在低功耗MCU上实现人工智能和机器学习
作者:Silicon Labs
人工智能(AI)和机器学习(ML)技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器(MCU)中,从而实现边缘AI/ML解决方案。这些MCU是许多嵌入式系统不可或缺的一部分,凭借其成本效益、高能效以及可靠的性能,现在能够支持AI/ML应用。这种集成化在可穿戴电子产品、智能家居设备和工业自动化等应用领域中,从AI/ML功能中获得的效益尤为显著。具备AI优化功能的MCU和TinyML的兴起(专注于在小型、低功耗设备上运行ML模型),体现了这一领域的进步。TinyML对于直接在设备上实现智能决策、促进实时处理和减少延迟至关重要,特别是在连接有限或无连接的环境中。
TinyML是指在小型、低功耗设备上应用机器学习模型,尤其是在微控制器(MCU)平台上,这些MCU经过优化,可以在设备有限的资源体系内运行。这使得边缘设备能够实现智能决策,支持实时处理并减少延迟。量化(Quantization)和剪枝(Pruning)等技术用于减小模型大小并提高推理速度。量化通过降低模型权重的精度,显著减少内存使用而几乎不影响准确性;剪枝则通过去除不太重要的神经元,进一步减小模型规模并提升延迟性能。这些方法对于在资源有限的设备上部署ML模型至关重要。
PyTorch和TensorFlow Lite都是实现机器学习模型的主流框架。PyTorch是一个开源机器学习库,被广泛用于人工智能应用的开发,包括可以部署在微控制器上的应用程序。PyTorch提供了用于机器学习的工具和库,包括计算机视觉和自然语言处理,可用于低功耗和小尺寸设备。
TensorFlow Lite for Microcontroller(TFLM)能够在非常受限的MCU类设备上运行具有Flatbuffer转换功能的TF Lite模型。这减少了模型的大小,并优化了它在MCU上的推理。
另一个重要的工具是来自ARM的CMSIS-NN库,它为Cortex-M处理器提供了优化的神经网络内核来运行TFLM模型。CMSIS-NN库提高了性能并减少了内存占用,使其更容易在基于ARM的MCU上运行ML模型。
此外,一些MCU还配备了专用的AI/ML硬件加速器,如Silicon Labs(芯科科技)的EFM32无线SoC和MCU,可以显著提高ML模型的性能,使更复杂的应用程序能够在这些设备上更快、更高效地运行。人工智能加速器擅长并行化任务,如矩阵乘法、卷积和图形处理。通过利用多样化的并行性,它们可以一次执行大量的计算。这使得人工智能工作负载的速度大大提高,同时保持低功耗。这些加速器还增强了内存访问模式,减少了数据传输开销,主CPU—CortexM可以进入低功耗睡眠模式,以节省更多的能量或管理额外的任务。通过使数据更接近计算单元,它们减少了等待时间。其结果是增强了性能、降低了功耗和延迟。
实际应用
TinyML的实际应用是多种多样且有影响力的。一个值得注意的示例是音频和视觉唤醒词,当说出特定的关键字或在图像中检测到某人时,设备会触发动作。这项技术被用于智能扬声器和安全摄像头,支持它们在识别到唤醒词或检测运动时激活。另一种应用是工业环境中的预测性维护。工厂设备上的传感器持续监测振动和温度等参数,可使用TinyML模型检测来异常并在故障发生之前预测维护需求,这有助于减少停机时间和维护成本。
手势和活动识别是TinyML的另一种令人兴奋的应用。配备加速度计和陀螺仪的可穿戴设备可以监测身体活动,如走路、跑步或特定手势。这些设备使用TinyML模型实时分析传感器数据,为健身追踪或医疗诊断提供有价值的见解。在农业领域,TinyML被用于环境监测。智能农业系统分析土壤湿度和天气条件,以优化灌溉,提高作物产量和资源效率。
TinyML还增强了健康监测功能。诸如连续血糖监测仪(CGM)这样需要长时间电池寿命和实时数据处理的设备,都能够极大地受益于这项技术。此外,智能床传感器可以在没有直接接触的情况下评估病人的呼吸模式,为远程观察提供不间断的健康数据。这一创新在管理老年人护理和慢性疾病方面特别有价值,因为持续监测有助于及早发现潜在的健康问题。
启动开发
