当前位置: 首页 > news >正文

OpenHarmony-分布式硬件关键技术

前言

OpenHarmony是一款面向未来万物互联场景的操作系统,其设计采用了分布式架构。那么OpenHarmony相比于传统操作系统有哪些关键的分布式技术,本文主要介绍分布式硬件设计理念、跨端分布式硬件核心挑战、以及OpenHarmony分布式硬件平台关键技术。

一、分布式硬件设计理念

从智能终端的发展趋势来看,单一智能智能终端硬件已经越来越难以满足用户对全场景的要求,面临发展瓶颈:由于体积的限制,无法把所有场景所涉及的硬件全部加入到一个设备中,且单一设备也无法满足所有场景的需求。基于这个现实痛点,多智能终端“组合”而成的“超级终端”应运而生。超级终端可以根据用户期望,通过分布式技术将多个设备组合起来,使设备间的硬件资源共享,实现硬件的“自由”扩展,并可以在不同的业务场景下,按需组合硬件资源,提供更好的用户体验。例如,通过手机、平板、手表、大屏幕、电脑等智能终端的组合,可以实现多屏幕串联、多摄像头和麦克风交互以及专业传感器布置等功能。

在这样的趋势下,传统操作系统很难满足开发者的要求。因为传统操作系统只能局限使用单个设备上的硬件,每一个硬件都是割裂运行的,应用也只能在单设备垂直领域发力,实现跨设备体验成本和复杂度极高。对开发者来说,更希望能够“跨端”共享硬件,打破硬件PCB边界,从而通过软件定义硬件,构建全场景多设备的“超级终端”。分布式硬件技术能够为开发者的上述需求提供助力,因其能够构建硬件资源池,提供按需定义超级终端硬件的能力,支持多路硬件的协同和调度,且能够使硬件能力自适应。

分布式硬件能够带来什么样的新体验呢?例如,在办公场景下,用户可以让各智能终端设备便捷地链接起来,实现硬件能力共享,跨设备、跨系统应用的操作,无缝传输数据;在出行场景下,用户可以通过将手机和车机组合起来,让应用共享两者的硬件,实现导航、音乐和通话等功能的无缝操作,达到“智慧出行”。对开发者而言,通过程序控制一个远端的设备,仅需要选择其对应的ID即可,其他操作和使用本地设备的方式完全一致。

                                                  图1-1 分布式硬件

二、跨端分布式硬件的核心挑战

随着超级终端包含的设备越来越多,硬件的管理复杂度也随之攀升。每一个设备的硬件,不仅对本设备提供硬件能力,还要为超级终端中的其他设备赋能。因此,操作系统必须提供各设备的管理能力。例如,各硬件状态的更新和同步、硬件冲突的处理、多路并发情况的处理等。多设备间的管理技术,是目前跨端分布式硬件的核心挑战之一。

在无线网络环境下,带宽有限,硬件调用的时延和效果难以保障。例如,本地相机的时延和拍摄效果是由硬件总线决定的,一般可以达到几十毫秒的时延和4K甚至更高的分辨率,且非常稳定。当通过应用远端操控相机时,除了硬件总线,还受到网络信号传输的影响,时延最低只能达到几百毫秒,分辨率也仅能达到1080P ,且波动很大。无线的不可靠网络,给硬件时延和效果带来了较大的不确定性。

                                                                                图2-1 超级终端硬件调用

在跨端多路硬件并发调用时,硬件协同同步的难度非常高。如上文所述,跨端硬件调度的时延本身就很难保障,当跨端同时调用多个硬件设备时,设备间的同步更难以保障。例如,当应用需要同时操作摄像头和麦克风时,在本地可以通过两者出厂时的调试工作确定其一致性;当跨端远程操作时,由于时延的不确定性,需要操作系统在多个设备间进行硬件协同,大大增加了软件的复杂度。

                              图2-2 超级终端多路硬件并发调用

此外,异构智能终端间的硬件兼容性和容错的难度也非常大。设备的不同,导致其各自的系统资源、处理能力、支持的硬件数据处理类型、驱动I/O等都存在较大差异,需要进一步考虑硬件之间的兼容和容错。例如,手表的处理能力相对较弱,难以使用电视的4K屏幕、高声道立体声喇叭和超高清摄像头等。

