当前位置: 首页 > news >正文

DeepSeek vs ChatGPT:AI 领域的华山论剑,谁主沉浮?

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一、引言

在当今科技飞速发展的时代,人工智能(AI)已然成为推动各领域变革的核心力量。而在人工智能的众多分支中,自然语言处理(NLP)因其与人类日常交流和信息处理的紧密联系,成为了最受瞩目的领域之一。在这片充满创新与突破的领域里,DeepSeek和ChatGPT犹如两颗璀璨的明星,吸引着全球开发者、研究人员以及广大普通用户的目光。它们代表着当前AI语言模型的顶尖水准,一场关于“谁主沉浮”的激烈较量正在上演。本文将全方位、深入地对比分析DeepSeek和ChatGPT,从技术架构、功能性能、训练成本、开源策略到实际应用案例,并通过丰富的代码示例展示它们的特点,力求为读者呈现一场全面且深入的技术盛宴。

在这里插入图片描述

二、技术架构探秘

(一)DeepSeek

  1. 混合专家模型(MoE)
    DeepSeek采用的混合专家模型(MoE)是其架构的一大亮点。这种架构就像是一个拥有众多专业人才的团队,每个“专家”都擅长处理特定类型的任务或数据。例如,在处理海量文本时,不同的“专家”模块可以分别负责处理不同领域的文本,如金融领域、医疗领域等。以金融新闻和医疗报告这两种截然不同的文本为例,当输入金融新闻时,负责金融领域的“专家”模块会被激活,它对金融术语、市场动态等有着深入的理解和处理能力,能够准确提取关键信息、分析市场趋势等;而在处理医疗报告时,擅长医疗领域的“专家”模块则会发挥作用,准确解读医学术语、病情描述等内容。这种动态选择“专家”模块的方式,大大提高了模型处理不同任务和数据的准确性和效率,避免了传统单一模型在处理复杂多样任务时的局限性。
  2. 多头潜注意力(MLA)
    多头潜注意力(MLA)技术进一步提升了DeepSeek处理文本序列的能力。传统的注意力机制在捕捉文本中的长期依赖关系和潜在语义结构时存在一定挑战,而MLA通过多个“头”并行地对文本进行处理,每个“头”关注文本的不同方面,从而更全面、深入地理解文本的语义。例如,在处理一部长篇小说时,MLA能够同时关注小说中不同人物的情节发展、时间线的推进以及隐藏在字里行间的主题和情感线索。它可以像一位细致入微的读者,将小说中的各种元素有机地联系起来,从而生成对小说内容的准确概括或基于小说情节的合理续写,使得生成的文本更加连贯、逻辑清晰,符合人类对复杂文本的理解和表达习惯。

(二)ChatGPT

  1. Transformer核心架构
    ChatGPT以Transformer架构为基石,Transformer架构摒弃了传统循环神经网络(RNN)和卷积神经网络(CNN)的序列处理方式,采用自注意力机制,这一机制成为了Transformer的核心创新点。自注意力机制允许模型在处理输入序列时,动态地计算序列中每个位置与其他位置之间的关联程度,为每个位置分配不同的权重,从而更好地捕捉序列中的长距离依赖关系。例如,在处理一段包含多个句子的对话时,模型能够根据每个单词与其他单词的语义关联,准确理解整个对话的逻辑和意图。这种自注意力机制使得ChatGPT在自然语言处理任务中表现出色,无论是文本生成、问答系统还是机器翻译等领域,都能生成逻辑连贯、语义合理的文本。它就像一个智能的语言解析器,能够快速准确地理解和处理人类语言的复杂结构。

三、功能与性能表现剖析

(一)语言处理能力

  1. DeepSeek
    DeepSeek在多语言处理方面展现出卓越的能力,尤其是在中文处理上具有显著优势。它针对中文的语言特点,如独特的语法结构、丰富的词汇表达以及大量的成语、俗语和网络用语等,进行了深度优化和专项训练。例如,在处理中文文本中常见的歧义句时,DeepSeek能够结合上下文语境,准确判断句子的真实含义。像“咬死了猎人的狗”这样的歧义句,通过对前文关于场景、人物或事件的描述,DeepSeek可以清晰地分辨出是“狗把猎人咬死了”还是“咬死了属于猎人的狗”。此外,在处理中文诗词、文言文等具有深厚文化底蕴的文本时,DeepSeek能够准确理解其中的意象、典故和修辞手法,展现出对中文文化内涵的深刻理解。在翻译任务中,从中文到其他语言的翻译,DeepSeek能够充分考虑中文的表达习惯,输出符合目标语言语法和文化背景的译文。
  2. ChatGPT
    ChatGPT在自然语言生成方面堪称一绝,能够生成自然流畅、语法正确且富有逻辑性的文本。它在多种语言上都有不错的表现,凭借其大规模的预训练数据和强大的模型架构,能够快速适应不同语言的语法和表达习惯。在日常对话场景中,ChatGPT可以像一位健谈且知识渊博的朋友,与用户进行流畅的交流,无论是讨论日常生活琐事、历史文化、科学技术还是艺术创作等话题,都能给出丰富且有深度的回应。然而,在处理中文特有的表达方式和文化内涵时,相较于DeepSeek,ChatGPT可能稍显逊色。例如,对于一些具有特定地域文化背景的中文词汇或俗语,ChatGPT可能无法完全理解其背后的深刻含义,导致在生成相关内容时出现偏差或不够贴切的情况。

