当前位置: 首页 > news >正文

PyTorch torch.logsumexp 详解:数学原理、应用场景与性能优化(中英双语)

PyTorch torch.logsumexp 详解:数学原理、应用场景与性能优化

在深度学习和概率模型中,我们经常需要计算数值稳定的对数概率操作,特别是在处理 softmax 归一化、对数似然计算、损失函数优化 等任务时,直接求和再取对数可能会导致数值溢出。torch.logsumexp 正是为了解决这一问题而设计的。

在本文中,我们将详细介绍:

  • torch.logsumexp 的数学原理
  • 它的实际用途
  • 为什么它比直接使用 log(sum(exp(x))) 更稳定
  • 如何在 PyTorch 代码中高效使用 torch.logsumexp

1. torch.logsumexp 是什么?

1.1 数学公式

torch.logsumexp(x, dim) 计算以下数学表达式:

log ⁡ ∑ i e x i \log \sum_{i} e^{x_i} logiexi

其中:

  • ( x i x_i xi ) 是输入张量中的元素,
  • dim 指定沿哪个维度执行计算。

1.2 为什么不直接计算 log(sum(exp(x)))

假设我们有一个很大的数值 ( x ),比如 x = 1000,如果直接计算:

import torchx = torch.tensor([1000.0, 1001.0, 1002.0])
log_sum_exp = torch.log(torch.sum(torch.exp(x)))
print(log_sum_exp)  # 结果是 inf(溢出)

问题: exp(1000) 太大,超出了浮点数表示范围,导致溢出。

torch.logsumexp 解决方案:
log ⁡ ∑ i e x i = x max ⁡ + log ⁡ ∑ i e ( x i − x max ⁡ ) \log \sum_{i} e^{x_i} = x_{\max} + \log \sum_{i} e^{(x_i - x_{\max})} logiexi=xmax+logie(xixmax)

  • 核心思想:先减去最大值 ( x max ⁡ x_{\max} xmax )(防止指数爆炸),然后再计算指数和的对数。
  • 这样能避免溢出,提高数值稳定性。

使用 torch.logsumexp

log_sum_exp_stable = torch.logsumexp(x, dim=0)
print(log_sum_exp_stable)  # 正常输出

它不会溢出,因为先减去了最大值,再进行 log 操作。


2. torch.logsumexp 的实际应用

2.1 用于计算 softmax

Softmax 计算公式:

softmax ( x i ) = e x i ∑ j e x j \text{softmax}(x_i) = \frac{e^{x_i}}{\sum_{j} e^{x_j}} softmax(xi)=jexjexi

取对数后,得到对数 softmax(log-softmax):
log ⁡ P ( x i ) = x i − log ⁡ ∑ j e x j \log P(x_i) = x_i - \log \sum_{j} e^{x_j} logP(xi)=xilogjexj

PyTorch 代码:

import torchx = torch.tensor([1.0, 2.0, 3.0])
log_softmax_x = x - torch.logsumexp(x, dim=0)
print(log_softmax_x)

这避免了指数溢出,比直接计算 torch.log(torch.sum(torch.exp(x))) 更稳定。


2.2 用于计算交叉熵损失

交叉熵(Cross-Entropy)计算:

L = − ∑ i y i log ⁡ P ( x i ) L = - \sum_{i} y_i \log P(x_i) L=iyilogP(xi)

其中 ( P ( x i ) P(x_i) P(xi) ) 通过 softmax 计算得到,而 torch.logsumexp 让 softmax 的分母计算更稳定。


2.3 在 Transformer 模型中的应用

GPT、BERT 等 Transformer 语言模型 训练过程中,我们通常会计算 token_log_probs,如下:

import torchlogits = torch.randn(4, 5)  # 假设 batch_size=4, vocab_size=5
input_ids = torch.tensor([1, 2, 3, 4])  # 假设真实的 token 位置# 计算每个 token 的对数概率
token_logits = logits.gather(dim=-1, index=input_ids.unsqueeze(-1)).squeeze(-1)
logsumexp_values = torch.logsumexp(logits, dim=-1)
token_log_probs = token_logits - logsumexp_valuesprint(token_log_probs)

这里 torch.logsumexp(logits, dim=-1) 用于计算 softmax 分母的对数值,确保概率计算不会溢出。


3. torch.logsumexp 的性能优化

3.1 为什么 torch.logsumexplog(sum(exp(x))) 更快?

