓扑,支持 SDN(软件定义网络)和传统网络协议的实验与验证。其设计逻辑围绕 虚拟化、模块化 和 灵活性 展开,以下是其详细设计架构…...
原生微信小程序实现导航漫游(Tour)
效果: 小程序实现导航漫游 1、组件 miniprogram/components/tour/index.wxml <!--wxml--> <view class"guide" wx:if"{{showGuide}}"><view style"{{guideStyle}}" class"guide-box"><view class&quo…...
Spring(6)——Spring、Spring Boot 与 Spring MVC 的关系与区别
Spring、Spring Boot 与 Spring MVC 的关系与区别 1. 核心定位 Spring 定位:基础框架,提供 IoC(控制反转) 和 DI(依赖注入) 核心功能,管理对象生命周期及依赖关系。功能:支持事务管…...
神聖的綫性代數速成例題2. 行列式的性質
性質 1:行列式與它的轉置行列式相等: 設為行列式,為其轉置行列式,則。 性質 2:交換行列式的兩行 (列),行列式變號: 若行列式經過交換第行和第行得到行列式,則。 性質 3ÿ…...
ModelScope推理QwQ32B
文章目录 ModelScope推理QwQ32Bmodel_scope下载QwQ32BModelScope 调用QwQ-32B ModelScope推理QwQ32B 以下载 qwq32b 为例子 需要安装的 python 包 transformers4.49.0 accelerate>0.26.0 torch2.4.1 triton3.0.0 safetensors0.4.5可以使用 conda 创建一个虚拟环境安装 cond…...
使用unsloth进行grpo强化学习训练
说明 unsloth框架可以进行各种sft训练,包括lora和grpo训练。我参考官方方法,使用模型Qwen2.5-3B-Instruct和数据集gsm8k,写了一个grpo训练的例子。 代码 这个代码加载模型Qwen2.5-3B-Instruct和数据集gsm8k。训练完成后先保存lora模型然后…...
【c++】【智能指针】shared_ptr底层实现
【c】【智能指针】shared_ptr底层实现 智能指针之前已经写过了,但是考虑到不够深入,应该再分篇写写。 1 shared_ptr 1.1 shared_ptr 是什么 std::shared_ptr是一个类模板,它的对象行为像指针,但是它还能记录有多少个对象共享它…...
python拉取大视频导入deepseek大模型解决方案
使用Python拉取大视频并导入大模型,需要综合考虑数据获取、存储、处理和资源管理,确保高效稳定地处理大视频数据,同时充分利用大模型的性能,以下是分步方案及代码示例: --- 1. 分块下载大视频(避免内存溢出…...
【Python】面向对象
编程的两大特点 面向过程:着重于做什么面向对象( oop):着重于谁去做 python是面向对象语言,面向对象三大特点:封装、继承、多态 面向对象:便于代码管理,方便迭代更新。 新式类、经…...
leetcode日记(100)填充每个节点的下一个右侧节点指针
和层序遍历差不多的思路,将节点储存在队列里,一边取出节点一边放入取出节点的左右节点,直到队列空。 /* // Definition for a Node. class Node { public:int val;Node* left;Node* right;Node* next;Node() : val(0), left(NULL), right(NU…...
docker入门篇
使用docker可以很快部署相同的环境,这也是最快的环境构建,接下来就主要对docker中的基础内容进行讲解.Docker 是一个用于开发、交付和运行应用程序的开源平台,它可以让开发者将应用程序及其依赖打包到一个容器中,然后在任何环境中运行这个容器࿰…...
python语法
1. 前面先写import导入模块,完整的语法是: [from 模块名] import [模块 | 类 | 变量 | 函数 | *] [as 别名] 语法还可以是: from 模块名 import 功能名 如果import整个模块的话,需要用.功能名(),来用这个功能ÿ…...
Dify使用部署与应用实践
最近在研究AI Agent,发现大家都在用Dify,但Dify部署起来总是面临各种问题,而且我在部署和应用测试过程中也都遇到了,因此记录如下,供大家参考。Dify总体来说比较灵活,扩展性比较强,适合基于它做…...
微信小程序接入DeepSeek模型(火山方舟),并在视图中流式输出
引言: DeepSeek,作为一款先进的自然语言处理模型,以其强大的文本理解和生成能力著称。它能够处理复杂的文本信息,进行深度推理,并快速给出准确的回应。DeepSeek模型支持流式处理,这意味着它可以边计算边输…...
前端性能优化指标及优化方案
前端性能优化的核心目标是 提高页面加载速度、降低交互延迟、减少资源占用。常见的 Web 性能指标包括 LCP、FID、CLS、TTFB、TTI、FCP 等。 关键性能指标(Web Vitals) 指标优化方案 (1)LCP(Largest Contentful Paint&…...
正则化介绍
简单介绍 正则化是用于控制模型的复杂度,防止模型在训练数据上过度拟合(overfitting)。正则化通过在模型的损失函数中引入额外的惩罚项,来对模型的参数进行约束,从而降低模型的复杂度。这个额外的惩罚通常与模型参数的…...
AI时代:数字媒体的无限可能
人工智能和数字媒体技术正深刻改变着我们的生活。通过大数据分析、机器学习等技术,人工智能不仅能精准预测用户需求,还能在医疗、金融等多个领域提供高效解决方案。与此同时,数字媒体技术的进步使得信息传播更加迅速和广泛。社会计算作为新兴…...
自动化爬虫drissionpage
自动化爬虫drissionpage官网 自动化测试框架:DrissionPage DrissionPage调用工具汇总 网络爬虫工具比较-DrissionPage、Selenium、Playwright...