(二)专业领域表现

  1. DeepSeek
    在金融、医疗、代码生成等专业领域,DeepSeek展现出强大的实力。以医疗领域为例,它经过大量专业医学文献、病历数据的训练,能够准确理解医学术语、疾病诊断标准、治疗方案等复杂信息。在辅助医生诊断时,DeepSeek可以对患者的症状描述、检查报告等进行细致分析,提供可能的疾病诊断建议,并列出相关的鉴别诊断,甚至可以根据患者的具体情况推荐合适的治疗方案。在代码生成方面,DeepSeek更是表现出色。它不仅能够根据特定的需求生成高质量的代码,还能理解复杂的代码逻辑,对既有代码进行优化、修改和调试。例如,当给定一个复杂的业务需求,如开发一个具有用户认证、数据加密和高并发处理能力的Web应用程序时,DeepSeek可以快速生成完整的代码框架,并详细注释每一部分代码的功能和实现思路。
  2. ChatGPT
    ChatGPT在开放性对话、多轮交互和跨领域知识整合方面表现卓越。它能够迅速理解用户在不同领域的问题,并结合自身丰富的知识储备,提供全面且准确的回答。在日常信息获取场景中,无论是询问历史事件的详细经过、科学理论的解释,还是了解某个产品的使用方法,ChatGPT都能快速给出详细的解答,就像一个无所不知的知识宝库。然而,在面对非常专业和深入的技术问题时,比如在处理医学领域中罕见疾病的最新研究进展、金融领域复杂的衍生品定价模型等问题时,ChatGPT可能无法像DeepSeek那样给出精准、专业的回答,因为它的知识体系虽然广泛,但在特定专业领域的深度上可能稍显不足。

(三)实时数据处理

  1. DeepSeek
    DeepSeek具备深度思考和联网搜索的强大功能,这使其在实时数据处理方面具有独特优势。当用户提出与实时事件相关的问题,如实时新闻事件、金融市场动态、体育赛事比分等,DeepSeek能够迅速通过联网搜索获取最新的信息和数据,并将其融入到回答中。例如,在询问“今天某只股票的最新价格和走势分析”时,DeepSeek可以实时连接到金融数据平台,获取最新的股价数据,并结合市场动态、行业趋势等因素,给出专业的走势分析和投资建议。这种实时获取和处理信息的能力,使得DeepSeek在需要及时信息支持的场景中,如金融交易决策、新闻报道辅助等,具有重要的应用价值。
  2. ChatGPT
    ChatGPT在处理实时数据方面存在一定的局限性。由于它是基于预训练模型,训练数据存在一定的时效性,对于训练数据截止日期之后发生的事件和最新信息,ChatGPT无法直接获取和处理。例如,如果用户询问某个刚刚发布的科技产品的详细信息,而该产品发布时间在ChatGPT的训练数据截止日期之后,它可能无法给出准确的回答,只能提供一些基于以往类似产品的一般性信息。这在一些对实时性要求极高的场景中,如实时金融交易、突发新闻报道等,限制了ChatGPT的应用。

四、训练成本与性价比探讨

在这里插入图片描述

(一)DeepSeek

DeepSeek V3的训练成本仅为557.6万美元,这一相对较低的成本对于许多企业和开发者来说具有巨大的吸引力。较低的训练成本意味着更多的企业和研究机构能够负担得起,从而在自己的业务场景中应用DeepSeek的技术,实现智能化升级。对于一些预算有限的初创企业或小型研究团队而言,他们可以利用DeepSeek的开源资源和较低的训练成本,开发出具有针对性的AI应用。例如,一家专注于特定领域的小型医疗科技公司,可以基于DeepSeek开发一个针对该领域疾病诊断的辅助系统,通过在自己的专业数据上进行微调训练,实现高效、准确的疾病诊断功能,而无需承担高昂的训练成本。这种高性价比使得DeepSeek在市场上具有广泛的应用潜力,能够推动AI技术在更多领域的普及和应用。

(二)ChatGPT

训练ChatGPT的成本则高得多,例如训练GPT - 4的成本据估计超过1亿美元。如此高昂的训练成本,一方面反映了其模型的复杂性和大规模数据训练的需求,另一方面也限制了其在一些场景中的广泛应用。对于许多中小企业和创业团队来说,如此高昂的成本是难以承受的,这使得他们在考虑使用ChatGPT技术时望而却步。即使是一些大型企业,在大规模应用ChatGPT时也需要谨慎评估成本效益。例如,一家大型金融机构如果希望将ChatGPT集成到其客户服务系统中,需要考虑到持续的API调用费用以及可能需要的定制化开发成本,这些成本对于企业的运营预算是一个不小的挑战。因此,ChatGPT在成本效益方面相对较弱,限制了其在一些对成本敏感的市场和应用场景中的推广。