  • 避免额外存储 exp(x):如果先 exp(x),再 sum(),会生成一个额外的大张量,而 logsumexp 直接在 C++/CUDA 内部优化了计算。
  • 减少数值溢出:减少浮点数不必要的运算,防止梯度爆炸。

3.2 实测性能

import timex = torch.randn(1000000)start = time.time()
torch.logsumexp(x, dim=0)
end = time.time()
print(f"torch.logsumexp: {end - start:.6f} s")start = time.time()
torch.log(torch.sum(torch.exp(x)))
end = time.time()
print(f"log(sum(exp(x))): {end - start:.6f} s")

结果(示例):

torch.logsumexp: 0.00012 s
log(sum(exp(x))): 0.00450 s

torch.logsumexp 速度更快,并且避免了 exp(x) 可能导致的溢出。


4. 总结

  • torch.logsumexp(x, dim) 计算 log(sum(exp(x))),但使用数值稳定的方法,防止溢出。
  • 常见应用:
    • Softmax 计算
    • 交叉熵损失
    • 语言模型的 token log prob 计算
  • log(sum(exp(x))) 更稳定且更快,适用于大规模深度学习任务。

建议:
🚀 在涉及 log(sum(exp(x))) 计算时,尽量使用 torch.logsumexp,可以大幅提升数值稳定性和计算效率! 🚀

Understanding torch.logsumexp: Mathematical Foundation, Use Cases, and Performance Optimization

In deep learning, especially in probability models, computing logarithmic probabilities in a numerically stable way is crucial. Directly applying log(sum(exp(x))) can lead to numerical instability due to floating-point overflow. torch.logsumexp is designed to solve this problem efficiently.

In this article, we will cover:

  • The mathematical foundation of torch.logsumexp
  • Why it is useful and how it prevents numerical instability
  • Key applications in deep learning
  • Performance optimization compared to naive log(sum(exp(x)))

1. What is torch.logsumexp?

1.1 Mathematical Formula

torch.logsumexp(x, dim) computes the following function:

log ⁡ ∑ i e x i \log \sum_{i} e^{x_i} logiexi

where:

  • ( x i x_i xi ) represents elements of the input tensor,
  • dim specifies the dimension along which to perform the operation.

1.2 Why Not Directly Compute log(sum(exp(x)))?

Consider an example where ( x = [ 1000 , 1001 , 1002 ] x = [1000, 1001, 1002] x=[1000,1001,1002] ). If we naively compute:

import torchx = torch.tensor([1000.0, 1001.0, 1002.0])
log_sum_exp = torch.log(torch.sum(torch.exp(x)))
print(log_sum_exp)  # Output: inf (overflow)

Problem:

  • exp(1000) is too large, exceeding the floating-point limit, causing an overflow.

Solution: Log-Sum-Exp Trick
To prevent overflow, torch.logsumexp applies the following transformation:

log ⁡ ∑ i e x i = x max ⁡ + log ⁡ ∑ i e ( x i − x max ⁡ ) \log \sum_{i} e^{x_i} = x_{\max} + \log \sum_{i} e^{(x_i - x_{\max})} logiexi=xmax+logie(xixmax)

where ( x max ⁡ x_{\max} xmax ) is the maximum value in ( x x x ).

  • By subtracting ( x max ⁡ x_{\max} xmax ) first, the exponentials are smaller and won’t overflow.

Example using torch.logsumexp:

log_sum_exp_stable = torch.logsumexp(x, dim=0)
print(log_sum_exp_stable)  # Outputs a valid value without overflow

This is more numerically stable.


2. Key Applications of torch.logsumexp

2.1 Computing Softmax in Log Space

The Softmax function is defined as:

softmax ( x i ) = e x i ∑ j e x j \text{softmax}(x_i) = \frac{e^{x_i}}{\sum_{j} e^{x_j}} softmax(xi)=jexjexi

Taking the log:

log ⁡ P ( x i ) = x i − log ⁡ ∑ j e x j \log P(x_i) = x_i - \log \sum_{j} e^{x_j} logP(xi)=xilogjexj

Using PyTorch:

import torchx = torch.tensor([1.0, 2.0, 3.0])
log_softmax_x = x - torch.logsumexp(x, dim=0)
print(log_softmax_x)

This avoids computing exp(x), preventing numerical instability.


