当前位置: 首页 > news >正文

DeepSeek 提示词:高效的提示词设计

🧑 博主简介:CSDN博客专家历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c=1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程高并发设计Springboot和微服务,熟悉LinuxESXI虚拟化以及云原生Docker和K8s,热衷于探索科技的边界,并将理论知识转化为实际应用。保持对新技术的好奇心,乐于分享所学,希望通过我的实践经历和见解,启发他人的创新思维。在这里,我希望能与志同道合的朋友交流探讨,共同进步,一起在技术的世界里不断学习成长。
技术合作请加本人wx(注明来自csdn):foreast_sea

在这里插入图片描述


在这里插入图片描述

DeepSeek 提示词:高效设计的基本原则

引言

在人工智能和自然语言处理(NLP)领域,提示词(Prompt)设计是连接人类意图与机器理解的关键桥梁。特别是在像DeepSeek这样的先进AI系统中,提示词的设计直接影响到模型的输出质量和任务的完成效率。本文将深入探讨提示词设计的三大基本原则:清晰性结构化上下文控制,并通过详细的案例分析,帮助读者掌握如何在实际应用中设计出高效的提示词。

为什么提示词设计如此重要?

提示词不仅仅是简单的指令,它是AI系统理解任务、生成响应的起点。一个设计良好的提示词可以显著提高AI的输出质量,减少误解和错误,从而提高整体工作效率。相反,一个模糊或不恰当的提示词可能导致AI生成无关或错误的输出,甚至完全无法完成任务。

提示词设计的三大原则

  1. 清晰性:明确任务目标是提示词设计的首要原则。一个清晰的提示词能够确保AI准确理解用户的需求,从而生成符合预期的输出。
  2. 结构化:分步骤与逻辑层次的设计有助于AI系统更好地处理复杂任务。通过将任务分解为多个子任务,AI可以逐步完成每个步骤,最终实现整体目标。
  3. 上下文控制:限定范围与角色是确保AI输出相关性和一致性的关键。通过明确上下文和角色,AI可以更好地理解任务的背景和限制,从而生成更符合预期的输出。

通过本文的阅读,读者将能够深入理解提示词设计的基本原则,并掌握在实际应用中设计高效提示词的技巧。

1. 清晰性:明确任务目标

1.1 什么是清晰性?

清晰性是指提示词能够明确传达任务的目标和要求,确保AI系统能够准确理解用户的意图。一个清晰的提示词应该具备以下特点:

  • 明确的任务描述:提示词应明确指出需要完成的任务是什么。
  • 具体的要求:提示词应包含具体的任务要求,如格式、内容、长度等。
  • 避免歧义:提示词应避免使用模糊或有多重含义的词汇,确保AI系统不会产生误解。

1.2 如何实现清晰性?

实现清晰性需要从以下几个方面入手:

  1. 明确任务目标:在提示词中明确指出任务的目标是什么。例如,如果任务是生成一篇关于人工智能的文章,提示词应明确指出文章的主题、长度、风格等要求。
  2. 具体化任务要求:提示词应包含具体的任务要求,如格式、内容、长度等。例如,如果任务是生成一篇500字的文章,提示词应明确指出文章的长度要求。
  3. 避免模糊词汇:提示词应避免使用模糊或有多重含义的词汇。例如,避免使用“可能”、“大概”等词汇,确保AI系统能够准确理解任务要求。

1.3 案例分析

案例1:模糊提示词

生成一篇关于人工智能的文章。

分析:这个提示词过于模糊,没有明确指出文章的主题、长度、风格等要求,AI系统可能会生成一篇不符合预期的文章。

案例2:清晰提示词

生成一篇`500`字的文章,主题为“人工智能在医疗领域的应用”,要求文章结构清晰,包含引言、正文和结论,风格为学术性。

分析:这个提示词明确指出了任务的目标、具体要求和风格,AI系统能够准确理解任务要求,生成符合预期的文章。

2. 结构化:分步骤与逻辑层次

2.1 什么是结构化?

结构化是指将复杂的任务分解为多个子任务,并按照逻辑层次进行组织,以便AI系统能够逐步完成每个步骤,最终实现整体目标。一个结构化的提示词应该具备以下特点:

  • 任务分解:将复杂任务分解为多个子任务。
  • 逻辑层次:按照逻辑层次组织子任务,确保每个步骤都有明确的输入和输出。
  • 逐步完成:AI系统能够逐步完成每个子任务,最终实现整体目标。

2.2 如何实现结构化?