要开始构建自己的TinyML应用,您需要了解TinyML的基础知识并选择合适的硬件。根据您的应用,您可能需要传感器来收集数据,例如加速度计、麦克风或摄像头。设置开发环境包括安装Simplicity Studio集成开发环境(IDE)、SDK和TinyML所需的资源库。
下一步是收集和准备与应用相关的数据。例如,如果您正在构建一个手势识别系统,您需要收集不同手势的加速度计数据。收集数据后,您需要对其进行预处理,使其适合训练您的模型。训练模型需要在功能强大的机器上使用高级框架,如TensorFlow或PyTorch。一旦训练完毕,模型需要使用量化和剪枝等技术进行优化。
在完成优化后,即可将模型转换为适合MCU的格式,如TensorFlow Lite格式。最后一步是将优化后的模型部署到MCU,将其与应用程序代码集成,并对其进行全面测试,以确保其满足性能和精度要求。基于实际性能的不断迭代和改进对于完善TinyML应用至关重要。
利用芯科科技的解决方案在微控制器上实现人工智能和机器学习
芯科科技提供了一系列解决方案,有助于在MCU上实现AI/ML。EFR32/EFM32(xG24、xG26、xG28)和SiWx917系列微控制器由于其低功耗和强大的性能而非常适合TinyML应用。以下是在芯科科技MCU上实现AI/ML的详细技术指南:
数据采集与预处理
数据采集:使用连接到MCU的传感器采集原始数据,例如加速度计、陀螺仪和温度传感器等传感器都可用于各种应用。
预处理:对数据进行清理和预处理,使其适合训练。这可能包括过滤噪声、对数值进行归一化处理以及将数据分割到窗口中。为此,芯科科技提供了数据采集和预处理工具。
数据采集工具则由合作伙伴SensiML提供:https://github.com/sensiml/sensiml_xG24_dual_audio_imu_capture
模型训练
模型选择:根据应用选择合适的ML模型。常用的模型包括决策树(decision tree)和支持向量机(vector machine)。
训练:在高性能云服务器或带有GPU的本地PC上使用TensorFlow训练模型。这包括将预处理数据输入模型并调整参数以最小化误差。
模型转换:使用TensorFlow Lite转换器将训练模型转换为与TF Lite Micro兼容的格式。TensorFlow Lite for Microcontrollers (TFLM)中的FlatBuffer转换包括将TensorFlow Lite模型转换为FlatBuffer格式,这是一种紧凑的二进制格式,可以高效地存储和快速地访问。这个过程对于在内存和处理能力有限的微控制器上运行机器学习模型至关重要。FlatBuffers支持直接访问模型而无需解压。一旦采用FlatBuffer格式,该模型可以由微控制器执行,使其能够执行推理任务。这种转换减小了模型大小,使其适用于内存非常有限的设备,并且可以快速访问和执行模型,而无需进行大量解析。此外,它还确保该模型可以在运行速率低于1GHz、代码空间有限(通常低于3MB)、SRAM有限(约256KB)的MCU上被无缝集成和执行。
模型部署
与Simplicity SDK集成:使用芯科科技的Simplicity SDK将TF Lite Micro与MCU集成。
闪存模型(Flashing the Model):将转换后的模型移植到MCU的Flash上。这可以使用Simplicity Studio完成,它为芯科科技MCU的编程提供了一个用户友好的界面。
推理和优化:应用量化和剪枝等优化技术,以减小模型大小并提高性能。
运行推理:一旦模型部署完成,它可以在MCU上运行推理。这包括向模型中输入新数据并获得预测结果。
软件工具链:新的软件工具包旨在支持开发人员使用一些最流行的工具套件(如TinyML和TensorFlow)快速构建和部署人工智能和机器学习算法。AI/ML软件帮助设计人员创建新的应用程序。除了原生支持TensorFlow来为高效推理提供优化内核之外,芯科科技还与一些领先的AI/ML工具提供商(如SensiML和Edge Impulse)合作,以确保开发人员拥有端到端的工具链来简化机器学习模型的开发,这些模型针对无线应用的嵌入式部署进行了优化。通过将这一全新的AI/ML工具链与芯科科技的Simplicity Studio开发平台以及xG24、xG28和xG26系列SoC结合使用,开发人员可以创建能够从各种互联设备获取信息的应用,这些设备都可以相互通信,从而做出智能的、由机器学习驱动的决策。