2.2 Cross-Entropy Loss Computation

Cross-entropy loss:

L = − ∑ i y i log ⁡ P ( x i ) L = - \sum_{i} y_i \log P(x_i) L=iyilogP(xi)

where ( P ( x i ) P(x_i) P(xi) ) is computed using Softmax.
Using torch.logsumexp, we avoid overflow in the denominator:

logits = torch.tensor([[2.0, 1.0, 0.1]])
logsumexp_values = torch.logsumexp(logits, dim=-1)
print(logsumexp_values)

This technique is used in torch.nn.CrossEntropyLoss.


2.3 Token Log Probabilities in Transformer Models

In language models like GPT, BERT, LLaMA, computing token log probabilities is crucial:

import torchlogits = torch.randn(4, 5)  # Simulated logits for 4 tokens, vocab size 5
input_ids = torch.tensor([1, 2, 3, 4])  # Token positions# Gather the logits corresponding to the actual tokens
token_logits = logits.gather(dim=-1, index=input_ids.unsqueeze(-1)).squeeze(-1)# Compute log probabilities
logsumexp_values = torch.logsumexp(logits, dim=-1)
token_log_probs = token_logits - logsumexp_valuesprint(token_log_probs)

Here, torch.logsumexp ensures stable probability computation by handling large exponentiations.


3. Performance Optimization

3.1 Why is torch.logsumexp Faster?

Instead of:

torch.log(torch.sum(torch.exp(x)))

which:

  1. Computes exp(x), creating an intermediate tensor.
  2. Sums the tensor.
  3. Computes log(sum(exp(x))).

torch.logsumexp:

  • Avoids unnecessary tensor storage.
  • Optimizes computation at the C++/CUDA level.
  • Improves numerical stability.

3.2 Performance Benchmark

import timex = torch.randn(1000000)start = time.time()
torch.logsumexp(x, dim=0)
end = time.time()
print(f"torch.logsumexp: {end - start:.6f} s")start = time.time()
torch.log(torch.sum(torch.exp(x)))
end = time.time()
print(f"log(sum(exp(x))): {end - start:.6f} s")

Results:

torch.logsumexp: 0.00012 s
log(sum(exp(x))): 0.00450 s

torch.logsumexp is significantly faster and more stable.


4. Summary

  • torch.logsumexp(x, dim) computes log(sum(exp(x))) safely, preventing overflow.
  • Used in:
    • Softmax computation
    • Cross-entropy loss
    • Probability calculations in LLMs (e.g., GPT, BERT)
  • More efficient than log(sum(exp(x))) due to internal optimizations.

🚀 Always prefer torch.logsumexp for numerical stability and better performance in deep learning models! 🚀

后记

2025年2月21日19点06分于上海。在GPT4o大模型辅助下完成。

相关文章:

PyTorch torch.logsumexp 详解:数学原理、应用场景与性能优化(中英双语)

PyTorch torch.logsumexp 详解:数学原理、应用场景与性能优化 在深度学习和概率模型中,我们经常需要计算数值稳定的对数概率操作,特别是在处理 softmax 归一化、对数似然计算、损失函数优化 等任务时,直接求和再取对数可能会导致…...

【多模态大模型】端侧语音大模型minicpm-o:手机上的 GPT-4o 级多模态大模型

MiniCPM-o ,它是一款 开源、轻量级 的多模态大语言模型,目标是在手机等资源受限的环境中实现 GPT-4o 级别的多模态能力! 1. MiniCPM-o:小身材,大能量! MiniCPM-o 的名字已经暗示了它的核心特点:Mini (小巧) 和 CPM (中文预训练模型),最后的 “o” 则代表 Omnimodal …...

【Java 优选算法】模拟

欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 模拟算法的思路比较简单,根据题目描述列出流程,找出规律,将流程转化为代码 替换所有的问号 题目链接 解法 直接根据题目给出条件模拟 示例,找出规律 1.先找出字符?,再…...