实现结构化需要从以下几个方面入手:

  1. 任务分解:将复杂任务分解为多个子任务。例如,如果任务是生成一篇关于人工智能的文章,可以将任务分解为生成引言、生成正文、生成结论等子任务。
  2. 逻辑层次:按照逻辑层次组织子任务,确保每个步骤都有明确的输入和输出。例如,生成引言后,AI系统可以根据引言生成正文,最后生成结论。
  3. 逐步完成:AI系统能够逐步完成每个子任务,最终实现整体目标。例如,AI系统首先生成引言,然后根据引言生成正文,最后生成结论。

2.3 案例分析

案例1:非结构化提示词

生成一篇关于人工智能的文章。

分析:这个提示词没有将任务分解为多个子任务,AI系统可能会一次性生成整篇文章,导致文章结构不清晰。

案例2:结构化提示词

1. 生成一篇关于人工智能的文章的引言,长度约100字。
2. 根据引言生成正文,长度约300字。
3. 根据正文生成结论,长度约100字。

分析:这个提示词将任务分解为多个子任务,并按照逻辑层次组织,AI系统能够逐步完成每个子任务,最终生成一篇结构清晰的文章。

3. 上下文控制:限定范围与角色

3.1 什么是上下文控制?

上下文控制是指通过限定任务的范围和角色,确保AI系统生成的输出与任务背景和限制相符。一个有效的上下文控制应该具备以下特点:

  • 限定范围:明确任务的范围,确保AI系统生成的输出在指定范围内。
  • 限定角色:明确AI系统的角色,确保AI系统生成的输出符合角色要求。
  • 一致性:确保AI系统生成的输出与任务背景和限制一致。

3.2 如何实现上下文控制?

实现上下文控制需要从以下几个方面入手:

  1. 限定范围:明确任务的范围,确保AI系统生成的输出在指定范围内。例如,如果任务是生成一篇关于人工智能的文章,可以限定文章的主题为“人工智能在医疗领域的应用”。
  2. 限定角色:明确AI系统的角色,确保AI系统生成的输出符合角色要求。例如,如果AI系统的角色是“学术研究者”,生成的输出应符合学术性要求。
  3. 一致性:确保AI系统生成的输出与任务背景和限制一致。例如,如果任务是生成一篇关于人工智能的文章,生成的输出应符合人工智能领域的知识背景。

3.3 案例分析

案例1:无上下文控制提示词

生成一篇关于人工智能的文章。

分析:这个提示词没有限定任务的范围和角色,AI系统可能会生成一篇不符合任务背景和限制的文章。

案例2:有上下文控制提示词

生成一篇关于人工智能在医疗领域的应用的文章,角色为学术研究者,要求文章符合学术性要求,长度约500字。

分析:这个提示词限定了任务的范围和角色,AI系统生成的输出符合任务背景和限制,生成的文章符合学术性要求。

4. 案例分析:实际应用中的提示词设计

4.1 案例1:生成技术文档

任务描述:生成一份关于DeepSeek系统的技术文档,要求文档结构清晰,包含系统架构、功能模块、技术实现等内容。

提示词设计

1. 生成DeepSeek系统技术文档的引言,长度约100字,介绍系统的基本信息和目标。
2. 生成系统架构部分,长度约200字,描述系统的整体架构和主要组件。
3. 生成功能模块部分,长度约300字,详细介绍系统的各个功能模块及其作用。
4. 生成技术实现部分,长度约400字,描述系统的技术实现细节,包括使用的技术和算法。
5. 生成结论部分,长度约100字,总结系统的主要特点和优势。

分析:这个提示词将任务分解为多个子任务,并按照逻辑层次组织,AI系统能够逐步完成每个子任务,最终生成一份结构清晰的技术文档。

4.2 案例2:生成市场分析报告

任务描述:生成一份关于人工智能市场的分析报告,要求报告包含市场规模、主要玩家、市场趋势等内容。

提示词设计

1. 生成人工智能市场分析报告的引言,长度约100字,介绍市场的基本情况和分析目标。
2. 生成市场规模部分,长度约200字,描述市场的当前规模和增长趋势。
3. 生成主要玩家部分,长度约300字,介绍市场中的主要玩家及其市场份额。
4. 生成市场趋势部分,长度约400字,分析市场的未来趋势和潜在机会。
5. 生成结论部分,长度约100字,总结市场的主要特点和未来展望。