芯科科技提供各种工具和资源来支持ML应用。以下是其中一些例子:
机器学习应用:芯科科技提供集成化的硬件、软件和开发工具,帮助客户快速创建适用于工业和商业应用场景的、安全的智能设备。开发平台支持嵌入式机器学习(TinyML)模型推理,由Tensorflow Lite for Microcontrollers(TFLM)框架支持。该存储库包含一组利用ML的嵌入式应用程序:https://github.com/SiliconLabs/machine_learning_applications
机器学习工具包(MLTK):这是一个带有命令行实用程序和脚本的Python软件包,可支持基于芯科科技的嵌入式平台开发的机器学习模型。它包括从命令行界面或Python脚本执行ML操作的各项功能,并可确定ML模型在嵌入式平台上的执行效率,以及使用谷歌Tensorflow训练ML模型。
参考数据集:MLTK附带参考模型使用的数据集。这些数据集可以在Github上找到:
https://github.com/SiliconLabs/mltk/blob/master/docs/python_api/datasets/index.md
音频特征生成器(Audio Feature Generator):芯科科技提供了与TensorFlow Lite模型一起使用的音频特征生成器。它根据sl_ml_audio_feature_generation_config.h中的配置去进行前端的初始化来生成功能,并以流模式来初始化和启动麦克风。Audio Feature Generator | API Documentation | Machine Learning | latest | Silicon Labs
MLPerf Tiny Benchmark:MLPerf Tiny Benchmark是由一家开放工程联盟MLCommons设计的性能评估套件。它旨在衡量ML系统在推理方面的性能和能效,将训练好的ML模型应用于新数据。该基准是专门为低功耗的最小设备量身定制的,通常用于深度嵌入式应用,如物联网(IoT)或智能传感。
芯科科技参与了MLPerf Tiny基准测试,提交了展示机器学习工具包(MLTK)功能的解决方案。该工具包包括TinyML基准测试使用的几个模型,可在GitHub上获得,涵盖异常检测、图像分类、关键字识别和视觉唤醒词等应用程序。
与以前的版本相比,使用MLPerf Tiny v1.0的结果显示出了推理速度提高,以及代码规模和内存使用量的减少。例如,Plumerai的推理引擎表现出了显著的增强,包括支持时间序列神经网络,如基于LSTM的循环神经网络(RNN),这在运动传感器、健康传感器、语音和音频应用中很常见。
AI/ML合作伙伴
芯科科技与业界领先的供应商合作,包括Edge Impulse、SensiML、NeutonAI和Eta Compute等AutoML工具链和SaaS云伙伴建立了合作关系。此外,诸如Sensory和MicroAI等解决方案提供商,以及包括Capgemini和Jabil在内的设计合作伙伴都是该网络的一部分。这些联盟提供了可简化综合解决方案开发的平台,使初学者更容易接触到边缘的AI/ML。
TinyML在MCU上的优势:
- 成本低-MCU价格合理
- 绿色环保-能耗低
- 易于集成-可轻松将MCU集成到现有环境中
- 隐私与安全-在本地处理数据,无需联网传输
- 快速原型开发-快速开发概念验证解决方案
- 自主可靠-微型设备在任何环境下都能稳定运行
- 实时处理-将延迟降至最低
嵌入式开发应用流程
开发具有机器学习功能的应用需要两个不同的工作流程:
- 使用Simplicity Studio来创建无线应用的嵌入式应用开发工作流程。
- 创建将添加到嵌入式应用的机器学习功能的机器学习工作流程。
- 目标应用
-
运动检测:在商业办公大楼里,许多灯都是由运动探测器控制的,该探测器监测占用情况,以确定灯是否应该打开或关闭。然而,当员工在办公桌前打字时,由于动作仅限于手和手指,因为运动传感器本身无法识别他们的存在,所以可能会出现自动关灯而无法为员工可提供照明。通过将音频传感器与运动探测器连接起来,额外的音频数据(如打字的声音)可以通过机器学习算法进行处理,从而使照明系统能够更明智地决定灯是应该打开还是关闭。