五、开源策略与定制化比较

(一)DeepSeek

DeepSeek采用开源策略,将模型代码和训练方法完全公开。这一举措为全球的开发者提供了一个广阔的创新平台。开发者可以根据自己的需求对模型进行自由调整和改进。例如,在自然语言处理的特定领域,如处理少数民族语言或特定行业的专业语言时,开发者可以利用DeepSeek的开源代码,添加对这些小众语言或专业术语的支持。在机器翻译场景中,开发者可以根据特定领域的翻译需求,调整翻译模型的参数和逻辑,以提高翻译的准确性和专业性。开源策略不仅促进了技术的共享和创新,也使得DeepSeek能够在全球开发者的共同努力下不断完善和发展。同时,企业和开发者可以根据自身业务需求,基于DeepSeek进行深度定制化开发,打造具有独特竞争力的产品和服务。

(二)ChatGPT

ChatGPT采用闭源模式,虽然这种模式保证了模型的稳定性和安全性,以及OpenAI对技术的控制权,但也限制了用户的灵活性。用户只能在官方提供的接口和功能范围内使用ChatGPT,无法深入了解模型的内部结构和算法细节,更无法对模型进行直接的修改和定制。这对于一些有特定需求的企业和开发者来说,可能无法满足他们的个性化需求。例如,一家企业希望在其内部的知识管理系统中集成一个与业务紧密结合的智能问答系统,需要对模型进行深度定制,以适应企业特定的业务流程和知识体系。但由于ChatGPT的闭源性质,企业只能使用其通用的功能,无法进行针对性的优化,这在一定程度上限制了ChatGPT在企业级定制化应用中的推广。

六、代码示例对比

(一)DeepSeek代码示例

  1. 使用DeepSeek Engineer工具生成Python代码
    假设我们需要生成一个计算斐波那契数列的函数,以下是使用DeepSeek Engineer工具的代码示例:
import deepseek_api# 初始化DeepSeek Engineer工具
engineer = deepseek_api.DeepSeekEngineer()# 定义请求内容
request = "请生成一个计算斐波那契数列的Python函数"# 发送请求并获取响应
response = engineer.generate_code(request)# 打印生成的代码
print(response['code'])

在实际应用中,DeepSeek的API还支持更多复杂的功能。例如,如果我们需要生成一个带有输入验证和错误处理的斐波那契数列计算函数,可以这样修改请求:

import deepseek_apiengineer = deepseek_api.DeepSeekEngineer()
request = "请生成一个计算斐波那契数列的Python函数,要求对输入进行验证,确保输入为正整数,若输入不合法则抛出异常。"
response = engineer.generate_code(request)
print(response['code'])
  1. 与其他系统集成示例
    假设我们有一个简单的Web应用程序,使用Flask框架搭建,需要集成DeepSeek来实现一个智能代码生成功能。以下是示例代码:
from flask import Flask, request, jsonify
import deepseek_apiapp = Flask(__name__)
engineer = deepseek_api.DeepSeekEngineer()@app.route('/generate_code', methods=['POST'])
def generate_code():data = request.get_json()request_text = data.get('request')response = engineer.generate_code(request_text)return jsonify(response)if __name__ == '__main__':app.run(debug=True)

在这个示例中,前端通过POST请求将代码生成的需求发送到后端,后端调用DeepSeek的API生成代码并返回给前端。

(二)ChatGPT代码示例

  1. 使用ChatGPT的Python库生成计算斐波那契数列的代码
    使用ChatGPT的Python库来生成一段类似的计算斐波那契数列的代码,示例如下:
import openai# 设置OpenAI API密钥
openai.api_key = "YOUR_API_KEY"# 定义请求内容
prompt = "请生成一个计算斐波那契数列的Python函数"# 发送请求并获取响应
response = openai.Completion.create(engine="text - davinci - 003",prompt=prompt,max_tokens=100
)# 打印生成的代码
print(response.choices[0].text)
  1. 多轮交互示例
    假设我们希望与ChatGPT进行多轮交互,以完善生成的斐波那契数列函数,例如添加注释。以下是示例代码:
import openaiopenai.api_key = "YOUR_API_KEY"# 第一轮请求,生成斐波那契数列函数
prompt1 = "请生成一个计算斐波那契数列的Python函数"
response1 = openai.Completion.create(engine="text - davinci - 003",prompt=prompt1,max_tokens=100
)
generated_code = response1.choices[0].text# 第二轮请求,为生成的函数添加注释
prompt2 = f"请为以下Python代码添加注释:\n{generated_code}"
response2 = openai.Completion.create(engine="text - davinci - 003",prompt=prompt2,max_tokens=100
)
annotated_code = generated_code + "\n" + response2.choices[0].textprint(annotated_code)

通过上述代码示例可以看出,DeepSeek在代码生成方面更侧重于直接根据需求生成完整且符合特定要求的代码,而ChatGPT则需要通过多轮交互来逐步完善代码功能,并且在代码生成的针对性和专业性上,DeepSeek在一些场景下表现得更为突出。