分析:这个提示词将任务分解为多个子任务,并按照逻辑层次组织,AI系统能够逐步完成每个子任务,最终生成一份结构清晰的市场分析报告。

5. 总结与展望

5.1 总结

本文详细探讨了提示词设计的三大基本原则:清晰性结构化上下文控制。通过明确任务目标、分步骤与逻辑层次、限定范围与角色,设计出高效的提示词,可以显著提高AI系统的输出质量和任务完成效率。

5.2 展望

随着人工智能技术的不断发展,提示词设计将变得越来越重要。未来,我们可以期待更多的研究和实践,进一步优化提示词设计的方法和技巧,从而更好地发挥AI系统的潜力。

参考文献

  1. Brown, T. B., et al. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.
  2. Radford, A., et al. (2019). Language Models are Unsupervised Multitask Learners. OpenAI Blog.
  3. Vaswani, A., et al. (2017). Attention is All You Need. Advances in Neural Information Processing Systems, 30.
  4. Devlin, J., et al. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
  5. Liu, Y., et al. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692.

相关文章:

DeepSeek 提示词:高效的提示词设计

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...

【Redis】在Java中以及Spring环境下操作Redis

Java环境下&#xff1a; 1.创建maven 项目 2.导入依赖 <!-- redis --><dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId><version>4.3.2</version></dependency> 此处使用的是Jedis&…...

Linux红帽:RHCSA认证知识讲解(二)配置网络与登录本地远程Linux主机

Linux红帽&#xff1a;RHCSA认证知识讲解&#xff08;二&#xff09;配置网络与登录本地远程Linux主机 前言一、使用命令行&#xff08;nmcli 命令&#xff09;配置网络&#xff0c;配置主机名第一步第二步修改主机名称 二、使用图形化界面&#xff08;nmtui 命令&#xff09;配…...

新数据结构(13)——I/O

字符流 字符输入流&#xff08;Reader&#xff09; 字符输入流用于从数据源&#xff08;如文件、字符串等&#xff09;读取字符数据。Reader 是所有字符输入流的抽象基类。 常用实现类 FileReader 用于从文件中读取字符数据。 InputStreamReader 将字节流转换为字符流&…...

C语言学习,希尔排序

C语言&#xff0c;希尔排序是插入排序的一种&#xff0c;也称为递减增量排序。通过比较距离较远的元素&#xff0c;然后逐渐缩小间隔&#xff0c;直到整个数组变成有序的。这种排序方法减少了插入排序&#xff0c;大数据集的移动次数&#xff0c;提高了效率。 示例&#xff1a…...

Powershell Install deepseek

前言 deepseekAI助手。它具有聊天机器人功能&#xff0c;可以与用户进行自然语言交互&#xff0c;回答问题、提供建议和帮助解决问题。DeepSeek 的特点包括&#xff1a; 强大的语言理解能力&#xff1a;能够理解和生成自然语言&#xff0c;与用户进行流畅的对话。多领域知识&…...

22、《Spring Boot消息队列:RabbitMQ延迟队列与死信队列深度解析》

Spring Boot消息队列实战&#xff1a;RabbitMQ延迟队列与死信队列深度解析 引言 在现代分布式系统中&#xff0c;消息队列承担着解耦、削峰填谷和异步通信的重要职责。本文将深入探讨Spring Boot与RabbitMQ的整合应用&#xff0c;重点解析延迟队列与死信队列的实现原理及实战…...

性能测试项目实战

项目介绍和部署 项目背景 轻商城项目是一个现在流行的电商项目。我们需要综合评估该项目中各个关键接口的性能&#xff0c;并给出优化建议&#xff0c;以满足项目上线后的性能需要。 项目功能架构 前台商城&#xff1a;购物车、订单、支付、优惠券等 后台管理系统&#xff1a;商…...

