当前位置: 首页 > news >正文

DeepSeek-R1-Zero:基于基础模型的强化学习

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】

文章目录

  • DeepSeek大模型技术系列四
    • DeepSeek大模型技术系列四》DeepSeek-R1-Zero:基于基础模型的强化学习
      • 更多技术内容
  • 总结

DeepSeek大模型技术系列四

DeepSeek大模型技术系列四》DeepSeek-R1-Zero:基于基础模型的强化学习

强化学习在推理任务中已显示出显著的有效性,我们之前的工作(Shao 等人,2024; Wang 等人,2023)已证明了这一点。然而,这些工作严重依赖监督数据,而收集监督数据非常耗时。在本节中,我们探索大语言模型在不依赖任何监督数据的情况下发展推理能力的潜力,重点关注它们如何通过纯强化学习过程实现自我进化。我们首先简要介绍我们的强化学习算法,然后展示一些令人兴奋的结果,希望能为研究社区提供有价值的见解。
2.2.1 强化学习算法:组相对策略优化

为节省强化学习的训练成本,我们采用组相对策略优化(GRPO)(Shao 等人,2024)。该方法摒弃了通常与策略模型大小相同的价值评估模型,而是从组得分中估计基线。具体来说,对于每个问题 q,GRPO 从旧策略中采样一组输出,然后通过最大化以下目标来优化策略模型:
在这里插入图片描述在这里插入图片描述

其中和是超参数,是优势值,通过计算每组输出对应的一组奖励得到:

———————————————————————————————
用户与助手进行对话。用户提出问题,助手进行解答。助手先在脑海中思考推理过程,然后为用户提供答案。推理过程和答案分别包含在 和 标签内,即 此处为推理过程 此处为答案 。用户:提示。助手:
———————————————————————————————
表 1 DeepSeek-R1-Zero 的模板。训练期间,提示将被具体的推理问题替换。
2.2.2 奖励建模

奖励是训练信号的来源,决定了强化学习的优化方向。为训练 DeepSeek-R1-Zero,我们采用基于规则的奖励系统,主要包含两种类型的奖励:
准确率奖励:准确率奖励模型用于评估回答是否正确。例如,对于有确定答案的数学问题,模型需要按照指定格式(如在框内)给出最终答案,以便基于规则可靠地验证正确性。同样,对于 LeetCode 问题,可以使用编译器根据预定义的测试用例生成反馈。
格式奖励:除了准确率奖励模型,我们还采用格式奖励模型,要求模型将其思考过程放在‘’和‘’标签之间。
在开发 DeepSeek-R1-Zero 时,我们没有应用结果或过程神经奖励模型,因为我们发现神经奖励模型在大规模强化学习过程中可能会出现奖励作弊问题,而且重新训练奖励模型需要额外的训练资源,会使整个训练流程变得复杂。
2.2.3 训练模板
为训练 DeepSeek-R1-Zero,我们首先设计了一个简单的模板,引导基础模型遵循我们指定的指令。如表 1 所示,该模板要求 DeepSeek-R1-Zero 首先生成推理过程,然后给出最终答案。我们有意将约束限制在这种结构格式上,避免任何特定内容的偏差,例如强制要求反思性推理或推广特定的问题解决策略,以确保我们能准确观察模型在强化学习过程中的自然发展。
2.2.4 DeepSeek-R1-Zero 的性能、自我进化过程和顿悟时刻
DeepSeek-R1-Zero 的性能:图 2 展示了 DeepSeek-R1-Zero 在 2024 年 AIME 基准测试中,整个强化学习训练过程的性能变化轨迹。可以看出,随着强化学习训练的推进,DeepSeek-R1-Zero 的性能稳步提升。值得注意的是,2024 年 AIME 上的平均单次通过率(pass@1)显著提高,从最初的 15.6% 跃升至令人瞩目的 71.0%,达到了与 OpenAI-o1-0912 相当的性能水平。这一显著改进凸显了我们的强化学习算法在优化模型性能方面的有效性。
在这里插入图片描述