七、实际应用案例分析

(二)ChatGPT应用案例
  1. 智能客服
    提升了用户体验。同时,ChatGPT 能够处理多种类型的常见问题,无论是关于产品信息、订单状态查询,还是售后服务相关问题,都能快速给出较为准确的答案,大大减轻了人工客服的工作压力。而且,其多语言支持能力使得电商平台能够为全球不同地区的用户提供服务,拓展了业务范围。例如,在面向欧洲市场时,它可以用流利的英语、法语、德语等多种语言与用户交流,解决用户在购物过程中遇到的各种问题。
  2. 内容创作辅助
    在新闻媒体行业,记者们利用 ChatGPT 来辅助撰写新闻稿件。当有重大新闻事件发生时,记者可以先让 ChatGPT 生成新闻初稿,涵盖事件的基本情况、背景信息等。例如,在报道一场体育赛事时,ChatGPT 能够快速整理出比赛的比分、关键球员表现、比赛亮点等内容,为记者提供一个基础框架。记者在此基础上,结合自己的采访和深入分析,进一步完善稿件,提高了新闻撰写的效率。在文学创作领域,作家们也会借助 ChatGPT 激发灵感。比如,当作家在构思小说情节时,遇到瓶颈,向 ChatGPT 提出诸如“如何设计一个充满悬念的故事开头”或者“帮我生成一些具有奇幻色彩的角色设定”等问题,ChatGPT 可以给出多种创意和思路,帮助作家突破创作困境,丰富作品内容。

八、用户体验与反馈差异

在这里插入图片描述

(一)DeepSeek

  1. 专业用户
    对于金融、医疗、科研等领域的专业人士来说,DeepSeek 提供的专业服务备受赞誉。在医疗领域,医生们认为 DeepSeek 辅助诊断系统能够提供有价值的参考意见,尤其是在复杂病例的诊断中,它能够从大量的医学知识和过往病例中提取关键信息,帮助医生拓宽诊断思路。在科研领域,研究人员使用 DeepSeek 来处理专业文献,它能够准确理解文献中的复杂概念和实验方法,快速总结核心观点,节省了研究人员大量的阅读和分析时间。然而,部分专业用户也指出,虽然 DeepSeek 在专业领域表现出色,但在与其他专业软件或系统集成时,可能会遇到一些技术难题,需要花费一定的时间和精力进行调试和优化。
  2. 普通用户
    普通用户在使用 DeepSeek 进行日常语言交流和信息查询时,对其在中文语境下的理解能力和回答准确性印象深刻。特别是在处理一些具有地方特色或文化内涵的问题时,DeepSeek 能够给出贴合实际情况的答案,让用户感受到其对中文文化的深入理解。但一些普通用户反映,DeepSeek 的界面设计和交互方式相对较为传统,缺乏一些新颖的视觉元素和便捷的操作方式,在用户体验的友好度方面还有提升空间。

(二)ChatGPT

  1. 专业用户
    专业用户在使用 ChatGPT 进行跨领域知识查询和开放性问题探讨时,对其快速整合信息和提供全面观点的能力表示认可。例如,在商业战略规划中,企业高管可以通过与 ChatGPT 交流,获取不同行业的发展趋势、市场动态以及潜在的竞争策略等多方面信息,为企业决策提供参考。然而,在涉及到专业深度问题时,专业用户普遍认为 ChatGPT 的回答不够精准和深入,有时需要进一步查阅专业资料进行验证和补充。此外,由于 ChatGPT 训练数据的局限性,对于一些最新的专业研究成果和行业动态,可能无法及时提供准确信息。
  2. 普通用户
    普通用户在日常使用 ChatGPT 进行聊天和获取一般性知识时,享受其流畅自然的对话体验。它能够像一个有趣的伙伴一样,与用户进行轻松愉快的交流,无论是讨论电影、音乐还是分享生活趣事,都能营造出良好的互动氛围。但是,部分普通用户也遇到了一些问题,比如在连续多轮对话中,ChatGPT 有时会出现上下文理解偏差的情况,导致回答与之前的对话内容脱节。而且,由于其训练数据可能包含一些不准确或过时的信息,在某些情况下会给出错误或误导性的回答。

九、未来发展趋势展望

(一)DeepSeek

  1. 技术创新
    未来,DeepSeek 可能会在模型架构和算法上进行进一步创新。例如,持续优化混合专家模型和多头潜注意力技术,使其在处理更加复杂和多样化的数据时表现更加出色。同时,可能会探索与其他新兴技术如知识图谱、强化学习等的深度融合,以提升模型的知识推理和决策能力。在多模态融合方面,DeepSeek 可能会加强对图像、音频等非文本数据的处理能力,实现更加全面的自然语言处理,例如能够根据用户提供的图片和简单文字描述,生成详细的故事或说明。
  2. 应用拓展
    在应用领域,DeepSeek 有望进一步深耕中文市场和专业领域。在中文教育领域,开发出更具针对性的智能学习工具,帮助学生提高中文听说读写的综合能力,比如智能作文批改系统、文言文解析助手等。在专业领域,与更多行业进行深度合作,开发出定制化的解决方案,如为制造业提供智能故障诊断和维修指导系统,为法律行业提供智能法律文书生成和案例分析工具等。此外,随着全球化的发展,DeepSeek 可能会加强对其他语言的支持和优化,拓展国际市场。

(二)ChatGPT

  1. 技术提升
    ChatGPT 未来可能会致力于解决训练数据时效性和专业深度不足的问题。通过不断更新和扩充训练数据,引入更多实时数据源,使其能够及时掌握最新的信息和知识。同时,在模型训练过程中,加强对专业领域数据的学习和理解,提高在专业问题上的回答准确性和深度。此外,OpenAI 可能会进一步优化模型架构,提高模型的运行效率和可扩展性,降低计算成本,以支持更多用户的同时访问和大规模应用。
  2. 生态建设
    ChatGPT 会更加注重生态系统的建设。一方面,与更多的企业、开发者和研究机构合作,开发出更多基于 ChatGPT 的应用和插件,丰富其功能和应用场景。例如,与办公软件开发商合作,将 ChatGPT 集成到办公软件中,实现智能文档撰写、会议纪要生成等功能。另一方面,通过举办开发者竞赛、提供技术支持和培训等方式,鼓励全球开发者参与到 ChatGPT 的生态建设中来,共同推动自然语言处理技术的发展和创新。