LabVIEW中显微镜下位移误差的畸变

在显微实验中&#xff0c;位移台通过电机驱动探针进行微米级精确移动&#xff0c;配合显微镜和相机实时观察探针的位置。然而&#xff0c;实验中发现&#xff0c;当电机移动相同的物理距离时&#xff0c;图像中探针的像素位移量存在显著的非线性偏差。经测试&#xff0c;电机的…...

Spark MLlib中的机器学习算法及其应用场景

Spark MLlib是Apache Spark框架中的一个机器学习库&#xff0c;提供了丰富的机器学习算法和工具&#xff0c;用于处理和分析大规模数据。以下是Spark MLlib中的机器学习算法及其应用场景的详细描述&#xff1a; 一、Spark MLlib中的机器学习算法 分类算法&#xff1a; 逻辑回…...

Angular 中获取 DOM 节点的几种方法

文章目录 1. 使用ViewChild获取单个 DOM 节点2. 使用ViewChildren获取多个 DOM 节点3. 使用ElementRef直接访问 DOM4. 使用Renderer2操作 DOM5. 总结 在 Angular 开发中&#xff0c;虽然框架鼓励我们通过组件和模板来操作 DOM&#xff0c;但在某些情况下&#xff0c;直接访问和…...

R Excel 文件:高效数据处理的利器

R Excel 文件:高效数据处理的利器 在数据分析领域,R语言因其强大的统计分析和可视化功能而备受推崇。而R Excel文件,作为R语言与Excel的桥梁,使得数据在R和Excel之间的高效转换成为可能。本文将详细介绍R Excel文件的概念、应用场景以及操作方法。 一、R Excel文件的概念…...

手撕跳表/数据结构

昨天leetcode每日一题是跳表&#xff0c;之前学redis就没去写跳表&#xff0c;这次就逃不过了。 这里使用了len数组&#xff0c;来表示每个数字之间的间隔&#xff0c;方便复杂的查询功能。 主要问题有 为什么len数组记录的是数字之间的间隔&#xff0c;不是每一层从头到尾…...

在 Vue 中处理跨域请求:全面解析与实践指南

在 Vue 中处理跨域请求&#xff1a;全面解析与实践指南 在现代 Web 开发的复杂生态中&#xff0c;跨域请求&#xff08;CORS&#xff09;如同一个无处不在的难题&#xff0c;时刻考验着开发者的技术能力。当我们构建基于 Vue.js 的前端应用时&#xff0c;这一问题尤为凸显。因为…...

爬虫与反爬-Ja3指纹风控(Just a moment...)处理方案及参数说明

概述&#xff1a;本文将针对Ja3 指纹检测风控进行处理&#xff0c;举例了一个案例并使用两种不同的破解方案进行突破&#xff0c;同时深入了解指纹间不同字符所代表的含义 指纹检测背景&#xff1a; 1、每一个设备、软件都有独属于自己的设备信息、版本号、加密算法、椭圆算法…...

WPF-Avalonia实践一两个页面的相关传递

文章目录 注册两个ViewModel关联-Interaction在 Avalonia 框架中的 Interaction作用目的典型的使用场景显示对话框:文件操作:定义交互属性示例代码视图层处理交互总结例子-实现两个界面信息传递Interaction注册在主VIEWModel中注册异步方法按钮主viewModel对应的显示xaml-使用…...

无人机实战系列(三)本地摄像头+远程GPU转换深度图

这篇文章将结合之前写的两篇文章 无人机实战系列&#xff08;一&#xff09;在局域网内传输数据 和 无人机实战系列&#xff08;二&#xff09;本地摄像头 Depth-Anything V2 实现了以下功能&#xff1a; 本地笔记本摄像头发布图像 远程GPU实时处理&#xff08;无回传&#…...

LeetCode:数组异或操作

数组异或操作 描述 给你两个整数&#xff0c;n 和 start 。 数组 nums 定义为&#xff1a;nums[i] start 2*i&#xff08;下标从 0 开始&#xff09;且 n nums.length 。 请返回 nums 中所有元素按位异或&#xff08;XOR&#xff09;后得到的结果。 示例 1&#xff1a;…...

【前端】Axios AJAX Fetch

不定期更新&#xff0c;建议关注收藏点赞。 目录 AxiosAJAXCORS 允许跨域请求 Fetch Axios axios 是一个基于 Promise 的 JavaScript HTTP 客户端&#xff0c;用于浏览器和 Node.js 中发送 HTTP 请求。它提供了一个简单的 API 来发起请求&#xff0c;并处理请求的结果。axios …...

