当前位置: 首页 > news >正文

正则化介绍

简单介绍

正则化是用于控制模型的复杂度,防止模型在训练数据上过度拟合(overfitting)。正则化通过在模型的损失函数中引入额外的惩罚项,来对模型的参数进行约束,从而降低模型的复杂度。这个额外的惩罚通常与模型参数的大小或者数量相关,旨在鼓励模型学习简单的规律,而不是过度拟合训练数据。正则化的作用有:防止模型过拟合,减少模型复杂程度,提高模型鲁棒性。

简单来说,正则化就是让对模型影响小的权重趋向零。使用L1正则化的模型叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)

L1正则化

方法:在损失函数后面加上\lambda倍的权重向量的1范数的平方。

优点介绍:让权重向量稀疏化和防止模型过拟合,下面通过摘录某篇博客的内容来介绍优点,如下。

  • L1正则化可以使得参数稀疏化,即得到的参数是一个稀疏矩阵,可以用于特征选择。
    • 稀疏性,说白了就是模型的很多参数是0。通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,很多参数是0,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,即使去掉对模型也没有什么影响,此时我们就可以只关注系数是非零值的特征。这相当于对模型进行了一次特征选择,只留下一些比较重要的特征,提高模型的泛化能力,降低过拟合的可能。

L2正则化

方法:在损失函数后面加上\lambda倍的权重向量的2范数的平方

优点介绍:防止模型过拟合。

L1正则化和L2正则化总结

无论L1正则化还是L2正则化都需要选择合适的\lambda的值,如果取值过大都会导致模型欠拟合,而过小又不能减小过拟合的程度。接下来摘录了一篇博客确定\lambda值的经验,如下。

  • 经验
    从0开始,逐渐增大λλ。在训练集上学习到参数,然后在测试集上(我个人认为这里的测试集应该是验证集才对,以后有时间可以研究研究)验证误差。反复进行这个过程,直到测试集上的误差最小。一般的说,随着λλ从0开始增大,测试集的误分类率应该是先减小后增大,交叉验证的目的,就是为了找到误分类率最小的那个位置。建议一开始将正则项系数λ设置为0,先确定一个比较好的learning rate。然后固定该learning rate,给λλ一个值(比如1.0),然后根据validation accuracy,将λ增大或者减小10倍,增减10倍是粗调节,当你确定了λλ的合适的数量级后,比如λ=0.01λ=0.01,再进一步地细调节,比如调节为0.02,0.03,0.009之类。

Dropout(以后补充)

Dropout 是一种在神经网络中常用的正则化技术,用于减少过拟合。其原理是在网络的训练过程中,随机地将部分神经元的输出置为零(即失活),从而使得网络在每次迭代时都在不同的子网络上训练,以减少神经元之间的复杂依赖关系,从而增强模型的泛化能力。

相关文章:

正则化介绍

简单介绍 正则化是用于控制模型的复杂度,防止模型在训练数据上过度拟合(overfitting)。正则化通过在模型的损失函数中引入额外的惩罚项,来对模型的参数进行约束,从而降低模型的复杂度。这个额外的惩罚通常与模型参数的…...

AI时代:数字媒体的无限可能

人工智能和数字媒体技术正深刻改变着我们的生活。通过大数据分析、机器学习等技术,人工智能不仅能精准预测用户需求,还能在医疗、金融等多个领域提供高效解决方案。与此同时,数字媒体技术的进步使得信息传播更加迅速和广泛。社会计算作为新兴…...

自动化爬虫drissionpage

自动化爬虫drissionpage官网 自动化测试框架:DrissionPage DrissionPage调用工具汇总 网络爬虫工具比较-DrissionPage、Selenium、Playwright...

禁毒知识竞赛主持稿串词

尊敬的各位领导、各位来宾、参赛选手们:大家好! 在市禁毒委员会的领导下,今年我市开展了以“参与禁毒战争,构建和谐社会”为主题的禁毒宣传月活动。为了进一步加强我市禁毒宣传力度,促进社会治安的好转和社会主义物质文…...

【JDK17】Jlink一秒生成精简的JRE

之前介绍了 Java17模块化的JDK,模块化后按需使用Jlink 用于精简生成 JRE 环境,这让快速的开发环境增强了编码的愉悦感。在实际生产环境中使用 mave 进行项目的构建,其次再是精简 JRE 缩小容器镜像体积,为实现一体化的流程&#xf…...