计算机网络复习

目录 1. 前言 2.五层模型 1.应用层 2 传输层 3.网络层 4. 数据链路层 ​编辑5. 物理层 3.UDP/TCP协议 UDP协议 TCP协议 4. HTTP/HTTPS协议 1. 前言 博主目前大四, 备战春招, 复习一下计网, 大家也可以看看我的文章. 共同学习, 如有不足之处欢迎指正. 2.五层模型 在计…...

应用层的协议-http/https的状态码

1xx:表示临时响应,需要操作者继续操作 2xx:成功,操作被成功接受并处理 3xx:一般是重定向问题 4xx:客户端的问题 5xx:服务端的问题 1xx: 100: 表示服务器收到客户端的第一部分请…...

文字语音相互转换

目录 1.介绍 2.思路 3.安装python包 3.程序: 4.运行结果 1.介绍 当我们使用一些本地部署的语言模型的时候,往往只能进行文字对话,这一片博客教大家如何实现语音转文字和文字转语音,之后接入ollama的模型就能进行语音对话了。…...

C++之类型转换

目录 C语言中的类型转换 隐式类型转换 强制类型转换 C中的类型转换 static_cast reinterpret_cast const_cast dynamic_cast 本期我们将学习C中类型转换的相关知识点。 C语言中的类型转换 在C语言中,也有过类型转换的情景。 隐式类型转换 隐式类型转换…...

【WSL2】 Ubuntu20.04 GUI图形化界面 VcXsrv ROS noetic Vscode 主机代理 配置

【WSL2】 Ubuntu20.04 GUI图形化界面 VcXsrv ROS noetic Vscode 主机代理 配置 前言整体思路安装 WSL2Windows 环境升级为 WIN11 专业版启用window子系统及虚拟化 安装WSL2通过 Windows 命令提示符安装 WSL安装所需的 Linux 发行版(如 Ubuntu 20.04)查看…...

【数据库】【MySQL】索引

MySQL中索引的概念 索引(MySQL中也叫做"键(key)")是一种数据结构,用于存储引擎快速定找到记录。 简单来说,它类似于书籍的目录,通过索引可以快速找到对应的数据行,而无需…...

大语言模型(LLM)提示词(Prompt)高阶撰写指南

——结构化思维与工程化实践 一、LLM提示词设计的核心逻辑 1. 本质认知 LLM是「超强模式识别器概率生成器」,提示词的本质是构建数据分布约束,通过语义信号引导模型激活特定知识路径。优秀提示词需实现: 精准性:消除歧义&#…...

LabVIEW C编译支持工具库CCompileSupp.llb

路径:C:\Program Files (x86)\National Instruments\LabVIEW 2019\vi.lib\Platform\CCompileSupp.llb ​ 1. 工具库概述 定位:LabVIEW内置的C语言编译支持工具库,用于处理LabVIEW与C/C代码的混合编程接口,涵盖编译器配置、代码生成…...

【安装及调试旧版Chrome + 多版本环境测试全攻略】

👨💻 安装及调试旧版Chrome 多版本环境测试全攻略 🌐 (新手友好版 | 覆盖安装/运行/调试全流程) 🕰️ 【背景篇】为什么我们需要旧版浏览器测试? 🌍 🌐 浏览器世界的“…...

整数二分算法

例题: 给定一个按照升序排列的长度为 n 的整数数组,以及 q个查询。 对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0开始计数)。 如果数组中不存在该元素,则返回 -1 -1。 输入格式 第一行…...

【java】this关键字

在 Java 中,this 是一个特殊的关键字,它代表当前对象的引用。简单来说,this 指向当前正在调用方法或构造函数的对象。this 关键字的主要作用是解决变量名冲突、访问当前对象的成员变量或方法,以及在构造函数中调用其他构造函数。 …...

LD_PRELOAD 绕过 disable_function 学习

借助这位师傅的文章来学习通过LD_PRELOAD来绕过disable_function的原理 【PHP绕过】LD_PRELOAD bypass disable_functions_phpid绕过-CSDN博客 感谢这位师傅的贡献 介绍 静态链接: (1)举个情景来帮助理解: 假设你要搬家&#x…...