表 2 对 DeepSeek-R1-Zero 和 OpenAI 的 o1-0912 模型在各种推理相关基准测试中的表现进行了对比分析。结果显示,强化学习使 DeepSeek-R1-Zero 在无需任何监督微调数据的情况下,获得了强大的推理能力。这是一项值得关注的成就,它强调了该模型仅通过强化学习就能有效学习和泛化的能力。此外,通过多数投票,DeepSeek-R1-Zero 的性能还能进一步提升。例如,在 AIME 基准测试中采用多数投票时,其性能从 71.0% 提升到 86.7%,超过了 OpenAI-o1-0912 的性能。无论是否采用多数投票,DeepSeek-R1-Zero 都能取得具有竞争力的性能,这突出了其强大的基础能力以及在推理任务中进一步提升的潜力。
在这里插入图片描述

图 2 DeepSeek-R1-Zero 在训练期间 AIME 准确率。对于每个问题,我们采样 16 个回答并计算总体平均准确率,以确保评估稳定。

DeepSeek-R1-Zero 的自我进化过程:DeepSeek-R1-Zero 的自我进化过程充分展示了强化学习如何驱动模型自主提升推理能力。通过直接从基础模型启动强化学习,我们可以在不受监督微调阶段影响的情况下,密切监测模型的发展。这种方法清晰地呈现了模型随时间的演变,尤其是在处理复杂推理任务的能力方面。如图 3 所示,DeepSeek-R1-Zero 的思考时间在整个训练过程中持续改善。这种改善并非外部调整的结果,而是模型内部自然发展的体现。DeepSeek-R1-Zero 通过利用更长的测试时计算,自然而然地获得了解决日益复杂推理任务的能力。其计算过程能够生成数百到数千个推理标记,使模型能够更深入地探索和完善其思维过程。这种自我进化中最显著的特点之一,是随着测试时计算量的增加,复杂行为的出现。例如,模型会进行反思 —— 回顾并重新评估之前的步骤,还会自发地探索解决问题的替代方法。这些行为并非预先编程设定,而是模型与强化学习环境交互的结果。这种自发发展显著提升了 DeepSeek-R1-Zero 的推理能力,使其能够更高效、准确地处理更具挑战性的任务。
在这里插入图片描述

图 3 DeepSeek-R1-Zero 在强化学习过程中训练集上每个回复的平均长度。DeepSeek-R1-Zero 自然学会用更多思考时间来解决推理任务。
DeepSeek-R1-Zero 的顿悟时刻:在训练 DeepSeek-R1-Zero 期间,一个特别有趣的现象是 “顿悟时刻” 的出现。如表 3 所示,这个时刻出现在模型的一个中间版本中。在这个阶段,DeepSeek-R1-Zero 学会了通过重新评估初始方法,为一个问题分配更多思考时间。这种行为不仅证明了模型推理能力的不断提升,也是强化学习能够带来意外且复杂结果的生动例证。这个时刻对于模型和观察其行为的研究人员来说都是一个 “顿悟时刻”。它凸显了强化学习的力量与魅力:我们无需明确教导模型如何解决问题,只需给予正确的激励,模型就能自主开发出先进的问题解决策略。“顿悟时刻” 有力地提醒我们,强化学习具有在人工系统中解锁新智能水平的潜力,为未来开发更自主、更具适应性的模型铺平了道路。
在这里插入图片描述

表 3 | DeepSeek-R1-Zero 中间版本一个有趣的 “顿悟时刻”。该模型学会了以拟人化的语气进行反思。这对我们来说也是一个顿悟时刻,让我们见证了强化学习的力量与美妙之处。
DeepSeek-R1-Zero 的缺点:尽管 DeepSeek-R1-Zero 展现出强大的推理能力,并且自主发展出了意想不到的强大推理行为,但它也面临一些问题。例如,DeepSeek-R1-Zero 存在可读性差和语言混杂等挑战。为了使推理过程更易读并与开放社区分享,我们探索了 DeepSeek-R1,这是一种利用包含人类友好型冷启动数据的强化学习方法。

更多技术内容

更多技术内容可参见
《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】书籍。
更多的技术交流和探讨也欢迎加我个人微信chenjinglei66。

总结

此文章有对应的配套新书教材和视频:

【配套新书教材】
《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:本书从自然语言处理基础开始,逐步深入各种NLP热点前沿技术,使用了Java和Python两门语言精心编排了大量代码实例,契合公司实际工作场景技能,侧重实战。
全书共分为19章,详细讲解中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注、文本相似度算法、语义相似度计算、词频-逆文档频率(TF-IDF)、条件随机场、新词发现与短语提取、搜索引擎Solr Cloud和Elasticsearch、Word2vec词向量模型、文本分类、文本聚类、关键词提取和文本摘要、自然语言模型(Language Model)、分布式深度学习实战等内容,同时配套完整实战项目,例如对话机器人实战、搜索引擎项目实战、推荐算法系统实战。
本书理论联系实践,深入浅出,知识点全面,通过阅读本书,读者不仅可以理解自然语言处理的知识,还能通过实战项目案例更好地将理论融入实际工作中。
《分布式机器学习实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目。

【配套视频】

推荐系统/智能问答/人脸识别实战 视频教程【陈敬雷】
视频特色:把目前互联网热门、前沿的项目实战汇聚一堂,通过真实的项目实战课程,让你快速成为算法总监、架构师、技术负责人!包含了推荐系统、智能问答、人脸识别等前沿的精品课程,下面分别介绍各个实战项目:
1、推荐算法系统实战
听完此课,可以实现一个完整的推荐系统!下面我们就从推荐系统的整体架构以及各个子系统的实现给大家深度解密来自一线大型互联网公司重量级的实战产品项目!
2、智能问答/对话机器人实战
由浅入深的给大家详细讲解对话机器人项目的原理以及代码实现、并在公司服务器上演示如何实际操作和部署的全过程!
3、人脸识别实战
从人脸识别原理、人脸识别应用场景、人脸检测与对齐、人脸识别比对、人脸年龄识别、人脸性别识别几个方向,从理论到源码实战、再到服务器操作给大家深度讲解!

自然语言处理NLP原理与实战 视频教程【陈敬雷】
视频特色:《自然语言处理NLP原理与实战》包含了互联网公司前沿的热门算法的核心原理,以及源码级别的应用操作实战,直接讲解自然语言处理的核心精髓部分,自然语言处理从业者或者转行自然语言处理者必听视频!

人工智能《分布式机器学习实战》 视频教程【陈敬雷】
视频特色:视频核心内容有互联网公司大数据和人工智能、大数据算法系统架构、大数据基础、Python编程、Java编程、Scala编程、Docker容器、Mahout分布式机器学习平台、Spark分布式机器学习平台、分布式深度学习框架和神经网络算法、自然语言处理算法、工业级完整系统实战(推荐算法系统实战、人脸识别实战、对话机器人实战)。

上一篇:DeepSeek大模型技术系列三》DeepSeek-R1:通过强化学习激发大语言模型的推理能力
下一篇:DeepSeek大模型技术系列五》DeepSeek大模型基础设施全解析:支撑万亿参数模型的幕后英雄

相关文章:

DeepSeek-R1-Zero:基于基础模型的强化学习

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】 文章目录 DeepSeek大模型技术系列四DeepSeek大模型技术系列四》DeepSeek-…...

python的列表和元组别再傻傻分不清啦

目录 什么是下标: 正数索引:正数索引从左到右,从 0 开始。 负数索引:负数索引从右到左,从 -1 开始。 切片(slice):除了单个元素,Python还支持通过切片访问序列的子集。…...

Fiddler在Windows下抓包Https

文章目录 1.Fiddler Classic 配置2.配置浏览器代理自动代理手动配置浏览器代理 3.抓取移动端 HTTPS 流量(可选)解决抓取 HTTPS 失败问题1.Fiddler证书过期了 默认情况下,Fiddler 无法直接解密 HTTPS 流量。需要开启 HTTPS 解密: 1…...

【超详细】神经网络的可视化解释

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...

LVS+Keepalived 高可用集群搭建

一、高可用集群: 1.什么是高可用集群: 高可用集群(High Availability Cluster)是以减少服务中断时间为目地的服务器集群技术它通过保护用户的业务程序对外不间断提供的服务,把因软件、硬件、人为造成的故障对业务的影响…...

使用git管理uniapp项目

1.本地管理 1. 在项目根目录中新建 .gitignore 忽略文件,并配置如下: # 忽略 node_modules 目录 /node_modules /unpackage/dist 2. 打开终端,切换到项目根目录中,运行如下的命令,初始化本地 Git 仓库&#xff1…...