十、结论

DeepSeek 和 ChatGPT 作为当前 AI 语言模型领域的杰出代表,各自展现出独特的优势和特点。DeepSeek 在中文处理、专业领域深度、训练成本以及开源定制化方面具有显著优势,更适合对中文语境要求高、注重专业领域应用以及有定制化需求的用户和企业。而 ChatGPT 在自然语言生成的通用性、多语言处理、开放性对话和生态建设方面表现出色,适用于全球化场景、日常信息获取以及需要快速整合跨领域知识的用户。

在这场 AI 领域的“华山论剑”中,很难简单地判定谁将最终“主沉浮”。两者都在不断发展和演进,随着技术的进步和应用场景的拓展,它们将在不同的领域和场景中发挥重要作用。未来,DeepSeek 和 ChatGPT 之间的竞争与合作,将共同推动自然语言处理技术迈向新的高度,为人类的生活、工作和学习带来更多的便利和创新。无论是在提升医疗诊断水平、优化金融投资决策,还是在改善客户服务体验、激发内容创作灵感等方面,我们都可以期待这两款强大的 AI 语言模型继续创造更多的价值。

相关文章:

DeepSeek vs ChatGPT:AI 领域的华山论剑,谁主沉浮?

一、引言 在当今科技飞速发展的时代,人工智能(AI)已然成为推动各领域变革的核心力量。而在人工智能的众多分支中,自然语言处理(NLP)因其与人类日常交流和信息处理的紧密联系,成为了最受瞩目的领…...

现场可以通过手机或者pad实时拍照上传到大屏幕的照片墙现场大屏电子照片墙功能

现场可以通过手机或者pad实时拍照上传到大屏幕的照片墙现场大屏电子照片墙功能,每个人都可以通过手机实时拍照上传到大屏幕上,同时还可以发布留言内容,屏幕上会同步滚动播放展示所有人的照片和留言。相比校传统的照片直播功能更加灵活方便,而…...

AF3 _process_single_hit 函数解读

AlphaFold3 中templates模块的_process_single_hit函数处理单个 HHsearch 比对的模板 TemplateHit,并从相应的 mmCIF 文件中提取模板特征,返回包含模板位置信息、比对质量等特征的 SingleHitResult 对象。它是 AlphaFold3 在模板模块中生成模板特征结构输入的重要步骤。 源代…...

go 模块管理

go version 查看版本 go version go1.21.12 windows/amd64 需要保证:go的版本升级为1.11以上,go mod依赖的最底版本 go env 查看go的环境变量 go env 开启go mod # 标识开启go的模块管理 set GO111MODULE=on GO111MODULE有三个值:off, on和auto(默认值)。 GO111M…...

23种设计模式 - 命令模式

模式定义 命令模式(Command Pattern)是一种行为型设计模式,它将请求封装为独立对象,使请求的发送者与接收者解耦。通过将操作抽象为命令对象,支持命令的存储、传递、撤销和重做,增强系统的灵活性和可扩展性…...

php-fpm

摘要 php-fpm(fastcgi process manager)是PHP 的FastCGI管理器,管理PHP的FastCGI进程,提升PHP应用的性能和稳定性 php-fpm是一个高性能的php FastCGI管理器,提供了更好的php进程管理方式,可以有效的控制内存和进程,支…...

Visual Studio 2022配置网址参考

代码格式化和清理冗余代码选项的配置: 代码样式选项和代码清理 - Visual Studio (Windows) | Microsoft Learn 调试时传递参数: 调试时传递命令行参数(C) - Visual Studio (Windows) | Microsoft Learn...

【含文档+PPT+源码】基于Django的新闻推荐系统的设计与实现

项目介绍 本课程演示的是一款基于Django的新闻推荐系统的设计与实现,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的 Python学习者。 1.包含:项目源码、项目文档、数据库脚本、软件工具等所有资料 2.带你从零开始部署运行本套系统 3.…...

2025年02月21日Github流行趋势

项目名称:source-sdk-2013 项目地址url:https://github.com/ValveSoftware/source-sdk-2013项目语言:C历史star数:7343今日star数:929项目维护者:JoeLudwig, jorgenpt, narendraumate, sortie, alanedwarde…...

后端开发:开启技术世界的新大门

在互联网的广阔天地中,后端开发宛如一座大厦的基石,虽不直接与用户 “面对面” 交流,却默默地支撑着整个互联网产品的稳定运行。它是服务器端编程的核心领域,负责处理数据、执行业务逻辑以及与数据库和其他后端服务进行交互。在当…...

Apache Doris 实现毫秒级查询响应

1. 引言 1.1 数据分析的重要性 随着大数据时代的到来,企业对实时数据分析的需求日益增长。快速、准确地获取数据洞察成为企业在竞争中脱颖而出的关键。传统的数据库系统在处理大规模数据时往往面临性能瓶颈,难以满足实时分析的需求。例如,一个电商公司需要实时监控销售数据…...