机器学习周报--文献阅读

文章目录 摘要Abstract 1 文章内容1.1 模型结构1.1.1 LSTMAT的结构设置1.1.2 AWPSO算法优化模型 1.2 实验与结果讨论1.2.1 处理缺失数据1.2.2 模型评估指标1.2.3 比较实验1.2.4 消融实验(ABLATION EXPERIMENTS) 2相关知识2.1 自适应权重粒子群优化&#…...

硬件地址反序?用位操作为LED灯序“纠偏”。反转二进制数即可解决

特别有意思,LED的灯序与其硬件地址刚好相反,没办法直接通过加1实现二进制进位的亮灯操作,查了一些资料说用数组和switch实现,觉得太麻烦了,思索良久,就想到了反转二进制数解决这个问题。 reverse_bits( )是…...

A* floyd算法 bellman-ford

求源点到目标点最短距离 排序的里面要加上与目标点一个预估距离,与dj算法差距只有这儿 预估要小于等于真实的最短距离,吸引力要适当 越接近实际距离越快 #include<bits/stdc.h> using namespace std;// 方向向量&#xff1a;上、右、下、左 const vector<int> …...

【数据挖掘】KL散度(Kullback-Leibler Divergence, KLD)

KL散度&#xff08;Kullback-Leibler Divergence, KLD&#xff09; 是衡量两个概率分布 P 和 Q之间差异的一种非对称度量。它用于描述当使用分布 Q 逼近真实分布 P 时&#xff0c;信息丢失的程度。 KL散度的数学定义 给定两个离散概率分布 P(x)和 Q(x)&#xff0c;它们在相同的…...

Linux shell 进度条

概述 在 Linux Shell 中实现一个简单的进度条可以通过 printf 命令结合特殊字符来实现&#xff0c;以下是一个示例脚本&#xff0c;它模拟了一个从 0% 到 100% 的进度条。 作用 反馈任务进度&#xff1a;让用户直观了解任务执行的进展情况&#xff0c;比如文件拷贝、系统更新…...

ctfshow web刷题记录

RCE 第一题 eval代码执行 &#xff1a; 1、使用system 加通配符过滤 ?csystem("tac%20fl*") ; 2、反字节执行 xxx %20 echo 反字节 3、变量转移 重新定义一个变量 让他代替我们执行 4、伪协议玩法 ?cinclude$_GET[1]?>&1php://filter/readc…...

leetcode日记(101)填充每个节点的下一个右侧节点指针Ⅱ

意料之中有这题&#xff0c;将之前的思路换一下即可&#xff0c;层序遍历的思路将record&#xff08;记录下一个循环的次数&#xff09;手动加减。 /* // Definition for a Node. class Node { public:int val;Node* left;Node* right;Node* next;Node() : val(0), left(NULL)…...

大语言模型微调和大语言模型应用的区别?

1. 基本概念 微调&#xff08;Fine-tuning&#xff09; 定义&#xff1a;微调是指在预训练大语言模型的基础上&#xff0c;通过在特定领域或任务的数据上进一步训练&#xff0c;从而使模型在该特定任务上表现更优。 目的&#xff1a;适应具体的任务需求&#xff0c;比如法律文…...

Leetcode-131.Palindrome Partitioning [C++][Java]

目录 一、题目描述 二、解题思路 【C】 【Java】 Leetcode-131.Palindrome Partitioninghttps://leetcode.com/problems/palindrome-partitioning/description/131. 分割回文串 - 力扣&#xff08;LeetCode&#xff09;131. 分割回文串 - 给你一个字符串 s&#xff0c;请你…...

DeepSeek:开启机器人智能化的革命性突破

引言 在2025年全球机器人产业格局中&#xff0c;中国AI公司深度求索&#xff08;DeepSeek&#xff09;凭借开源机器人智能控制系统DeepSeek-R1&#xff0c;正在掀起一场从底层算法到应用生态的技术革命。不同于传统机器人依赖预设程序的局限&#xff0c;DeepSeek通过深度推理能…...

解决load()文件报错zipfile.BadZipFile: File is not a zip file

报错如下图&#xff1a; 有可能是资源没有关闭造成了错误&#xff0c;这个网上已经有很多解决方案了&#xff0c;大家可自行查阅。 如果你在别的地方都没有找到解决问题&#xff0c;那么可能是以下这种情况。 1、描述 我在服务器上的代码load()加载文件时&#xff0c;出现了…...

【Tools】Visual Studio Code安装保姆级教程(2025版)

00. 目录 文章目录 00. 目录01. Visual Studio Code概述02. Visual Studio Code下载03. Visual Studio Code安装04. Visual Studio Code配置05. 附录 01. Visual Studio Code概述 Visual Studio Code&#xff08;简称 VS Code&#xff09;是由微软开发的一款免费、开源且跨平台…...