回调函数的用法

回调函数的基本用法 回调函数是一种被作为参数传递给另一个函数的函数,接收回调函数作为参数的函数在合适的时候会调用这个回调函数。回调函数为代码提供了更高的灵活性和可扩展性,下面为你详细介绍回调函数的基本用法。 基本概念 回调函数的核心在于函…...

样式垂直居中,谁才是王者

样式垂直居中,谁才是王者 面试官 常问如何让元素垂直居中,这其实是个经典的前端问题。 实现垂直居中的方法多种多样,从传统的表格布局到现代的Flexbox、Grid布局,再到绝对定位配合transform,甚至是line-height技巧&am…...

五、Three.js顶点UV坐标、纹理贴图

一部分来自1. 创建纹理贴图 | Three.js中文网 ,一部分是自己的总结。 一、创建纹理贴图 注意:把一张图片贴在模型上就是纹理贴图 1、纹理加载器TextureLoader 注意:将图片加载到加载器中 通过纹理贴图加载器TextureLoader的load()方法加…...

Linux Kernel Connection Tracking Table

在 Linux 内核中,连接跟踪表(Connection Tracking Table,简称 conntrack)是一个用于跟踪网络连接状态的核心组件。它主要由 Netfilter 框架管理,广泛应用于防火墙、NAT(网络地址转换)和负载均衡…...

NavVis VLX三维扫描:高层建筑数字化的革新力量【沪敖3D】

在三维激光扫描领域,楼梯结构因其复杂的空间形态和连续垂直移动的实际需求,一直是技术难点之一。利用NavVis VLX穿戴式移动扫描系统成功完成一栋34层建筑的高效扫描,其中楼梯部分的数据一遍成形且无任何分层或形变。本文将深入分析该项目的技…...

JVM生产环境问题定位与解决实战(二):JConsole、VisualVM到MAT的高级应用

生产问题定位指南:几款必备的可视化工具 引言 在上一篇文章中,详细的介绍了JDK自带的一系列命令行工具,,如jps、jmap、jstat、jstack以及jcmd等,这些工具为排查和诊断Java虚拟机(JVM)问题提供…...

【深入理解JWT】从认证授权到网关安全

最近的项目学习中,在进行登陆模块的用户信息验证这一部分又用到了JWT的一些概念和相关知识,特在此写了这篇文章、方便各位笔者理解JWT相关概念 目录 先来理解JWT是什么? 区分有状态认证和无状态认证 有状态认证 VS 无状态认证 JWT令牌的…...

esp工程报错:something went wrong when trying to build the project esp-idf 一种解决办法

最近上手了正点原子esp32s3板子,环境采用的是vscodeesp-idf插件。导入了正点原子的demo测试,每次都报这个错误无法建造。也不是网上说的ninja error,不是中文路径的问题。 在终端中查看,发现是缺少了git。(我这里没有…...

基于MATLAB红外弱小目标检测MPCM算法复现

摘要:本文详细介绍了一种基于人类视觉系统特性的红外弱小目标检测算法——Multiscale patch-based contrast measure (MPCM)。该算法通过增强目标与背景的对比度,有效检测红外图像中的弱小目标,并在MATLAB环境中进行了复现与实验验证。 关键…...

java基础面试篇

目录 1.概念 1.1说一下Java的特点 1.2Java为什么是跨平台的? 1.3 JVM、JDK、JRE三者关系? 1.4为什么Java解释和编译都有? 1.5 jvm是什么? 1.6 编译型语言和解释型语言的区别? 1.7 Python和Java区别是什么&#…...

Java Map实现类面试题

Java Map实现类面试题 HashMap Q1: HashMap的实现原理是什么? HashMap基于哈希表实现,使用数组链表红黑树(Java 8)的数据结构。 public class HashMapPrincipleExample {// 模拟HashMap的基本结构public class SimpleHashMap&…...

Vue2+Three.js加载并展示一个三维模型(提供Gitee源码)

目录 一、案例截图 二、安装Three.js 三、代码实现 四、Gitee源码 一、案例截图 二、安装Three.js npm install three 三、代码实现 模型资源我是放在public文件夹下面的&#xff1a; 完整代码&#xff1a; <template><div><div ref"container&qu…...