三、分布式硬件平台关键技术

3.1 分布式硬件池化架构

OpenHarmony在设计之初时就采用了分布式硬件池化架构。通过对各设备能力的抽象,构建全局硬件资源池抽象模型,对上提供一套统一的硬件抽象接口,实现统一管理、即插即用。此外,该架构还支持硬件类型的扩展和按需部署,对逻辑与物理资源进行解耦,可以实现本地和分布式硬件的无差别使用,未来还可以实现基于物理硬件能够定义出不同形态的新的硬件给应用使用,应用开发者只需要调用上层服务的API就可以使用,达到软件定义硬件的效果。

                                            图3-1 分布式硬件池化架构

基于“硬件资源池化”的创新理念,OpenHarmony融合硬件虚拟化、硬件资源管理及硬件数据管理等能力,构建了硬件资源池化框架,对外提供了统一的硬件能力开放接口,让开发者轻松实现应用开发。如图3-2所示,硬件资源池化框架将各类设备的硬件资源进行抽象,为北向应用提供各种分布式服务,比如分布式相机、分布式屏幕、分布式音频和分布式输入等,同时提供统一的设备管理和分布式硬件框架对硬件资源进行管理。

       

                                                    图3-2 硬件资源池化框架     

                                                                                                                       OpenHarmony 分层结构

HDI(Hardware Device Interface,硬件设备接口)是 HDF 驱动框架为开发者提供的硬件规范化描述性接口。在 OpenHarmony 分层结构中,HDI 位于 “基础系统服务层”和“设备抽象层(DAL)”之间。硬件设备通过 DAL 抽象化,并基于 IDL(Interface Description Language)接口描述语言描述后,为上层应用或服务提供了规范的硬件设备接口。

分布式硬件平台对超级终端中的所有设备的硬件资源池化都是基于硬件虚拟化组件来进行构建的,每一个硬件在平台上注册对应的虚拟硬件实例,虚拟硬件通过虚拟化组件实现与对应的物理硬件之间的交互,从而实现了对周边设备对应硬件的控制和数据传输。硬件资源池化基于驱动接口(HDI)完成硬件虚拟化,服务层各个业务子系统可以像使用本机硬件一样使用分布式硬件。

硬件资源池化框架对应的就是OpenHarmony分布式硬件管理子系统,该子系统中各模块详细解析:OpenHarmony-分布式硬件管理子系统简析

3.2 统一的设备发现和认证框架

分布式硬件平台还提供了统一的设备发现和认证框架。支持设备间通过碰、扫、靠等方式进行设备认证。一旦设备通过发现和认证后,设备的硬件就会自动进入硬件资源池,可以共享给其他设备使用。

                                              图3-3 设备发现和认证框架

3.3 硬件自适应技术

分布式硬件平台提供了硬件自适应技术。能够自动进行硬件能力协商,能够通过网络带宽和时延等的感知,在硬件被调用动态调整硬件效果。此外,还提供了自适应转换技术,通过增强算法实现硬件效果的增强。

                                                           图3-4 硬件自适应

3.4 硬件协同同步技术

分布式硬件平台还提供了硬件协同同步技术。能够在多路中提供毫秒级的时钟同步能力,确保多路硬件设备的一致性。通过硬件时延动态感知技术,在多个设备中动态下发同步策略,保证多个硬件之间同步的体验。

                                                       图3-5 硬件协同同步

相关文章:

OpenHarmony-分布式硬件关键技术

前言: OpenHarmony是一款面向未来万物互联场景的操作系统,其设计采用了分布式架构。那么OpenHarmony相比于传统操作系统有哪些关键的分布式技术,本文主要介绍分布式硬件设计理念、跨端分布式硬件核心挑战、以及OpenHarmony分布式硬件平台关键…...

idea超级AI插件,让 AI 为 Java 工程师

引言​ 用户可在界面中直接通过输入自然语言的形式描述接口的需求,系统通过输入的需求自动分析关键的功能点有哪些,并对不确定方案的需求提供多种选择,以及对需求上下文进行补充,用户修改确定需求后,系统会根据需求设…...

深入Flink运行时架构:JobManager与TaskManager协作全解析

深入Flink运行时架构:JobManager与TaskManager协作全解析 一、Flink分布式执行模型剖析 1.1 运行时架构全景视图 核心组件交互关系: #mermaid-svg-tMSqMSsKP6vwUZi3 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-s…...

OSPF-单区域的配置

一、单区域概念: 单区域OSPF中,整个网络被视为一个区域,区域ID通常为0(骨干区域)。所有的路由器都在这个区域内交换链路状态信息。 补充知识点: OSPF为何需要loopback接口: 1.Loopback接口的…...