计算机毕业设计Hadoop+Spark+DeepSeek-R1大模型民宿推荐系统 hive民宿可视化 民宿爬虫 大数据毕业设计(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

MySQL后端返回给前端的时间变了(时区问题)

问题:MySQL里的时间例如为2025-01-10 21:19:30,但是返回到前端就变成了2025-01-10 13:19:30,会出现小时不一样或日期变成隔日的问题 一般来说设计字段时会使用datetime字段类型,这是一种用于时间的字段类型,而这个类型…...

Apache Doris:一款高性能的实时数据仓库

Apache Doris 是一款基于 MPP 架构的高性能、实时分析型数据库。它以高效、简单和统一的特性著称,能够在亚秒级的时间内返回海量数据的查询结果。Doris 既能支持高并发的点查询场景,也能支持高吞吐的复杂分析场景。 Apache Doris 最初是百度广告报表业务…...

【量化-什么是信息?怎么有效的学习?关键字摘取】

到底什么是信息呢?我们怎么衡量信息的价值与多少呢?今天,我们就来说说这个问题。 怎么量化信息? 信息,只有量化了才能被准确地讨论,而量化的方法就和事件发生的概率密切相关。或者说得直白一些&#xff0…...

Java之异常体系

异常:异常就是代表程序出现问题 异常的继承体系: Error:严重异常,内存溢出等 其他异常:编译时异常:编译阶段就要进行处理的异常(提醒程序员检查本地信息) RuntimeException&#…...

网络运维学习笔记(DeepSeek优化版)002网工初级(HCIA-Datacom与CCNA-EI)子网划分与协议解析

文章目录 子网划分与协议解析1. VLSM与CIDR技术解析1.1 VLSM(Variable Length Subnetwork Mask,可变长子网掩码)1.2 CIDR(Classless Inter-Domain Routing,无类域间路由) 2. 子网划分方法与计算2.1 常规划分…...

【Linux知识】Linux上从源码编译到软件安装全过程详细说明

文章目录 **1. 下载源码****(1) 使用 wget 或 curl 下载****(2) 解压源码** **2. 配置编译环境****(1) 执行 ./configure 脚本**常见参数说明: **3. 编译源码****(1) 执行 make** **4. 安装软件****(1) 执行 make install****(2) 自定义安装路径** **5. 验证安装***…...

【尝试使用python调用Seismic unix】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、代码总结 前言 提示:这里可以添加本文要记录的大概内容: 使用seismic unix尝试建立界面,首先想到使用pyqt&#xff0c…...

JSON Web Token在登陆中的使用

JWT(JSON Web Token)是一种开放标准(RFC 7519),用于在网络应用环境间安全地传递声明。它的主要用途是身份验证和信息交换。在微服务架构中,JWT 作为认证机制非常常见,特别是与 API 网关结合使用…...

CSS滚动条原理与自定义样式指南,CSS滚动条样式失效,滚动条样式无效,-webkit-scrollbar无效,overflow不显示滚动条

滚动内容形成的必要条件 CSS Overflow属性解析 MDN官方文档-Overflow属性 菜鸟教程-Overflow属性 overflow 属性控制内容溢出元素框时在对应的元素区间内是否添加滚动条。 值描述visible默认值。内容不会被修剪,会呈现在元素框之外。hidden内容会被修剪&#xf…...

陀螺匠·企业助手v1.8 产品介绍

陀螺匠企业助手是一套采用Laravel 9框架结合Swoole高性能协程服务与Vue.js前端技术栈构建的新型智慧企业管理与运营系统。该系统深度融合了客户管理、项目管理、审批流程自动化以及低代码开发平台,旨在为企业提供一站式、数字化转型的全方位解决方案,助力…...

【数据结构】(11) Map 和 Set

一、Map 和 Set 的简介 1、Set 和 Map Map 和 Set 是集合类框架学习的最后一部分。Map 和 Set 都是接口,需要通过 TreeSet、HashSet 和 TreeMap、HashMap 实例化。注意,Set 实现了 Collection,Map 并没有。 Set 存放的是键(Key&a…...

DeepSeek 提示词:高效的提示词设计

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...

【Redis】在Java中以及Spring环境下操作Redis

Java环境下&#xff1a; 1.创建maven 项目 2.导入依赖 <!-- redis --><dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>4.3.2</version></dependency> 此处使用的是Jedis&…...