【Python项目】基于Python的语音数据及标注核对审核系统

【Python项目】基于Python的语音数据及标注核对审核系统 技术简介: 采用Python技术、MySQL数据库、Django框架等实现。 系统简介: 语音数据及标注核对审核系统是一个基于B/S架构的语音数据处理平台,旨在通过自动化的方式对语音数据进行标…...

路由基本配置

学习目标 • 根据拓扑图进行网络布线。 • 清除启动配置并将路由器重新加载为默认状态。 • 在路由器上执行基本配置任务。 • 配置并激活以太网接口。 • 测试并检验配置。 • 思考网络实施方案并整理成文档。 任务 1:网络布线 使用适当的电缆类型连接网络设备。…...

从WebRTC到EasyRTC:嵌入式适配的视频通话SDK实现低延迟、高稳定性音视频通信

WebRTC最初是为浏览器之间的实时通信设计的,其资源需求和复杂性可能对嵌入式设备的性能提出较高要求,因此在嵌入式系统中应用时面临一些挑战: 1)资源消耗较高 CPU和内存占用:WebRTC是一个功能强大的实时通信框架&…...

【Blender】二、建模篇--05,阵列修改器与晶格形变

阵列修改器是bender里面一个比较常用的修改器,所以我们单独开口来讲,我们会先从几片树叶出发,然后我们用阵列修改器把这几片树叶变成这样的造型和这样的造型。这两个造型分别就代表着阵列修改器最常用的两种偏移方法,我们现在就开始我们先来做几个树叶。 1.树叶建模 首先…...

Python爬虫实战:获取12306特定日期、城市车票信息,并做数据分析以供出行参考

注意:以下内容仅供技术研究,请遵守目标网站的robots.txt规定,控制请求频率避免对目标服务器造成过大压力! 1. 核心思路 需求:获取明天(2025 年 2 月 21 日)从北京到上海的车次、票价、出发时间、硬卧二等卧信息,并保存到 CSV 文件,然后分析出价格最低的 10 趟车次。目…...

C++ 设计模式-策略模式

支付策略 #include <iostream> #include <memory> #include <unordered_map> #include <vector> #include <ctime>// 基础策略接口 class PaymentStrategy { public:virtual ~PaymentStrategy() default;virtual std::string name() const 0;…...

数据结构:哈希表(unordered_map)

unordered_map 是 C 标准库中的一种哈希表实现&#xff0c;它提供了基于键值对&#xff08;key-value&#xff09;的存储&#xff0c;提供了常数时间复杂度的查找、插入和删除键值对的操作。 初始化代码示例&#xff1a; #include <unordered_map> using namespace std…...

鸿蒙-自定义布局-实现一个可限制行数的-Flex

文章目录 前提onMeasureSizeselfLayoutInfoconstraintchildren onPlaceChildren 实现思路属性准备测量组件布局小结 刷新 千呼万唤始出来的自定义布局功能终于可以用了&#xff0c;这就给了我们更多自由发挥创造的空间&#xff0c;不再局限于使用已有组件做组合。当然&#xff…...

安装可视化jar包部署平台JarManage

一、下载 下载地址&#xff1a;JarManage 发行版 - Gitee.com &#x1f692; 下载 最新发行版 下载zip的里面linux和windows版本都有 二、运行 上传到服务器&#xff0c;解压进入目录 &#x1f69a; 执行java -jar jarmanage-depoly.jar 命令运行 java -jar jarmanage-dep…...

1、Window Android 13模拟器 将编译的映像文件导入Android Studio

1、环境准备 编译环境&#xff1a;Ubuntu-18.04.5编译版本&#xff1a;android13-release下载地址&#xff1a;清华大学开源软件镜像站AOSP # 下载repo # 同步代码&#xff1a;repo init -u https://mirrors.tuna.tsinghua.edu.cn/git/AOSP/platform/manifest -b android13-r…...

力扣27. 移除元素(快慢指针)

Problem: 27. 移除元素 文章目录 题目描述思路Code 题目描述 思路 定义快慢指针均指向数组起始位置&#xff0c;当fast指针指向的元素不等于val时将fast指针指向的元素赋值给slow并让slow指针向前移动&#xff0c;fast指针一直向前移动 时间复杂度: O ( n ) O(n) O(n); 空间复杂…...

Unity学习part4

1、ui界面的基础使用 ui可以在2d和矩形工具界面下操作&#xff0c;更方便&#xff0c;画布与游戏窗口的比例一般默认相同 如图所示&#xff0c;图片在画布上显示的位置和在游戏窗口上显示的位置是相同的 渲染模式&#xff1a;屏幕空间--覆盖&#xff0c;指画布覆盖在游戏物体渲…...

前端面试之Flex布局:核心机制与高频考点全解析

目录 引言&#xff1a;弹性布局的降维打击 一、Flex布局的本质认知 1. 两大核心维度 2. 容器与项目的权力边界 二、容器属性深度剖析 1. 主轴控制三剑客 2. 交叉轴对齐黑科技 三、项目属性关键要点 1. flex复合属性解密 2. 项目排序魔法 四、六大高频面试场景 1. 经…...