每日OJ_牛客_过桥_贪心+BFS_C++_Java

目录 牛客_过桥_贪心BFS 题目解析 C代码 Java代码 牛客_过桥_贪心BFS 过桥 描述: dd被困在了一个迷幻森林,现在她面前有一条凶险的大河,河中央有n个神奇的浮块,浮块按1∼n1顺序标号,但两两并不相接&…...

K8S学习之基础二十七:k8s中daemonset控制器

k8s中DaemonSet控制器 ​ DaemonSet控制器确保k8s集群中,所有节点都运行一个相同的pod,当node节点增加时,新节点也会自动创建一个pod,当node节点从集群移除,对应的pod也会自动删除。删除DaemonSet也会删除创建的pod。…...

79.ScottPlot的MVVM实现 C#例子 WPF例子

如何通过数据绑定在 WPF 中实现动态图像显示 在 WPF 应用程序中,通过数据绑定实现动态图像显示是一种高效且优雅的方式。以下是一个简单的教程,展示如何使用 ScottPlot.WPF 库和 MVVM 模式来实现这一功能。 第一步:安装必要的 NuGet 包 首…...

第44天:WEB攻防-PHP应用SQL盲注布尔回显延时判断报错处理增删改查方式

时间轴: 44天知识点总结: 1.mysql的增删改查功能 2.根据源码sql语句的三种sql注入:布尔盲注(必须要有回显) 延时判断(都可以) 报错回显(必须要有报错处理机制) 3.两个cms…...

说说人工智能

1. 人工智能与机器学习 核心进展 人工智能(AI)与机器学习(ML)已从理论研究全面渗透到实际应用中。深度学习模型如Transformer架构在自然语言处理(NLP)和计算机视觉(CV)领域实现突破…...

懒加载(Lazy Loading):原理、实现与优化策略

懒加载(Lazy Loading) 是一种优化网页性能的技术,主要用于延迟加载非关键资源(如图片、视频、脚本等),直到它们真正需要被使用时才加载。懒加载可以显著减少页面初始加载时间,降低带宽消耗&…...

HTML5(Web前端开发笔记第一期)

p.s.这是萌新自己自学总结的笔记,如果想学习得更透彻的话还是请去看大佬的讲解 目录 三件套标签标题标签段落标签文本格式化标签图像标签超链接标签锚点链接默认链接地址 音频标签视频标签 HTML基本骨架综合案例->个人简介列表表格表单input标签单选框radio上传…...

Linux学习(十五)(故障排除(ICMP,Ping,Traceroute,网络统计,数据包分析))

故障排除是任何 Linux 用户或管理员的基本技能。这涉及识别和解决 Linux 系统中的问题。这些问题的范围包括常见的系统错误、硬件或软件问题、网络连接问题以及系统资源的管理。Linux 中的故障排除过程通常涉及使用命令行工具、检查系统和应用程序日志文件、了解系统进程&#…...

SVN 拉取,文件冲突 解决办法

情景 svn 在拉取代码时 提示 已跳过,其余有冲突 ,警告至少还有一个的文件处于冲突状态 导致文件拉取失败 一、原因 版本库和本地工作副本之间存在文件冲突,导致文件无法正常拉取。 二、 Terminal 窗口解决办法 1.查看冲突文件 在 Termin…...

【实战ES】实战 Elasticsearch:快速上手与深度实践-8.1.1基于ES的语义搜索(BERT嵌入向量)

👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 基于Elasticsearch与BERT的语义搜索架构设计与实战1. 传统搜索的局限性与语义搜索的崛起1.1 关键词搜索 vs 语义搜索1.2 Elasticsearch向量检索演进历程关键版本特性对比 2.…...

【Node.js】--- win11安装 Node.js

在编程的艺术世界里,代码和灵感需要寻找到最佳的交融点,才能打造出令人为之惊叹的作品。而在这座秋知叶i博客的殿堂里,我们将共同追寻这种完美结合,为未来的世界留下属于我们的独特印记。 【Node.js】--- win11安装 Node.js 开发环…...

【技海登峰】Kafka漫谈系列(九)SpringBoot整合Kafka多数据源配置

【技海登峰】Kafka漫谈系列(九)SpringBoot整合Kafka多数据源配置 Kafka官方提供了基于Java实现的客户端kafka-clients,用于提供生产者和消费者的基本能力。在此基础上,Spring for Apache Kafka(spring-kafka)项目对该原生客户端进行了基于Spring特性的抽象与封装,实现了基…...