预测性维护:可使用芯科科技的EFR32 MCU来开发一个预测性维护系统。这需要使用连接的传感器来收集机器的振动和温度数据,同时训练一个模型来根据这些数据预测潜在的故障,然后将该模型部署在MCU上,实现对机器的实时监控和维护计划。
健康监测:使用EFM32 MCU构建可穿戴健康监测设备。使用传感器收集心率和体温等生命体征的数据。训练一个模型来检测数据中的异常。在MCU上部署该模型,帮助用户对健康情况提供实时分析了解。
智能农业:使用芯科科技的MCU开发智能灌溉系统。使用连接的传感器收集土壤湿度和天气数据。训练一个模型,以便根据这些数据来优化水的使用。将该模型部署在MCU上,控制灌溉系统,提高作物产量。
结论
MCU不再局限于简单任务,而是正成为实现AI的强大平台。通过探索面向AI优化的MCU,我们可以为电池供电的智能设备开辟新的潜在应用。无论是智能家居设备还是工业传感器,AI驱动的MCU正在重塑嵌入式系统的未来。
相关文章:
在低功耗MCU上实现人工智能和机器学习
作者:Silicon Labs 人工智能(AI)和机器学习(ML)技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器(MCU)中,从而实现边缘AI/ML解决方案。这些MCU是许多嵌入式…...
新数据结构(11)——Java类的产生和反射
反射是获取类信息的一种能力 类信息包括属性、方法、构造器、父类、接口等 类信息的来源 来自类的加载器,这是从.class文件到内存中的java虚拟器(JVM)中间的一个阶段(如下图) 类的加载器里,用Field数组存…...
智能网络感知,打造极致流畅的鸿蒙原生版中国移动云盘图文体验
背景 中国移动云盘(原“和彩云网盘”)是中国移动重磅推出的安全、智能、不限速、移动用户免流的智能云盘,致力于成为5G时代用户个人与家庭的数字资产管理中心,是中国移动继语音、短信、流量后的“第四项基础服务”。 照片、音视…...
MySQL查看视图
《MySQL 9从入门到性能优化(视频教学版)(数据库技术丛书)》(王英英)【摘要 书评 试读】- 京东图书 (jd.com) MySQL9数据库技术_夏天又到了的博客-CSDN博客 查看视图是查看数据库中已存在的视图的定义。查看视图必须要有SHOW VIE…...
量子计算的基本运算:Hadamard 门、CNOT 门、Pauli 门详解
量子计算是现代计算科学的前沿领域,它与经典计算机在处理信息的方式上有着本质的区别。量子计算机利用量子比特(qubit)的叠加态和量子纠缠等特性来进行计算,从而在某些特定任务上超越传统计算机。量子计算的核心运算单元是量子门,它们通过作用于量子比特来操控量子状态。本…...
java(spring boot)实现向deepseek/GPT等模型的api发送请求/多轮对话(附源码)
我们再启动应用并获取api密钥后就可以对它发送请求了,但是官方文档对于如何进行多轮对话以及怎么自定义参数并没有说的很清楚,给的模板也没有java的,因此我们需要自己实现。 import org.json.JSONArray; import org.json.JSONObject;import j…...
Flask flash() 消息示例
目录 安装 Flask 入门:Flask flash() 基本示例 进阶:使用 Flask-WTF Flash 登录结果消息 详解:get_flashed_messages() 详解:flash() 消息的完整生命周期 Flask 提供 flash() 用于向 用户传递临时消息,通常用于: • 表单提交成功或失败 • 用户登录、注册、退出提…...
ubuntu环境编译ffmepg支持nvidia显卡加速
文章目录 1. 安装NVIDIA驱动2. 安装CUDA&NV-CODEC2.1 安装CUDA2.2 安装NV-CODEC 3. 编译ffmpeg3.1 安装依赖3.2 下载源码安装依赖3.3 验证 4. 使用 1. 安装NVIDIA驱动 安装依赖包 sudo apt install -y ubuntu-drivers-common编辑 /etc/modprobe.d/blacklist-nouveau.conf 文…...