Python库安装报错解决思路以及机器学习环境配置详细方案

文章目录 概要第三方库gdalmahotasgraphviznltk-datalazypredictscikit-surprisenb_extensions 机器学习GPU-torch安装torch_geometric安装ubuntu安装显卡驱动dlib安装torch-cluster、torch-scatter、torch-sparse和torch-geometricYOLOapextensorflow-gpu Python && P…...

ETIMEDOUT 网络超时问题

根据日志显示&#xff0c;你遇到的 ​**ETIMEDOUT 网络超时问题** 是由于 npm 无法连接到企业内部的 Nexus 仓库&#xff08;http://192.168.55.12:8001&#xff09;导致的。以下是具体原因和解决方案&#xff1a; 一、问题根源 ​Nexus 仓库不可达 日志中所有依赖包均尝试从 h…...

superset部署记录

具备网络条件的&#xff0c;完全可以一键部署&#xff0c;不需要折腾。网络条件不具备时&#xff0c;部署记录留存备查。 1、正常模式 详细介绍参考&#xff1a;【开源项目推荐】Apache Superset——最优秀的开源数据可视化与数据探索平台-腾讯云开发者社区-腾讯云 (tencent.c…...

todolist docker 小工具

参考链接 前排提示 没有中文&#xff0c;可使用浏览器 翻译 前提 安装docker安装docker-compose 下载仓库 git clone https://github.com/JordanKnott/taskcafe进行安装 cd taskcafe docker-compose -p taskcafe up -d服务启动后会监听在 3333 端口上&#xff0c;通过浏览器…...

PowerToys:解锁Windows生产力的终极武器

欢迎来到涛涛聊AI。今天想着把win键和加号的组合键映射为win键和Q键盘。经过搜索发现PowerToys。 在数字化办公的浪潮中&#xff0c;效率是职场人永恒的追求。微软推出的 PowerToys 作为Windows官方系统强化工具&#xff0c;凭借其强大的功能和开源免费的特性&#xff0c;已成为…...

内存管理:

我们今天来学习一下内存管理&#xff1a; 1. 内存分布&#xff1a; 我们先来看一下我们下面的图片&#xff1a; 这个就是我们的内存&#xff0c;我们的内存分为栈区&#xff0c;堆区&#xff0c;静态区&#xff0c;常量区&#xff1b; 我们的函数栈帧开辟消耗的内存就是我们…...

ElementUI 表格中插入图片缩略图,鼠标悬停显示大图

如何在 ElementUI 的表格组件 Table 中插入图片缩略图&#xff0c;通过鼠标悬停显示大图&#xff1f;介绍以下2种方式&#xff1a; 方法1&#xff1a;直接在模板元素中插入 <template><el-table :data"tableData"><el-table-column label"图片…...

从被动响应到主动预见:智能可观测性技术的变革与实践

思维导图 一、引言 &#x1f303; 想象一下&#xff0c;在一个深夜 &#x1f319;&#xff0c;你的关键业务系统突然出现故障 &#x1f6a8;。传统情况下&#xff0c;你可能会收到大量不相关的告警 &#x1f4f1;&#x1f4ac;&#x1f4ac;&#x1f4ac;&#xff0c;然后花费…...

【Linux】五种 IO 模型与非阻塞 IO

&#x1f308; 个人主页&#xff1a;Zfox_ &#x1f525; 系列专栏&#xff1a;Linux 目录 一&#xff1a;&#x1f525; 重新理解 IO&#x1f98b; 为什么说网络问题的本质是 I/O 问题&#xff1f;&#x1f380; 从数据流动看网络通信&#x1f380; 网络 I/O 的瓶颈 &#x1f…...

从零开始开发纯血鸿蒙应用之无框截图

从零开始开发纯血鸿蒙应用 〇、前言二、元素定位1、理论依据2、使用指导 三、认识 ComponentSnapshot1、get 方法2、获取 ComponentSnapshot 实例 四、实现组件截图1、掌握图片编码能力2、保存到图库3、实现组件截图 〇、前言 截图&#xff0c;或者说截屏&#xff0c;已经是每…...

【商城实战(36)】UniApp性能飞升秘籍:从渲染到编译的深度优化

【商城实战】专栏重磅来袭&#xff01;这是一份专为开发者与电商从业者打造的超详细指南。从项目基础搭建&#xff0c;运用 uniapp、Element Plus、SpringBoot 搭建商城框架&#xff0c;到用户、商品、订单等核心模块开发&#xff0c;再到性能优化、安全加固、多端适配&#xf…...