【MySQL篇】基本查询实战OJ

本篇是基于上篇mysql基本查询的一些OJ题 MySQL基本查询传送门:【MySQL篇】MySQL基本查询详解-CSDN博客 批量插入数据_牛客题霸_牛客网 insert语句 insert into actor values (1,PENELOPE,GUINESS,2006-02-15 12:34:33); insert into actor values (2,NICK,WAHLBER…...

侯捷 C++ 课程学习笔记:C++内存管理机制

内存管理从平地到万丈高楼 内存管理入门(Memory Management 101) 需要具有动态分配并使用memory(存储(器),(计算机的)内存),使用过C标准库的容器&#xff0…...

java后端开发day31--集合进阶(一)-----Collection集合List集合数据结构1

(以下内容全部来自上述课程) 1.集合体系结构 List系列集合:添加的元素是有序、可重复、有索引。 Set系列集合:添加的元素是无序、不重复、无索引。 2.Collection集合 Collection是单列集合的祖宗接口(不可直接创建…...

TA学习之路——1.4 MVP矩阵运算

1.变换矩阵的意义 1.将3D物体转化到2D平面 2.为各个空间的运用做准备 2.MVP矩阵代表什么 MVP矩阵分别是模型(Model)、观察(View)、投影(Projecttion)三个矩阵。我们顶点坐标起始于局部空间(Local Space)…...

Java数据结构第二十期:解构排序算法的艺术与科学(二)

专栏:Java数据结构秘籍 个人主页:手握风云 目录 一、常见排序算法的实现 1.1. 直接选择排序 1.2. 堆排序 1.3. 冒泡排序 1.4. 快速排序 一、常见排序算法的实现 1.1. 直接选择排序 每⼀次从待排序的数据元素中选出最小的⼀个元素,存放在…...

【机器学习】主成分分析法(PCA)

【机器学习】主成分分析法(PCA) 一、摘要二、主成分分析的基本概念三、主成分分析的数学模型五、主成分分析法目标函数公式推导(梯度上升法求解目标函数)六、梯度上升法求解目标函数第一个主成分七、求解前n个主成分及PCA在数据预…...

perl、python、tcl语法中读写Excel的模块

perl、python、tcl语法中读写Excel的模块 perl、python、tcl语法中存在读写xls和xlsx格式的模块分别有: python ‌读取 Excel‌ ‌xlrd‌:支持传统 .xls 格式的读取‌ pandas‌:通过 read_excel() 方法支持 .xls 和 .xlsx 格式‌ ‌写入 …...

libwebsockets实现异步websocket客户端,服务端异常断开可重连

libwebsockets websocket客户端基本流程网上都有,我只额外优化了重连机制。 在服务器异常断开时不触发LWS_CALLBACK_CLOSED或LWS_CALLBACK_CLIENT_CONNECTION_ERROR,导致无法自动重连 通过定时检查链接是否可写入判断链接是否有效 // 判断wsi是否可用if …...

CAD球体密堆积3D插件V2.0

插件介绍 CAD球体密堆积3D插件V2.0版本可在AutoCAD内建立球体堆积模型,插件采取模拟球体在重力作用下的堆积行为,可生成超密堆积的几何模型及进行堆积过程的动态展示。 插件优化重力堆积物理引擎,新增堆积可视化界面,可直观查看…...

【Linux】线程池、单例模式、死锁

线程池 一.线程池1.日志和策略模式2.线程池1.Task.hpp2.Thread.hpp3.ThreadPool.hpp4.ThreadPool.cc 二.线程安全与重入问题三.线程安全的单例模式1.饿汉模式2.懒汉模式3.懒汉模式线程池1.ThreadPool.hpp2.ThreadPool.cc 四.死锁的概念1.死锁2.死锁的四个必要条件3.避免死锁 五…...

AI+视频监控电力巡检:EasyCVR视频中台方案如何赋能电力行业智能化转型

随着电力行业的快速发展,电力设施的安全性、稳定性和运维效率变得至关重要。传统视频监控系统在实时性、智能化及多系统协同等方面面临严峻挑战。EasyCVR视频中台解决方案作为一种先进的技术手段,在电力行业中得到了广泛应用,为电力设施的监控…...

centos8.0系统部署zabbix6.0监控

centos8.0系统部署zabbix6.0监控 一、部署过程1、确认系统版本2、主机基础环境设置3、安装MySQL 8.0数据库3.1 安装MySQL 8.0仓库3.2 安装软件3.3 设置root用户密码3.4 创建zabbix数据库,授权用户 4、配置zabbix6.0仓库5、安装zabbix服务端软件6、导入zabbix数据表7…...