C++类与对象深度解析(一):从引用、内联函数到构造析构的编程实践
目录 一.引用 引用的特征:1.引用必须初始化 2.本质是别名 3.函数参数传递 4.常引用 5.函数返回值 6.权限 放大 缩小 平移 引用 vs 指针 二.内联函数 关键点说明 三.宏函数 四.类 什么是类? 简单的类 五.构造函数与析构函数 1. 构造函数&…...
SpringCloud-使用FFmpeg对视频压缩处理
在现代的视频处理系统中,压缩视频以减小存储空间、加快传输速度是一项非常重要的任务。FFmpeg作为一个强大的开源工具,广泛应用于音视频的处理,包括视频的压缩和格式转换等。本文将通过Java代码示例,向您展示如何使用FFmpeg进行视…...
Pytorch实现之粒子群优化算法在GAN中的应用
简介 简介:主要是采用了粒子群优化(PSO)算法来优化GAN的一个训练。PSO是一种是一种基于种群的随机优化技术。这种优化技术是通过粒子群进行的,粒子群在每次迭代中都会更新自己。对于给定的目标函数,这种方法利用一个搜索空间,在那里粒子群移动,找到所需的全局最小值。这…...
http+nginx
HTTP协议:超文本传输协议,Hyper Text transfer protocol(发明者:蒂姆.伯纳斯.李) 1.超文本 包含超链接(link)和各种多媒体元素的文本,这些超文本文件彼此相连,形成网状(web&…...
网络运维学习笔记 014网工初级(HCIA-Datacom与CCNA-EI)ACL访问控制列表
文章目录 ACL(Access Control List,访问控制列表)思科:实验1(标准ACL):实验2(扩展ACL):实验3(ACL在VTY的使用场景): 华为&…...
002 SpringCloudAlibaba整合 - Feign远程调用、Loadbalancer负载均衡
前文地址: 001 SpringCloudAlibaba整合 - Nacos注册配置中心、Sentinel流控、Zipkin链路追踪、Admin监控 文章目录 8.Feign远程调用、loadbalancer负载均衡整合1.OpenFeign整合1.引入依赖2.启动类添加EnableFeignClients注解3.yml配置4.日志配置5.远程调用测试6.服务…...
机器视觉检测中,2D面阵相机和线扫相机的区别
2D面阵相机和线扫相机是工业视觉系统中常用的两种相机类型,各有其特点和应用场景。 2D面阵相机 特点: 成像方式:通过二维传感器一次性捕捉整个场景的图像。 分辨率:分辨率由传感器的像素数决定,常见的有百万像素到几千…...
解锁观察者模式:Java编程中的高效事件管理之道
系列文章目录 后续补充~~~ 文章目录 一、引言:探索观察者模式的奥秘二、观察者模式的核心原理2.1 模式定义与概念2.2 关键角色剖析2.3 工作机制深度解析 三、观察者模式在 Java 中的实现3.1 手动实现观察者模式3.2 使用 JDK 内置的观察者模式3.3 代码示例解析与对比…...
Ubuntu编译ZLMediaKit
下载 git clone https://gitee.com/xia-chu/ZLMediaKit cd ZLMediaKit git submodule update --init安装工具 sudo apt install -y build-essential sudo apt install -y gcc g sudo apt install -y cmakesudo apt install -y build-essential cmake git libssl-dev libsdl1.…...
全面指南:使用JMeter进行性能压测与性能优化(中间件压测、数据库压测、分布式集群压测、调优)
目录 一、性能测试的指标 1、并发量 2、响应时间 3、错误率 4、吞吐量 5、资源使用率 二、压测全流程 三、其他注意点 1、并发和吞吐量的关系 2、并发和线程的关系 四、调优及分布式集群压测(待仔细学习) 1.线程数量超过单机承载能力时的解决…...
鸿蒙初学者学习手册(HarmonyOSNext_API14)_自定义动画API(@ohos.animator (动画) )
前言 在纯血鸿蒙中最具有用户特色的效果就是自定义的动画效果。在纯血鸿蒙中有多种定义方式,但是今天介绍的是ApI中的自定义动画。 注意: 动画本身具有生命周期,但是不支持在UIAbility的文件使用,简单而言就是不允许在UIAbility生命周期中…...