C++ 继承与运算符重载的简单练习

1.长方形的继承类 #include <iostream> #include <cstring> #include <cstdlib> #include <unistd.h> #include <sstream> #include <vector> #include <memory>using namespace std; class AB{ private:int a;int …...

pycharm技巧--鼠标滚轮放大或缩小 Pycharm 字体大小

1、鼠标滚轮调整字体 设置 Ctrl 鼠标滚轮调整字体大小 备注&#xff1a; 第一个是活动窗口&#xff0c;即缩放当前窗口 第二个是所有编辑器窗口&#xff0c;即缩放所有窗口的字体 2、插件 汉化包&#xff1a; Chinese Simplified 包...

deepseek 导出导入模型(docker)

前言 实现导出导入deepseek 模型。deepseek 安装docker下参考 docker 导出模型 实际生产环境建议使用docker-compose.yml进行布局&#xff0c;然后持久化ollama模型数据到本地参考 echo "start ollama" docker start ollama#压缩容器内文件夹&#xff0c;然后拷贝…...

STM32——HAL库开发笔记21(定时器2—输出比较)(参考来源:b站铁头山羊)

本文主要讲述输出比较及PWM信号相关知识。 一、概念 所谓输出比较&#xff0c;就是通过单片机的定时器向外输出精确定时的方波信号。 1.1 PWM信号 PWM信号即脉冲宽度调制信号。PWM信号的占空比 &#xff08;高电压 所占周期 / 整个周期&#xff09; * 100% 。所以PWM信号…...

【报错解决】vue打开界面报错Uncaught SecurityError: Failed to construct ‘WebSocket‘

问题描述&#xff1a; vue运行时正常&#xff0c;但是打开页面后报错 Uncaught SecurityError: Failed to construct WebSocket: An insecure WebSocket connection may not be initiated from a page loaded over HTTPS. 解决方案&#xff1a; 在项目列表中的public下的ind…...

【初探数据结构】时间复杂度和空间复杂度

&#x1f4ac; 欢迎讨论&#xff1a;在阅读过程中有任何疑问&#xff0c;欢迎在评论区留言&#xff0c;我们一起交流学习&#xff01; &#x1f44d; 点赞、收藏与分享&#xff1a;如果你觉得这篇文章对你有帮助&#xff0c;记得点赞、收藏&#xff0c;并分享给更多对数据结构感…...

将DeepSeek接入vscode的N种方法

接入deepseek方法一:cline 步骤1:安装 Visual Studio Code 后,左侧导航栏上点击扩展。 步骤2:搜索 cline,找到插件后点击安装。 步骤3:在大模型下拉菜单中找到deep seek,然后下面的输入框输入你在deepseek申请的api key,就可以用了 让deepseek给我写了一首关于天气的…...

《TransMamba:一种混合Transformer-Mamba网络用于单图像去雨》学习笔记

paper&#xff1a;2409.00410 GitHub&#xff1a;sunshangquan/TransMamba 目录 摘要 1、介绍 2、相关工作 2.1 单图像去雨 2.2 视觉Transformer 2.3 光谱域中的Transformer 2.4 光谱域中的图像恢复 2.5 视觉Mamba 3、方法 3.1 整体网络架构 3.2 光谱域变换块&am…...

危化品经营单位安全管理人员的职责及注意事项

危化品经营单位安全管理人员肩负着保障经营活动安全的重要责任&#xff0c;以下是其主要职责及注意事项&#xff1a; 职责 1. 安全制度建设与执行&#xff1a;负责组织制定本单位安全生产规章制度、操作规程和生产安全事故应急救援预案&#xff0c;确保这些制度符合国家相关法…...

安装Redis并把Redis设置成windows下的服务然后进行Redis实例演示

目录 &#xff08;一&#xff09;安装Redis &#xff08;二&#xff09;Redis设置成windows下的服务 1、把redis设置成windows下的服务 2、设置服务命令 &#xff08;三&#xff09;Redis实例演示 1、Redis插入数据 2、Redis修改数据 3、Redis删除数据 4、Redis查询数…...