无人自助空间智能管理系统解决方案(深度优化版)

无人自助空间智能管理系统解决方案&#xff08;深度优化版&#xff09; 一、行业痛点与系统价值 传统管理依赖人工&#xff1a; 人工管理模式下&#xff0c;易出现人为失误&#xff0c;如计费错误、资源分配不当等。同时&#xff0c;人工操作效率低下&#xff0c;在高峰时段…...

pycharm配置镜像源【pycharm最新版(23.2.5及以上)方法】

经常遇到pycharm中无法安装或者安装慢的问题&#xff0c;纠结了好久&#xff0c;终于找到这个解决办法了。 为什么要配置镜像源&#xff1a; 因为Python的包管理工具pip一般从PyPI&#xff08;Python Package Index&#xff09;下载安装包&#xff0c;但是PyPI位于国外&#x…...

探索ima.copilot:个人知识库搭建的AI新利器

在信息爆炸的时代&#xff0c;知识的积累与管理成为了个人发展的关键。面对海量的科研文献、工作资料和各类信息&#xff0c;如何高效地构建属于自己的知识体系&#xff0c;是许多人面临的挑战。ima.copilot这款AI工具的出现&#xff0c;为解决这一难题提供了新的思路。它凭借强…...

向量数据库技术系列五-Weaviate介绍

一、前言 Weaviate 是由德国公司 SeMI Technologies 开发的开源向量搜索引擎数据库。它结合了向量搜索和图数据库技术&#xff0c;旨在为 AI 应用提供高效的数据存储和检索能力。具有以下的特点&#xff1a; 高性能向量搜索 Weaviate 支持高效的向量索引和近似最近邻&#x…...

1.Qt SDK 的下载和安装

1Qt 下载官⽹&#xff1a; http://download.qt.io/archive/qt/ 2版本自行选择 3下载对应版本的.exe文件 4下载包下载完成 5双击.exe文件&#xff0c;默认下一步&#xff0c;要注册一个qt的账户 6记住程序安装的位置&#xff0c;后面要配置环境变量 7勾3个&#xff08;组件自行…...

光场中的核心概念:Macro Pixel与SAI的深度解析与实例应用

一、概念详解&#xff1a;从硬件到算法的核心要素 Macro Pixel&#xff08;宏像素&#xff09; Macro Pixel是光场相机的硬件核心单元&#xff0c;由微透镜阵列覆盖的一组传感器子像素构成。每个微透镜对应一个宏像素&#xff0c;其子像素分别记录通过该微透镜不同区域的光线方…...

机器学习(吴恩达)

一, 机器学习 机器学习定义: 计算机能够在没有明确的编程情况下学习 特征: 特征是描述样本的属性或变量&#xff0c;是模型用来学习和预测的基础。如: 房屋面积, 地理位置 标签: 监督学习中需要预测的目标变量&#xff0c;是模型的输出目标。如: 房屋价格 样本: 如: {面积100㎡…...

Ubuntu 20.04 + mysql 8 默认密码问题

问题描述&#xff1a; Ubuntu20.04安装完mysql8之后无法登录&#xff0c;不知道密码 mysql -u root 原因&#xff1a; 系统默认自动配置好了用户和强密码 解决办法&#xff1a; sudo cat /etc/mysql/debian.cnf查看该文件 利用上面的user 和 passwd 即可登录mysql mysql …...

私有云大数据部署:从开发到生产(Docker、K8s、HDFS/Flink on K8s)

1. 引言 在企业级大数据架构中,私有云部署成为了许多企业的首选,尤其是对数据安全性、合规性、资源控制要求较高的场景。相比于公有云,私有云具备更强的灵活性,能够根据业务需求进行定制化优化。本文将探讨如何在私有云环境下构建大数据平台,包括 Docker 容器化、Kuberne…...

使用DeepSeek和墨刀AI,写PRD文档、画原型图的思路、过程及方法

使用DeepSeek和墨刀AI&#xff0c;写PRD文档、画原型图的思路、过程及方法 现在PRD文档要如何写更高效、更清晰、更完整&#xff1f; 还是按以前的思路写PRD&#xff0c;就还是以前的样子。 现在AI这么强大&#xff0c;产品经理如何使用DeepSeek写PRD文档&#xff0c;产品经…...

拥有一台云服务器能做什么呢?

拥有一台云服务器就像拥有了一台24小时在线的远程电脑&#xff0c;你可以通过互联网随时随地管理它。它的用途非常广泛&#xff0c;无论是个人学习、开发测试&#xff0c;还是企业级应用部署&#xff0c;都能发挥重要作用。以下是常见的应用场景&#xff0c;按需求分类整理&…...