Spark内存并行计算框架

spark核心概念 spark集群架构 spark集群安装部署 spark-shell的使用 通过IDEA开发spark程序 1. Spark是什么 Apache Spark™ is a unified analytics engine for large-scale data processingspark是针对于大规模数据处理的统一分析引擎 spark是在Hadoop基础上的改进&…...

DeepSeek等LLM对网络安全行业的影响

大家好,我是AI拉呱,一个专注于人工智领域与网络安全方面的博主,现任资深算法研究员一职,兼职硕士研究生导师;热爱机器学习和深度学习算法应用,深耕大语言模型微调、量化、私域部署。曾获多次获得AI竞赛大奖,拥有多项发明专利和学术论文。对于AI算法有自己独特见解和经验…...

【QT】QLinearGradient 线性渐变类简单使用教程

目录 0.简介 1&#xff09;qtDesigner中 2&#xff09;实际执行 1.功能详述 3.举一反三的样式 0.简介 QLinearGradient 是 Qt 框架中的一个类&#xff0c;用于定义线性渐变效果&#xff08;通过样式表设置&#xff09;。它可以用来填充形状、背景或其他图形元素&#xff0…...

可狱可囚的爬虫系列课程 15:防盗链反爬虫的处理

一、防盗链了解 防盗链是一种技术手段&#xff0c;主要用于防止其他网站通过直接链接的方式使用本网站的资源&#xff08;如图片、文件等&#xff09;&#xff0c;从而节省带宽和服务器资源。当其他网站尝试直接链接到受保护的资源时&#xff0c;服务器会根据设置的规则判断请求…...

Vue组件:从使用到原理的深度解析

一、什么是Vue组件&#xff1f; 组件是Vue的核心特性之一&#xff0c;它允许开发者将UI拆分为独立可复用的代码片段。每个组件本质上是一个Vue实例&#xff0c;具有自己的&#xff1a; 模板&#xff08;Template&#xff09; 数据&#xff08;Data&#xff09; 方法&#xf…...

SpringBoot接入DeepSeek(硅基流动版)+ 前端页面调试

文章目录 前言正文一、项目环境二、项目代码2.1 pom.xml2.2 DeepSeekController.java2.3 启动类2.4 logback-spring.xml2.5 application.yaml2.6 index.html 三、页面调试3.1 参数提示3.2 开始请求3.3 手动断开 前言 作为一个Java程序员&#xff0c;了解前沿科技技术&#xff…...

Lua的table(表)

Lua表的基本概念 Lua中的表&#xff08;table&#xff09;是一种多功能数据结构&#xff0c;可以用作数组、字典、集合等。表是Lua中唯一的数据结构机制&#xff0c;其他数据结构如数组、列表、队列等都可以通过表来实现。 表的实现 Lua的表由两部分组成&#xff1a; 数组部分…...

图片爬取案例

修改前的代码 但是总显示“失败” 原因是 修改之后的代码 import requests import os from urllib.parse import unquote# 原始URL url https://cn.bing.com/images/search?viewdetailV2&ccidTnImuvQ0&id5AE65CE4BE05EE7A79A73EEFA37578E87AE19421&thidOIP.TnI…...

【Python爬虫(90)】以Python爬虫为眼,洞察金融科技监管风云

【Python爬虫】专栏简介:本专栏是 Python 爬虫领域的集大成之作,共 100 章节。从 Python 基础语法、爬虫入门知识讲起,深入探讨反爬虫、多线程、分布式等进阶技术。以大量实例为支撑,覆盖网页、图片、音频等各类数据爬取,还涉及数据处理与分析。无论是新手小白还是进阶开发…...

idea + Docker + 阿里镜像服务打包部署

一、下载docker desktop软件 官网下载docker desktop&#xff0c;需要结合wsl使用 启动成功的画面(如果不是这个画面例如一直处理start或者是stop需要重新启动&#xff0c;不行就重启电脑) 打包成功的镜像在这里&#xff0c;如果频繁打包会导致磁盘空间被占满&#xff0c;需…...

C#模拟退火算法

模拟退火算法&#xff1a;寻找最优解的神奇 “退火之旅” 在生活中&#xff0c;我们都见过铁匠打铁。铁匠把烧得通红的铁块不断捶打&#xff0c;然后慢慢冷却&#xff0c;这样打造出来的金属制品才更坚固耐用。模拟退火算法就从这个退火过程中获得灵感&#xff0c;在计算机的数…...