基于 Python 的项目管理系统开发

基于 Python 的项目管理系统开发 一、引言 在当今快节奏的工作环境中&#xff0c;有效的项目管理对于项目的成功至关重要。借助信息技术手段开发项目管理系统&#xff0c;能够显著提升项目管理的效率和质量。Python 作为一种功能强大、易于学习且具有丰富库支持的编程语言&…...

牛客周赛 Round 82(思维、差分、树状数组、大根堆、前后缀、递归)

文章目录 牛客周赛 Round 82&#xff08;思维、差分、树状数组、大根堆、前后缀、递归&#xff09;A. 夹心饼干B. C. 食堂大作战&#xff08;思维&#xff09;D. 小苯的排列计数(差分、树状数组)E. 和和&#xff08;大根堆&#xff0c;前缀和&#xff09;F. 怎么写线性SPJ &…...

【python】解析自动化脚本文件并按照=测试周期=存储记录

【python】连接Jira获取token以及jira对象 【python】解析自动化脚本文件并按照测试周期存储记录 【python】向Jira推送自动化用例执行成功 【python】向Jira测试计划下&#xff0c;附件中增加html测试报告 将已编写的自动化测试用例按照jira号解析出来&#xff0c;并按照测试计…...

一种简单有效的分析qnx+android智能座舱项目中的画面闪烁的方法(8155平台)

在智能座舱项目的开发过程中&#xff0c;画面闪烁问题是一个常见但棘手的挑战。由于这些闪烁现象往往转瞬即逝&#xff0c;传统的分析工具如截图、录屏或dump图层等方法难以捕捉和定位问题根源。针对这一难题&#xff0c;本文介绍了一种较为有效的分析方法&#xff0c;能够帮助…...

架构师论文《论湖仓一体架构及其应用》

软考论文-系统架构设计师 摘要 作为某省级商业银行数据中台建设项目技术负责人&#xff0c;我在2020年主导完成了从传统数据仓库向湖仓一体架构的转型。针对日益增长的支付流水、用户行为埋点及信贷审核影像文件等多模态数据处理需求&#xff0c;原有系统存在存储成本激增、实…...

一篇文章学懂Vuex

一、基于VueCli自定义创建项目 233 344 二、Vuex 初始准备 建项目的时候把vuex勾选上就不用再yarn add vuex3了 store/index.js // 这里面存放的就是vuex相关的核心代码 import Vuex from vuex import Vue from vue// 插件安装 Vue.use(Vuex)// 创建仓库&#xff08;空仓库…...

模拟实现Java中的计时器

定时器是什么 定时器也是软件开发中的⼀个重要组件. 类似于⼀个 "闹钟". 达到⼀个设定的时间之后, 就执⾏某个指定好的代码. 前端/后端中都会用到计时器. 定时器是⼀种实际开发中⾮常常⽤的组件. ⽐如⽹络通信中, 如果对⽅ 500ms 内没有返回数据, 则断开连接尝试重…...

全面理解-深拷贝与浅拷贝

在 C 中&#xff0c;深拷贝&#xff08;Deep Copy&#xff09; 和 浅拷贝&#xff08;Shallow Copy&#xff09; 是两种完全不同的对象拷贝策略&#xff0c;主要区别在于对指针和动态分配资源的处理方式。正确理解二者的区别是避免内存泄漏、悬空指针和程序崩溃的关键。 一、核…...

20250212:https通信

1:防止DNS劫持:使用 https 进行通信。 因为是SDK授权开发,需要尽量压缩so库文件和三方依赖。所以第一想法是使用 head only 的 cpp-httplib 进行开发。 cpp-httplib 需要 SSL 版本是 3.0及以上。但本地已经在开发使用的是1.0.2a版本,不满足需求。 方案1:升级OpenSSL 将Op…...

如何使用爬虫获取淘宝商品详情:API返回值说明与案例指南

在电商数据分析和运营中&#xff0c;获取淘宝商品详情是常见的需求。淘宝开放平台提供了丰富的API接口&#xff0c;允许开发者通过合法的方式获取商品信息。本文将详细介绍如何使用PHP编写爬虫&#xff0c;通过淘宝API获取商品详情&#xff0c;并解析API返回值的含义和结构。 一…...