Grok 3.0 Beta 版大语言模型评测
2025年2月17日至18日,全球首富埃隆马斯克(Elon Musk)携手其人工智能公司xAI,在美国重磅发布了Grok 3.0 Beta版。这款被誉为“迄今为止世界上最智能的语言模型”的AI,不仅集成了先进的“DeepSearch”搜索功能࿰…...
IDEA中查询Maven项目的依赖树
在Maven项目中,查看项目的依赖树是一个常见的需求,特别是当你需要了解项目中直接或间接依赖了哪些库及其版本时。你可以通过命令行使用Maven的dependency:tree插件来做到这一点。这个命令会列出项目中所有依赖的树状结构。 打开idea项目的终端ÿ…...
学习aigc
DALLE2 论文 Hierarchical Text-Conditional Image Generation with CLIP Latents [2204.06125] Hierarchical Text-Conditional Image Generation with CLIP LatentsAbstract page for arXiv paper 2204.06125: Hierarchical Text-Conditional Image Generation with CLIP L…...
springboot整合mybatis-plus【详细版】
目录 一,简介 1. 什么是mybatis-plus2.mybatis-plus特点 二,搭建基本环境 1. 导入基本依赖:2. 编写配置文件3. 创建实体类4. 编写controller层5. 编写service接口6. 编写service层7. 编写mapper层 三,基本知识介绍 1. 基本注解 T…...
【2024 CSDN博客之星】大学四年,我如何在CSDN实现学业与事业的“双逆袭”?
前言: Hello大家好,我是Dream。不知不觉2024年已经过去,自己也马上迈入23岁,感慨时间飞快,从19岁刚入大学加入CSDN,到现在大学毕业已经整整四年了。CSDN陪伴我走过了最青涩的四年大学时光,在这里…...
在VS中通过vcpkg包管理器来安装使用qt5
常用指令 .\vcpkg install 库名 .\vcpkg install 库名版本号.\vcpkg install 库名 --trip x86-windows.\vcpkg list.\vcpkg search 库名 .\vcpkg x-all-installed --7zip PS G:\vcpkg> .\vcpkg help usage: vcpkg <command> [--switches] [--optionsvalues] [argume…...
【C++篇】树影摇曳,旋转无声:探寻AVL树的平衡之道
文章目录 从结构到操作:手撕AVL树的实现一、AVL树介绍1.1 什么是AVL树1.2 平衡因子的定义1.3 平衡的意义1.4 AVL树的操作 二、AVL树的节点结构2.1 节点结构的定义: 三、插入操作3.1 插入操作概述3.2 步骤1:按二叉查找树规则插入节点3.3 步骤2…...
CPU、SOC、MPU、MCU--详细分析四者的区别
一、CPU 与SOC的区别 1.CPU 对于电脑,我们经常提到,处理器,内存,显卡,硬盘四大部分可以组成一个基本的电脑。其中的处理器——Central Processing Unit(中央处理器)。CPU是一台计算机的运算核…...
nacos编写瀚高数据库插件
1、下载nacos源码 git clone gitgithub.com:alibaba/nacos.git 2、引入瀚高驱动 <dependency><groupId>com.highgo</groupId><artifactId>jdbc</artifactId><version>${highgo.version}</version></dependency> 3、DataSource…...
使用excel中的VBA合并多个excel文件
需求是这样的: 在Windows下,用excel文件让多个小组填写了统计信息,现在我需要把收集的多个文件汇总到一个文件中,前三行为标题可以忽略,第四行为收集信息的列名,处理每一行数据的时候,发现某一行…...
linux 安装启动zookeeper全过程及遇到的坑
1、下载安装zookeeper 参考文章:https://blog.csdn.net/weixin_48887095/article/details/132397448 2、启动失败 1、启动失败JAVA_HOME is not set and java could not be found in PATH 已安装 JAVA 配置了JAVA_HOME,还是报错解决方法:参考…...
JAVA JUC 并发编程学习笔记(一)
文章目录 JUC进程概述对比 线程创建线程ThreadRunnableCallable 线程方法APIrun startsleep yieldjoininterrupt打断线程打断 park终止模式 daemon不推荐 线程原理运行机制线程调度未来优化 线程状态查看线程 同步临界区syn-ed使用锁同步块同步方法线程八锁 锁原理Monitor字节码…...