网络安全防御模型

目录 6.1 网络防御概述 一、网络防御的意义 二、被动防御技术和主动防御技术 三、网络安全 纵深防御体系 四、主要防御技术 6.2 防火墙基础 一、防火墙的基本概念 二、防火墙的位置 1.防火墙的物理位置 2.防火墙的逻辑位置 3. 防火墙的不足 三、防火墙技术类型 四…...

APP自动化实战

APP自动化能做什么&#xff1f; 请看示例&#xff08;实现批量的视频&#xff0c;封面功能复用能力&#xff08;实现效果参考抖音号&#xff1a;71403700901&#xff09; APP自动化实战&#xff0d;操作剪映APP PO模式 1. PO模式介绍 PO&#xff08;Page Object&#xff09;…...

Unity基础——资源导入

一.资源来源 1.Assert Store&#xff08;Unity资源官方网站&#xff09; &#xff08;1&#xff09;用于制作游戏的优质资源 | Unity Asset Store &#xff08;2&#xff09;或则通过Unity项目打开 2.外部资源 &#xff08;1&#xff09;淘宝 &#xff08;2&#xff09;找外…...

JMeter性能问题

性能测试中TPS上不去的几种原因 性能测试中TPS上不去的几种原因_tps一直上不去-CSDN博客 网络带宽 连接池 垃圾回收机制 压测脚本 通信连接机制 数据库配置 硬件资源 压测机 业务逻辑 系统架构 CPU过高什么原因 性能问题分析-CPU偏高 - 西瓜汁拌面 - 博客园 US C…...

形式化数学编程在AI医疗中的探索路径分析

一、引言 1.1 研究背景与意义 在数字化时代,形式化数学编程和 AI 形式化医疗作为前沿领域,正逐渐改变着我们的生活和医疗模式。形式化数学编程是一种运用数学逻辑和严格的形式化语言来描述和验证程序的技术,它通过数学的精确性和逻辑性,确保程序的正确性和可靠性。在软件…...

DeepSeek开源周Day1:FlashMLA引爆AI推理性能革命!

项目地址&#xff1a;GitHub - deepseek-ai/FlashMLA 开源日历&#xff1a;2025-02-24起 每日9AM(北京时间)更新&#xff0c;持续五天&#xff01; ​ 一、开源周震撼启幕 继上周预告后&#xff0c;DeepSeek于北京时间今晨9点准时开源「FlashMLA」&#xff0c;打响开源周五连…...

nginx 配置https

参考文档&#xff1a;nginx 文档 -- nginx官网|nginx下载安装|nginx配置|nginx教程 配置 HTTPS 服务器 HTTPS 服务器优化 SSL 证书链 单个 HTTP/HTTPS 服务器 基于名称的 HTTPS 服务器 具有多个名称 的 SSL 证书 服务器名称指示 兼容性 要配置 HTTPS 服务器&#xff0c;ssl…...

GhostBottleneck; InvertedResidual;Squeeze and Excite 是什么,怎么用

GhostBottleneck; InvertedResidual;Squeeze and Excite 是什么,怎么用 目录 GhostBottleneck; InvertedResidual;Squeeze and Excite 是什么,怎么用GhostBottleneckInvertedResidualSqueeze and Excite(SE)GhostBottleneck 概念: GhostBottleneck 是在轻量级神经网…...

Docker启动ES容器打包本地镜像

文章目录 1、安装 Docker2、下载镜像3、查看已下载的镜像4、 保存和加载镜像5、.tar 文件与 Docker 镜像的关系6、如何从 .tar 文件加载 Docker 镜像7、为什么需要 .tar 文件&#xff1f;8、ES 8.x版本无法启动8.1 问题原因8.2 解决方案8.3 提交容器为新镜像 1、安装 Docker 如…...