List 接口中的 sort 和 forEach 方法

List 接口中的 sort 和 forEach 方法是 Java 8 引入的两个非常实用的函数&#xff0c;分别用于 排序 和 遍历 列表中的元素。以下是它们的详细介绍和用法&#xff1a; sort 函数 功能 对列表中的元素进行排序。 默认使用自然顺序&#xff08;如数字从小到大&#xff0c;字符…...

7.建立文件版题库|编写model文件|使用boost split字符串切分(C++)

建立文件版题库 题目的编号题目的标题题目的难度题目的描述&#xff0c;题面时间要求(内部处理)空间要求(内部处理) 两批文件构成第一个&#xff1a;questions.list : 题目列表&#xff08;不需要题目的内容&#xff09;第二个&#xff1a;题目的描述&#xff0c;题目的预设置…...

鸿蒙NEXT应用App测试-专项测试(DevEco Testing)

注意&#xff1a;大家记得先学通用测试在学专项测试 鸿蒙NEXT应用App测试-通用测试-CSDN博客 注意&#xff1a;博主有个鸿蒙专栏&#xff0c;里面从上到下有关于鸿蒙next的教学文档&#xff0c;大家感兴趣可以学习下 如果大家觉得博主文章写的好的话&#xff0c;可以点下关注…...

一周学会Flask3 Python Web开发-Jinja2模板访问对象

锋哥原创的Flask3 Python Web开发 Flask3视频教程&#xff1a; 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili 如果渲染模板传的是对象&#xff0c;如果如何来访问呢&#xff1f; 我们看下下面示例&#xff1a; 定义一个Student类 cla…...

docker离线安装记录

1.安装包 首先需要从官方网站下载Docker的离线安装包&#xff0c;可以通过以下地址找到自己想安装的版本&#xff1a; wget https://download.docker.com/linux/static/stable/x86_64/docker-20.10.7.tgz 【Docker】Docker学习之一&#xff1a;离线安装Docker步骤_docker离线…...

FreiHAND (handposeX-json 格式)数据集-release >> DataBall

FreiHAND &#xff08;handposeX-json 格式&#xff09;数据集-release 注意&#xff1a; 1)为了方便使用&#xff0c;按照 handposeX json 自定义格式存储 2)使用常见依赖库进行调用,降低数据集使用难度。 3)部分数据集获取请加入&#xff1a;DataBall-X数据球(free) 4)完…...

unity学习51:所有UI的父物体:canvas画布

目录 1 下载资源 1.1 在window / Asset store下下载一套免费的UI资源 1.2 下载&#xff0c;导入import 1.3 导入后在 project / Asset下面可以看到 2 画布canvas&#xff0c;UI的父物体 2.1 创建canvas 2.1.1 画布的下面是 event system是UI相关的事件系统 2.2 canvas…...

anaconda不显示jupyter了?

以前下载的anaconda显示jupyter&#xff0c;但是最近学习吴恩达的机器学习视频&#xff0c;需要用到jupyter&#xff0c;以前的jupyter运行不了&#xff0c;就重新下载了一个anaconda&#xff0c;发现新版的anaconda首页不显示jupyter了&#xff0c;在查找资料之后&#xff0c;…...

WordPress平台如何接入Deepseek,有效提升网站流量

深夜改代码到崩溃&#xff1f;《2024全球CMS生态报告》揭露&#xff1a;78%的WordPress站长因API对接复杂&#xff0c;错失AI内容红利。本文实测「零代码接入Deepseek」的保姆级方案&#xff0c;配合147SEO的智能发布系统&#xff0c;让你用3个步骤实现日均50篇EEAT合规内容自动…...

第十三:路由两个注意点:

4.3. 【两个注意点】 路由组件通常存放在pages 或 views文件夹&#xff0c;一般组件通常存放在components文件夹。 通过点击导航&#xff0c;视觉效果上“消失” 了的路由组件&#xff0c;默认是被卸载掉的&#xff0c;需要的时候再去挂载。 <script setup lang"ts&q…...

【前端学习笔记】Pinia

1.介绍 Pinia 是 Vue 3 中的官方状态管理库&#xff0c;作为 Vuex 的继任者&#xff0c;它为 Vue 3 提供了一个更现代、更灵活、更易用的状态管理解决方案。Pinia 主要用于管理应用中的全局状态&#xff0c;并提供了一个清晰、简洁的 API 来处理复杂的状态逻辑、数据流和副作用…...