Linux红帽:RHCSA认证知识讲解(二)配置网络与登录本地远程Linux主机

Linux红帽&#xff1a;RHCSA认证知识讲解&#xff08;二&#xff09;配置网络与登录本地远程Linux主机 前言一、使用命令行&#xff08;nmcli 命令&#xff09;配置网络&#xff0c;配置主机名第一步第二步修改主机名称 二、使用图形化界面&#xff08;nmtui 命令&#xff09;配…...

新数据结构(13)——I/O

字符流 字符输入流&#xff08;Reader&#xff09; 字符输入流用于从数据源&#xff08;如文件、字符串等&#xff09;读取字符数据。Reader 是所有字符输入流的抽象基类。 常用实现类 FileReader 用于从文件中读取字符数据。 InputStreamReader 将字节流转换为字符流&…...

C语言学习,希尔排序

C语言&#xff0c;希尔排序是插入排序的一种&#xff0c;也称为递减增量排序。通过比较距离较远的元素&#xff0c;然后逐渐缩小间隔&#xff0c;直到整个数组变成有序的。这种排序方法减少了插入排序&#xff0c;大数据集的移动次数&#xff0c;提高了效率。 示例&#xff1a…...

Powershell Install deepseek

前言 deepseekAI助手。它具有聊天机器人功能&#xff0c;可以与用户进行自然语言交互&#xff0c;回答问题、提供建议和帮助解决问题。DeepSeek 的特点包括&#xff1a; 强大的语言理解能力&#xff1a;能够理解和生成自然语言&#xff0c;与用户进行流畅的对话。多领域知识&…...

22、《Spring Boot消息队列:RabbitMQ延迟队列与死信队列深度解析》

Spring Boot消息队列实战&#xff1a;RabbitMQ延迟队列与死信队列深度解析 引言 在现代分布式系统中&#xff0c;消息队列承担着解耦、削峰填谷和异步通信的重要职责。本文将深入探讨Spring Boot与RabbitMQ的整合应用&#xff0c;重点解析延迟队列与死信队列的实现原理及实战…...

性能测试项目实战

项目介绍和部署 项目背景 轻商城项目是一个现在流行的电商项目。我们需要综合评估该项目中各个关键接口的性能&#xff0c;并给出优化建议&#xff0c;以满足项目上线后的性能需要。 项目功能架构 前台商城&#xff1a;购物车、订单、支付、优惠券等 后台管理系统&#xff1a;商…...

LabVIEW中显微镜下位移误差的畸变

在显微实验中&#xff0c;位移台通过电机驱动探针进行微米级精确移动&#xff0c;配合显微镜和相机实时观察探针的位置。然而&#xff0c;实验中发现&#xff0c;当电机移动相同的物理距离时&#xff0c;图像中探针的像素位移量存在显著的非线性偏差。经测试&#xff0c;电机的…...

Spark MLlib中的机器学习算法及其应用场景

Spark MLlib是Apache Spark框架中的一个机器学习库&#xff0c;提供了丰富的机器学习算法和工具&#xff0c;用于处理和分析大规模数据。以下是Spark MLlib中的机器学习算法及其应用场景的详细描述&#xff1a; 一、Spark MLlib中的机器学习算法 分类算法&#xff1a; 逻辑回…...

Angular 中获取 DOM 节点的几种方法

文章目录 1. 使用ViewChild获取单个 DOM 节点2. 使用ViewChildren获取多个 DOM 节点3. 使用ElementRef直接访问 DOM4. 使用Renderer2操作 DOM5. 总结 在 Angular 开发中&#xff0c;虽然框架鼓励我们通过组件和模板来操作 DOM&#xff0c;但在某些情况下&#xff0c;直接访问和…...

R Excel 文件:高效数据处理的利器

R Excel 文件:高效数据处理的利器 在数据分析领域,R语言因其强大的统计分析和可视化功能而备受推崇。而R Excel文件,作为R语言与Excel的桥梁,使得数据在R和Excel之间的高效转换成为可能。本文将详细介绍R Excel文件的概念、应用场景以及操作方法。 一、R Excel文件的概念…...