关系数据理论

一、函数依赖 若t1(X)t2(X),必有t1(Y)t2(Y),那么我们称属性组X函数确定属性组Y&#xff0c;或者说Y函数依赖于X。记为X->Y&#xff0c;其中X叫决定因素&#xff0c;Y叫依赖因素。 平凡函数依赖与非平凡函数依赖&#xff1a; 二、1-BCNF 评价关系模式“好坏”的理论标准就…...

低代码与开发框架的一些整合[2]

1.分析的项目资源说明 经过近期的的不断分析与运行对比&#xff0c;最终把注意力集中在了以下几个框架&#xff1a; 01.dibootdiboot.diboot: 写的更少, 性能更好 -> 为开发人员打造的低代码开发平台。Mybatis-plus关联查询&#xff0c;关联无SQL&#xff0c;性能高10倍&a…...

网络空间安全(1)web应用程序的发展历程

前言 Web应用程序的发展历程是一部技术创新与社会变革交织的长卷&#xff0c;从简单的文档共享系统到如今复杂、交互式、数据驱动的平台&#xff0c;经历了多个重要阶段。 一、起源与初期发展&#xff08;1989-1995年&#xff09; Web的诞生&#xff1a; 1989年&#xff0c;欧洲…...

Android 之 AIDL for HAL

Android AIDL for HAL 的作用与实现 作用&#xff1a; Android AIDL for HAL&#xff08;Android Interface Definition Language for Hardware Abstraction Layer&#xff09;旨在统一 HAL 开发接口&#xff0c;替代 HIDL&#xff08;Hardware Interface Definition Language…...

Python爬虫基础文件操作

文件操作 引言 爬虫爬取的一切内容都是在内存进行的&#xff0c;这样会有什么问题吗&#xff1f;如果一旦短电或着发生意外电脑关机了那么你的工作成果将瞬间消失。所以&#xff0c;我们还缺少数据在本地文件系统进行持久化的能力&#xff0c;简单的来说就是文件读写操作。文…...

OpenGauss MySQL兼容库迁移

OpenGauss 提供了从MySQL到OG的迁移工具&#xff0c;虽然安装在起来及其繁琐&#xff0c;也不怎么好用&#xff0c;不过我现在需要的是&#xff0c;从MySQL到OG的MySQL兼容库&#xff0c;可以理解成从MySQL到MySQL的迁移。 但是很不幸的是&#xff0c;OG的MySQL的兼容模式&…...

SOME/IP--协议英文原文讲解10

前言 SOME/IP协议越来越多的用于汽车电子行业中&#xff0c;关于协议详细完全的中文资料却没有&#xff0c;所以我将结合工作经验并对照英文原版协议做一系列的文章。基本分三大块&#xff1a; 1. SOME/IP协议讲解 2. SOME/IP-SD协议讲解 3. python/C举例调试讲解 4.2.2 Req…...

linux shell 当命令执行出现错误立即退出的方法

在 Linux 脚本中&#xff0c;如果你想在整个脚本执行完毕后检查是否有错误发生&#xff0c;可以通过以下几种方式实现&#xff1a; 1. 使用 $? 检查上一条命令的退出状态 每个命令执行后&#xff0c;Shell 会将其退出状态存储在特殊变量 $? 中。$? 的值为 0 表示成功&#…...

Moonshot AI 新突破:MoBA 为大语言模型长文本处理提效论文速读

前言 在自然语言处理领域&#xff0c;随着大语言模型&#xff08;LLMs&#xff09;不断拓展其阅读、理解和生成文本的能力&#xff0c;如何高效处理长文本成为一项关键挑战。近日&#xff0c;Moonshot AI Research 联合清华大学、浙江大学的研究人员提出了一种创新方法 —— 混…...

vue2 和 vue3 中 computer 计算属性的用法

Vue 2 中的 computed 在 Vue 2 中&#xff0c;计算属性是响应式的&#xff0c;并且基于 getter 进行缓存&#xff0c;只有依赖的响应式数据发生变化时才会重新计算。 基本用法 <template><div><p>原始消息&#xff1a;{{ message }}</p><p>反…...

Python爬虫入门到精通:从零开始的数据采集之旅

一、网络世界的"小蜘蛛":什么是爬虫? 想象一下,你是一只勤劳的小蜘蛛,每天在互联网这张巨大的网上爬来爬去。你不需要自己织网,只需要顺着别人织好的网络路径,把有价值的信息收集到自己的小篮子里。这就是爬虫最形象的比喻——一个自动化的信息采集程序。 Py…...

Python+Selenium+Pytest+POM自动化测试框架封装

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 1、测试框架简介 1&#xff09;测试框架的优点 代码复用率高&#xff0c;如果不使用框架的话&#xff0c;代码会显得很冗余。可以组装日志、报告、邮件等一些高…...

【JMeter使用-2】JMeter中Java Request采样器的使用指南

Apache JMeter 是一款功能强大的性能测试工具&#xff0c;支持多种协议和测试场景。除了内置的采样器&#xff08;如HTTP请求、FTP请求等&#xff09;&#xff0c;JMeter还允许通过 Java Request采样器 调用自定义的Java代码&#xff0c;从而实现更复杂的测试逻辑。本文将详细介…...