江科大51单片机笔记【12】AT24C02(I2C总线)

写在前言 此为博主自学江科大51单片机(B站)的笔记,方便后续重温知识 在后面的章节中,为了防止篇幅过长和易于查找,我把一个小节分成两部分来发,上章节主要是关于本节课的硬件介绍、电路图、原理图等理论知识…...

电脑一直重启怎么解决 原因及解决方法

电脑一直重启的故障状态,不仅影响电脑的正常使用,还可能导致数据丢失或损坏。那么,电脑一直重启是什么原因呢?又该如何解决呢?下面将为大家介绍电脑一直重启的常见原因和解决方法,帮助您恢复电脑的正常工作…...

内网安全防护新思路 —— HFish + ELK 与 T-Pot 全面蜜罐系统比较分析

在当前网络安全环境日益复杂的背景下,企业和组织面临着来自外部与内部的多种威胁。为了更好地了解攻击者行为、捕获恶意活动并及时响应,部署蜜罐(Honeypot)系统已成为提升内网安全防护的重要手段。本文将重点介绍两种内网蜜罐防护…...

「 机器人 」扑翼飞行器通过总气动力控制四自由度运动方法

一、前言 在扑翼飞行中,总气动力(Total Aerodynamic Force)是指扑翼在运动过程中受到的所有空气动力作用的合力。它是由以下两种主要力的合成结果: 1. 升力(Lift, ):垂直于空气流方向的力,用于支持飞行器(或生物)的重量。 2. 阻力(Drag, ):平行于空气流方向的力,…...

写了一个二叉树构造函数和画图函数,方便debug

代码 class TreeNode(object):def __init__(self, val, leftNone, rightNone):self.val valself.left leftself.right rightdef construct_tree(nodes):if not nodes:return Noneroot TreeNode(nodes[0])queue [root]index 1while index < len(nodes):node queue.p…...

【prompt实战】知乎问题解答专家

本文原创作者&#xff1a;姚瑞南 AI-agent 大模型运营专家&#xff0c;先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗&#xff1b;多年人工智能行业智能产品运营及大模型落地经验&#xff0c;拥有AI外呼方向国家专利与PMP项目管理证书。&#xff08;转载需经授权&am…...

元组(Tuple)详解——c#

在C#中&#xff0c;元组&#xff08;Tuple&#xff09; 是一种轻量级的数据结构&#xff0c;用于将多个值组合成一个单一的对象。元组非常适合在不需要定义新类或结构体的情况下&#xff0c;临时存储和传递多个相关的值。 C# 中的元组有两种形式&#xff1a; 传统元组&#xf…...

Maven工具基础知识(一)

第一章、Maven概述 一、概述 官网地址&#xff1a;Welcome to Apache Maven – Maven Maven是一个基于Java的项目管理工具&#xff0c;专注于项目构建、依赖管理和项目信息标准化。其核心目标 是简化开发流程&#xff0c;通过标准化项目结构和自动化构建流程&#xff…...

AI模型的构建过程是怎样的(下)

你好,我是舒旻。 上节课,我们讲了一个模型构建的前 2 个环节,模型设计和特征工程。今天,我们继续来讲模型构建的其他 3 个环节,说说模型训练、模型验证和模型融合中,算法工程师的具体工作内容,以及 AI 产品经理需要掌握的重点。 模型训练 模型训练是通过不断训练、验证…...

力扣hot100_二叉树

二叉树的建立与遍历 #include <iostream> #include <vector> #include <queue> using namespace std;// 定义二叉树节点 struct TreeNode {int val;TreeNode* left;TreeNode* right;TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} };// 函数&…...

如何制作Windows系统盘、启动盘?(MediaCreationTool_22H2)

文章目录 每日一句正能量前言一、准备工作二、制作启动盘后记 每日一句正能量 每个在你生命里出现的人&#xff0c;都有原因。喜欢你的人给你温暖关心。你喜欢的人让你学会爱和付出&#xff0c;不喜欢你的人让你自省成长。你不喜欢的人教会你宽容尊重&#xff0c;没有人是偶然出…...