手撕跳表/数据结构

昨天leetcode每日一题是跳表&#xff0c;之前学redis就没去写跳表&#xff0c;这次就逃不过了。 这里使用了len数组&#xff0c;来表示每个数字之间的间隔&#xff0c;方便复杂的查询功能。 主要问题有 为什么len数组记录的是数字之间的间隔&#xff0c;不是每一层从头到尾…...

在 Vue 中处理跨域请求:全面解析与实践指南

在 Vue 中处理跨域请求&#xff1a;全面解析与实践指南 在现代 Web 开发的复杂生态中&#xff0c;跨域请求&#xff08;CORS&#xff09;如同一个无处不在的难题&#xff0c;时刻考验着开发者的技术能力。当我们构建基于 Vue.js 的前端应用时&#xff0c;这一问题尤为凸显。因为…...

爬虫与反爬-Ja3指纹风控(Just a moment...)处理方案及参数说明

概述&#xff1a;本文将针对Ja3 指纹检测风控进行处理&#xff0c;举例了一个案例并使用两种不同的破解方案进行突破&#xff0c;同时深入了解指纹间不同字符所代表的含义 指纹检测背景&#xff1a; 1、每一个设备、软件都有独属于自己的设备信息、版本号、加密算法、椭圆算法…...

WPF-Avalonia实践一两个页面的相关传递

文章目录 注册两个ViewModel关联-Interaction在 Avalonia 框架中的 Interaction作用目的典型的使用场景显示对话框:文件操作:定义交互属性示例代码视图层处理交互总结例子-实现两个界面信息传递Interaction注册在主VIEWModel中注册异步方法按钮主viewModel对应的显示xaml-使用…...

无人机实战系列(三)本地摄像头+远程GPU转换深度图

这篇文章将结合之前写的两篇文章 无人机实战系列&#xff08;一&#xff09;在局域网内传输数据 和 无人机实战系列&#xff08;二&#xff09;本地摄像头 Depth-Anything V2 实现了以下功能&#xff1a; 本地笔记本摄像头发布图像 远程GPU实时处理&#xff08;无回传&#…...

LeetCode:数组异或操作

数组异或操作 描述 给你两个整数&#xff0c;n 和 start 。 数组 nums 定义为&#xff1a;nums[i] start 2*i&#xff08;下标从 0 开始&#xff09;且 n nums.length 。 请返回 nums 中所有元素按位异或&#xff08;XOR&#xff09;后得到的结果。 示例 1&#xff1a;…...

【前端】Axios AJAX Fetch

不定期更新&#xff0c;建议关注收藏点赞。 目录 AxiosAJAXCORS 允许跨域请求 Fetch Axios axios 是一个基于 Promise 的 JavaScript HTTP 客户端&#xff0c;用于浏览器和 Node.js 中发送 HTTP 请求。它提供了一个简单的 API 来发起请求&#xff0c;并处理请求的结果。axios …...

C++ 继承与运算符重载的简单练习

1.长方形的继承类 #include <iostream> #include <cstring> #include <cstdlib> #include <unistd.h> #include <sstream> #include <vector> #include <memory>using namespace std; class AB{ private:int a;int …...

pycharm技巧--鼠标滚轮放大或缩小 Pycharm 字体大小

1、鼠标滚轮调整字体 设置 Ctrl 鼠标滚轮调整字体大小 备注&#xff1a; 第一个是活动窗口&#xff0c;即缩放当前窗口 第二个是所有编辑器窗口&#xff0c;即缩放所有窗口的字体 2、插件 汉化包&#xff1a; Chinese Simplified 包...

deepseek 导出导入模型(docker)

前言 实现导出导入deepseek 模型。deepseek 安装docker下参考 docker 导出模型 实际生产环境建议使用docker-compose.yml进行布局&#xff0c;然后持久化ollama模型数据到本地参考 echo "start ollama" docker start ollama#压缩容器内文件夹&#xff0c;然后拷贝…...

STM32——HAL库开发笔记21(定时器2—输出比较)(参考来源:b站铁头山羊)

本文主要讲述输出比较及PWM信号相关知识。 一、概念 所谓输出比较&#xff0c;就是通过单片机的定时器向外输出精确定时的方波信号。 1.1 PWM信号 PWM信号即脉冲宽度调制信号。PWM信号的占空比 &#xff08;高电压 所占周期 / 整个周期&#xff09; * 100% 。所以PWM信号…...