4大观点直面呈现|直播回顾-DeepSeek时代的AI算力管理

直播回顾 2025年2月21日晚上9点30分&#xff0c; 我们迎来了新春后的首场人工智能三人行宣讲活动。 这场直播聚焦于Deepseek开源大模型&#xff0c; 探讨了其对AI算力、算法、数据及应用带来的新发展。 本次直播邀请到了上海赞奇的总经理俞阁总和速石科技陈琳涛&#xff0c;…...

DBeaver安装步骤及连接数据库

一、DBeaver安装步骤 1、双击安装文件“dbeaver-ce-21.3.3-x86_64-setup.exe”&#xff0c;进入安装界面 2、点击ok》下一步》我接受&#xff0c;选择下图选项&#xff0c;为此所有用户使用 3、点击下一步&#xff0c;将重新弹出安装开始界面 4、点击ok》下一步》我接受&…...

玩转python:通俗易懂掌握高级数据结构-collections模块之UserDict

引言 UserDict是Python中collections模块提供的一个强大工具&#xff0c;它是dict的封装类&#xff0c;允许用户自定义字典的行为。通过继承UserDict&#xff0c;开发者可以轻松扩展字典的功能&#xff0c;实现自定义的字典逻辑。本文将详细介绍UserDict的关键用法和特性&…...

如何解决ChatGPTplus/pro o1/o3模型无法识别图片或者文件,限制次数?

你是否遇到ChatGPTplus无法识别图片、或者无法识别文件&#xff0c;甚至回答很简短&#xff0c;o1不思考&#xff0c;GPT-4o不能联网、分析图片和处理文件&#xff01;感觉非常敷衍。本文教你如何确定自己的账号是否被降智&#xff1b;教你如何降智的原因&#xff1b;教你解决降…...

96.HarmonyOS NEXT工具类设计模式教程:最佳实践与实现

温馨提示&#xff1a;本篇博客的详细代码已发布到 git : https://gitcode.com/nutpi/HarmonyosNext 可以下载运行哦&#xff01; HarmonyOS NEXT工具类设计模式教程&#xff1a;最佳实践与实现 1. 工具类设计原则 1.1 基本原则 原则说明示例单一职责每个类只负责一个功能Win…...

springboot+vue如何前后端联调,手搓前后端分离项目

我们首先在前端安装axios&#xff0c;这个npm就可以&#xff01;下载完成后。我们用我们之前的页面&#xff0c;然后写一个card&#xff0c;在一个card里面渲染我们的用户数据&#xff0c;我们先写一个查询所有用户信息的一个效果&#xff01; <el-card class"box-card…...

git备份or打补丁

起因 在工作中使用git pull突然发现仓库出现了找不到代码库问题&#xff0c;但是这个时候有个对策又急着需要&#xff0c;于是乎&#xff0c;就需要备份&#xff0c;拷贝给另一个工程师输出。 git 打补丁操作 工程师A生成补丁文件 touch a.txtgit add a.txtgit commit -m &qu…...

游戏成瘾与学习动力激发研究——多巴胺脉冲式释放与奖赏预测误差机制的神经科学解析

多巴胺脉冲式释放与奖赏预测误差机制的神经科学解析 一、核心概念 多巴胺(Dopamine) 一种关键神经递质,主要功能是调节动机、奖赏学习和行为强化。它并非直接产生“快乐感”,而是驱动“寻求奖赏”的行为动机。 脉冲式释放(Phasic Release) 多巴胺神经元以短暂、高频的爆…...

【C/C++】最长回文子串(leetcode T5)

核心考点&#xff1a;回文字符串匹配中心扩展法 题目描述 给你一个字符串 s&#xff0c;找到 s 中最长的 回文 子串。 示例 1&#xff1a; 输入&#xff1a;s "babad" 输出&#xff1a;"bab" 解释&#xff1a;"aba" 同样是符合题意的答案。…...

表的操作以及增删查改

1. 表的操作 1.1 查看所有表 show tables; 1. 2 创建表 CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_namefield datatype [ 约束 ] [comment 注解内容 ][, field datatype [ 约束 ] [comment 注解内容 ]] ...) [engine 存储引擎 ] [character set 字符集 ] [collate …...

【人工智能基础2】Tramsformer架构、自然语言处理基础、计算机视觉总结

文章目录 七、Transformer架构1. 替代LSTM的原因2. Transformer架构&#xff1a;编码器 - 解码器架构3. Transformer架构原理 八、自然语言处理基础1. 语言模型基本概念2. 向量语义3. 预训练语言模型的基本原理与方法4. DeepSeek基本原理 九、计算机视觉 七、Transformer架构 …...