XXE漏洞:原理、危害与修复方法详解

目录 一、XXE漏洞概述二、XXE漏洞原理三、XXE漏洞危害1. 任意文件读取2. 命令执行3. 拒绝服务攻击(DoS)4. SSRF攻击四、XXE漏洞修复方法1. 禁用外部实体JavaPythonPHP2. 输入验证和过滤3. 安全配置服务器4. 升级解析器版本五、总结一、XXE漏洞概述 XXE(XML External Entity…...

android keystore源码分析

架构 Android Keystore API 和底层 Keymaster HAL 提供了一套基本的但足以满足需求的加密基元&#xff0c;以便使用访问受控且由硬件支持的密钥实现相关协议。 Keymaster HAL 是由原始设备制造商 (OEM) 提供的动态加载库&#xff0c;密钥库服务使用它来提供由硬件支持的加密服…...

状态模式

状态&#xff08;State&#xff09;模式属于行为型模式的一种。 状态模式允许对象在其内部状态改变时改变其行为&#xff0c;使其看上去就像改变了自身所属的类一样。 状态模式是为了把一大串if...else...的逻辑给分拆到不同的状态类中&#xff0c;使得将来增加状态比较容易。…...

C++ | 面向对象 | 类

&#x1f47b;类 &#x1f47e;语法格式 class className{Access specifiers: // 访问权限DataType variable; // 变量returnType functions() { } // 方法 };&#x1f47e;访问权限 class className {public:// 公有成员protected:// 受保护成员private:// 私有成员 }…...

鸿蒙-AVPlayer

compileVersion 5.0.2&#xff08;14&#xff09; 音频播放 import media from ohos.multimedia.media; import common from ohos.app.ability.common; import { BusinessError } from ohos.base;Entry Component struct AudioPlayer {private avPlayer: media.AVPlayer | nu…...

Android移动应用开发实践-1-下载安装和简单使用Android Studio 3.5.2版本(频频出错)

一、下载安装 1.Android Studio3.5.2下载地址&#xff1a;Android Studio3.5.2下载地址 其他版本下载地址&#xff1a;其他版本下载地址 2.安装教程&#xff08;可以多找几个看看&#xff09; 安装 | 手把手教你Android studio 3.5.2安装&#xff08;安装教程&#xff09;_a…...

从.m3u8到.mp4:使用批处理脚本完成视频处理的完整指南

这里介绍一个Windows批处理脚本&#xff08;Windows Batch Script&#xff09;&#xff0c;主要用于处理 .m3u8 ts 视频文件的下载和合并功能。 以下是程序的主要功能和逻辑流程&#xff1a; 功能概述 参数检查与路径处理&#xff1a; 检查是否传递了文件或文件夹路径作为参数…...

qt5的中文乱码问题,QString、QStringLiteral 为 UTF-16 编码

qt5的中文乱码问题一直没有很明确的处理方案。 今天处理进程间通信时&#xff0c;也遇到了qt5乱码问题&#xff0c;一边是设置的GBK&#xff0c;一边设置的是UTF8&#xff0c;单向通信约定采用UTF8。 发送端保证发的是UTF8字符串&#xff0c;因为UTF8在网络数据包中没有字节序…...

Gurobi 并行计算的一些问题

最近尝试用 gurobi 进行并行计算&#xff0c;即同时用多个 cpu 核计算 gurobi 的 model&#xff0c;但是发现了不少问题。总体来看&#xff0c;gurobi 对并行计算的支持并不是那么好。 gurobi 官方对于并行计算的使用在这个网址&#xff0c;并有下面的大致代码&#xff1a; i…...

Vue3 中如何实现响应式系统中的依赖收集和更新队列的解耦?

一、问题解析&#xff1a;为什么需要解耦&#xff1f; 在响应式系统中&#xff0c;依赖收集​&#xff08;追踪数据与视图的关联关系&#xff09;和更新队列​&#xff08;批量处理数据变化带来的副作用&#xff09;是两个核心但职责不同的模块。 Vue3 通过以下设计实现解耦&…...

vue项目中动态添加类名样式不生效问题

一、问题描述 在vue项目中使用:class{tableContent: summary}给元素动态添加了类名tableContent&#xff0c;运行代码后查看类名已经添加成功但样式并未生效。 二、问题产生原因并解决 刚开始把样式写在了<style lang"scss" scoped></style>中&#x…...

供应链管理系统--升鲜宝门店收银系统功能解析,登录、主界面、会员 UI 设计图(一)

供应链管理系统--升鲜宝门店收银系统功能解析&#xff0c;登录、主界面 会员 UI 设计图&#xff08;一&#xff09;...