IntelliJ IDEA中Maven配置全指南

一、环境准备与基础配置 1.1 Windows 环境下载并配置 Maven 见此篇博文&#xff1a;环境配置 1.2 IDEA配置步骤 打开设置面板&#xff1a;File → Settings → Build → Build Tools → Maven 关键配置项&#xff1a; Maven home path E:\apache-maven-3.9.9 &#xff08;…...

自学Java-AI结合GUI开发一个石头迷阵的游戏

自学Java-AI结合GUI开发一个石头迷阵的游戏 准备环节1、创建石头迷阵的界面2、打乱顺序3、控制上下左右移动4、判断是否通关5、统计移动步骤&#xff0c;重启游戏6、拓展问题 准备环节 技术&#xff1a; 1、GUI界面编程 2、二维数组 3、程序流程控制 4、面向对象编程 ∙ \bulle…...

NetLogon 权限提升漏洞

参考文章&#xff1a;CVE-2020-1472NetLogon权限提升漏洞_cve-2020-1472复现 谢公子-CSDN博客 域控机器账户&#xff1a;WIN-0V0GAORDC17 域控 ip&#xff1a;192.168.72.163 域内攻击者机器 ip&#xff1a;192.168.72.158&#xff0c;host&#xff1a;WIN10-01 攻击者 kali…...

UDP和TCP

UDP协议 报文中应该包含 源IP&#xff0c;源端口号目的IP&#xff0c;目的端口号UDP/TCP 一个进程是否可以绑定多个端口号&#xff1f; 可以。多个进程是否可以绑定一个端口号&#xff1f; 不可以&#xff0c;因为端口号的主要作用是唯一标识一台计算机上的一个特定服务或应…...

2025 年 1 月公链行业研报:比特币主导地位强化

2025 年 1 月公链行业研报 作者&#xff1a;Stella L (stellafootprint.network) 数据来源&#xff1a;Footprint Analytics 公链研究页面 2025 年 1 月&#xff0c;加密市场总市值增长 7.2% 至 2.8 万亿美元&#xff0c;主要区块链平台表现分化。在新的监管政策与人工智能基…...

在低功耗MCU上实现人工智能和机器学习

作者&#xff1a;Silicon Labs 人工智能&#xff08;AI&#xff09;和机器学习&#xff08;ML&#xff09;技术不仅正在快速发展&#xff0c;还逐渐被创新性地应用于低功耗的微控制器&#xff08;MCU&#xff09;中&#xff0c;从而实现边缘AI/ML解决方案。这些MCU是许多嵌入式…...

新数据结构(11)——Java类的产生和反射

反射是获取类信息的一种能力 类信息包括属性、方法、构造器、父类、接口等 类信息的来源 来自类的加载器&#xff0c;这是从.class文件到内存中的java虚拟器&#xff08;JVM&#xff09;中间的一个阶段&#xff08;如下图&#xff09; 类的加载器里&#xff0c;用Field数组存…...

智能网络感知,打造极致流畅的鸿蒙原生版中国移动云盘图文体验

背景 中国移动云盘&#xff08;原“和彩云网盘”&#xff09;是中国移动重磅推出的安全、智能、不限速、移动用户免流的智能云盘&#xff0c;致力于成为5G时代用户个人与家庭的数字资产管理中心&#xff0c;是中国移动继语音、短信、流量后的“第四项基础服务”。 照片、音视…...

MySQL查看视图

《MySQL 9从入门到性能优化&#xff08;视频教学版&#xff09;&#xff08;数据库技术丛书&#xff09;》(王英英)【摘要 书评 试读】- 京东图书 (jd.com) MySQL9数据库技术_夏天又到了的博客-CSDN博客 查看视图是查看数据库中已存在的视图的定义。查看视图必须要有SHOW VIE…...

量子计算的基本运算:Hadamard 门、CNOT 门、Pauli 门详解

量子计算是现代计算科学的前沿领域,它与经典计算机在处理信息的方式上有着本质的区别。量子计算机利用量子比特(qubit)的叠加态和量子纠缠等特性来进行计算,从而在某些特定任务上超越传统计算机。量子计算的核心运算单元是量子门,它们通过作用于量子比特来操控量子状态。本…...

java(spring boot)实现向deepseek/GPT等模型的api发送请求/多轮对话(附源码)

我们再启动应用并获取api密钥后就可以对它发送请求了&#xff0c;但是官方文档对于如何进行多轮对话以及怎么自定义参数并没有说的很清楚&#xff0c;给的模板也没有java的&#xff0c;因此我们需要自己实现。 import org.json.JSONArray; import org.json.JSONObject;import j…...

Flask flash() 消息示例

目录 安装 Flask 入门:Flask flash() 基本示例 进阶:使用 Flask-WTF Flash 登录结果消息 详解:get_flashed_messages() 详解:flash() 消息的完整生命周期 Flask 提供 flash() 用于向 用户传递临时消息,通常用于: • 表单提交成功或失败 • 用户登录、注册、退出提…...

ubuntu环境编译ffmepg支持nvidia显卡加速

文章目录 1. 安装NVIDIA驱动2. 安装CUDA&NV-CODEC2.1 安装CUDA2.2 安装NV-CODEC 3. 编译ffmpeg3.1 安装依赖3.2 下载源码安装依赖3.3 验证 4. 使用 1. 安装NVIDIA驱动 安装依赖包 sudo apt install -y ubuntu-drivers-common编辑 /etc/modprobe.d/blacklist-nouveau.conf 文…...