分布式光伏发电的发展现状与前景

分布式光伏发电的发展现状与前景 1、分布式光伏发电的背景2、分布式光伏发电的分类2.1、集中式光伏发电2.1.1、特点、原则2.1.2、优点2.1.3、缺点 2.2、分布式光伏发电2.2.1、特点、原则2.2.2、优点2.2.3、缺点 2.3、对比 3、分布式光伏发电的现状4、分布式光伏发电的应用场景4…...

【AI大模型智能应用】Deepseek生成测试用例

在软件开发过程中&#xff0c;测试用例的设计和编写是确保软件质量的关键。 然而&#xff0c;软件系统的复杂性不断增加&#xff0c;手动编写测试用例的工作量变得异常庞大&#xff0c;且容易出错。 DeepSeek基于人工智能和机器学习&#xff0c;它能够依据软件的需求和设计文…...

NVIDIA k8s-device-plugin源码分析与安装部署

在《kubernetes Device Plugin原理与源码分析》一文中&#xff0c;我们从源码层面了解了kubelet侧关于device plugin逻辑的实现逻辑&#xff0c;本文以nvidia管理GPU的开源github项目k8s-device-plugin为例&#xff0c;来看看设备插件侧的实现示例。 一、Kubernetes Device Pl…...

面向联邦学习隐私保护的同态加密库优化算法研究

面向联邦学习隐私保护的同态加密库优化算法研究 一、引言 联邦学习作为一种新兴的分布式机器学习范式,允许各参与方在不共享原始数据的前提下协同训练模型,有效解决了数据孤岛和隐私保护问题。同态加密作为实现联邦学习隐私保护的关键技术之一,能够在密文上直接进行特定运算…...

20250212:linux系统DNS解析卡顿5秒的bug

问题: 1:人脸离线识别记录可以正常上传云端 2:人脸在线识别请求却一直超时 3:客户使用在线网络 思路:...

动态规划 -第1篇

前言&#xff1a;在计算机科学中&#xff0c;动态规划&#xff08;Dynamic Programming&#xff0c;简称DP&#xff09;是解决最优化问题的一种重要方法。通过将大问题拆解为小问题&#xff0c;动态规划不仅能够显著降低计算复杂度&#xff0c;还能提高效率。无论是经典的背包问…...

uni-app打包成H5使用相对路径

网上找了一圈&#xff0c;没用&#xff0c;各种试&#xff0c;终于给试出来了&#xff0c;导致打包之后请求的路径没有带上域名 直接去 config.js文件里面的baseUrl路径改成空字符就行了&#xff0c;千万别写/...

【每日学点HarmonyOS Next知识】swiper样式、日期选择、自定义弹窗键盘、文本组件换行、富文本适配

1、HarmonyOS swiper组件样式&#xff1f; 可在样式中设置即可&#xff0c;参考如下demo Entry Component struct SwiperDemo {private swiperController: SwiperController new SwiperController();build() {Column({ space: 5 }) {Swiper(this.swiperController) {Text(0)…...

STM32 I2C驱动开发全解析:从理论到实战 | 零基础入门STM32第五十步

主题内容教学目的/扩展视频I2C总线电路原理&#xff0c;跳线设置&#xff0c;I2C协议分析。驱动程序与调用。熟悉I2C总线协议&#xff0c;熟练调用。 师从洋桃电子&#xff0c;杜洋老师 &#x1f4d1;文章目录 引言一、I2C驱动分层架构二、I2C总线驱动代码精析2.1 初始化配置&a…...

Ragflow技术栈分析及二次开发指南

Ragflow是目前团队化部署大模型+RAG的优质方案,不过其仍不适合直接部署使用,本文将从实际使用的角度,对其进行二次开发。 1. Ragflow 存在问题 Ragflow 开源仓库地址:https://github.com/infiniflow/ragflow Ragflow 当前版本: v0.17.0 Ragflow 目前主要存在以下问题: …...

力扣hot100二刷——链表

第二次刷题不在idea写代码&#xff0c;而是直接在leetcode网站上写&#xff0c;“逼”自己掌握常用的函数。 标志掌握程度解释办法⭐Fully 完全掌握看到题目就有思路&#xff0c;编程也很流利⭐⭐Basically 基本掌握需要稍作思考&#xff0c;或者看到提示方法后能解答⭐⭐⭐Sl…...