内容中台架构下智能推荐系统的算法优化与分发策略
内容概要 在数字化内容生态中,智能推荐系统作为内容中台的核心引擎,承担着用户需求与内容资源精准匹配的关键任务。其算法架构的优化路径围绕动态特征建模与多模态数据融合展开,通过深度强化学习技术实现用户行为特征的实时捕捉与动态更新&a…...
Java 内存区域详解
1 常见面试题 1.1 基本问题 介绍下Java内存区域(运行时数据区)Java对象的创建过程(五步,建议能够默写出来并且要知道每一步虚拟机做了什么)对象的访问定位的两种方式(句柄和直接指针两种方式)…...
jEasyUI 创建学校课程表
jEasyUI 创建学校课程表 引言 随着信息技术的飞速发展,教育行业也迎来了数字化转型的浪潮。学校课程表的创建和管理作为教育信息化的重要组成部分,其效率和准确性直接影响到学校的教学秩序。jEasyUI,作为一款优秀的开源UI框架,凭借其易用性、灵活性和丰富的组件,成为了许…...
利用 OpenCV 进行棋盘检测与透视变换
利用 OpenCV 进行棋盘检测与透视变换 1. 引言 在计算机视觉领域,棋盘检测与透视变换是一个常见的任务,广泛应用于 摄像机标定、文档扫描、增强现实(AR) 等场景。本篇文章将详细介绍如何使用 OpenCV 进行 棋盘检测,并…...
git-提交时间和作者时间的区别
1.介绍 定义介绍 提交时间(Committer Date):决定了提交在 Git 历史中的位置,通常影响 GitHub 上提交显示的顺序。 作者时间(Author Date):虽然不影响提交的排序,但在每个提交详情页…...
解决双系统开机显示gnu grub version 2.06 Minimal BASH Like Line Editing is Supported
找了好多教程都没有用,终于解决了!!我是因为ubuntu分区的时候出问题了 问题描述: 双系统装好,隔天开机找不到引导项,黑屏显示下列 因为我用的D盘划分出来的部分空闲空间,而不是全部,…...
基于Flask的京东商品信息可视化分析系统的设计与实现
【Flask】基于Flask的京东商品信息可视化分析系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 系统能够灵活地执行SQL查询,提取出用于分析的关键数据指标。为了将这…...
期权帮|股指期货中的套期保值如何操作?
锦鲤三三每日分享期权知识,帮助期权新手及时有效地掌握即市趋势与新资讯! 股指期货中的套期保值如何操作? 一、股指期货中的套期保值准备阶段 确定套保需求,投资者依据市场预判与投资组合分析,决定是否套保。 &…...
用Chrome Recorder轻松完成自动化测试脚本录制
前言 入门自动化测试,录制回放通常是小白测试首先用到的功能。而录制回放工具也一直是各大Web自动化测试必然会着重提供的一块功能。 早期WinRunner、QTP这样的工具,自动化测试可以说是围绕录制回放开展的。近年像Selenium也提供有录制工具 Selenium IDE,Playwright也包含…...
C/C++面试知识点总结
目录 1. 指针1.1 智能指针1.2 指针和引用的区别1.3 数组和指针的区别1.4 数组指针和指针数组的区别1.5 迭代器和指针的区别1.6 strcpy 和 memcpy 的区别 2. 内存管理与分配2.1 内存分配与存储区2.2 malloc / free2.3 volatile和extern的区别2.4 拷贝构造函数2.5 预处理、编译、…...
springboot三层架构详细讲解
目录 springBoot三层架构 0.简介1.各层架构 1.1 Controller层1.2 Service层1.3 ServiceImpl1.4 Mapper1.5 Entity1.6 Mapper.xml 2.各层之间的联系 2.1 Controller 与 Service2.2 Service 与 ServiceImpl2.3 Service 与 Mapper2.4 Mapper 与 Mapper.xml2.5 Service 与 Entity2…...
助力DeepSeek私有化部署服务:让企业AI落地更简单、更安全
在数字化转型的浪潮中,越来越多的企业选择私有化部署AI技术,以保障数据安全、提升业务效率并实现自主可控。DeepSeek作为行业领先的AI开源技术,其技术可以支持企业私有化部署,企业需要一站式服务私有化部署,涵盖硬件采…...
Mac book Air M2 用VMware安装 Ubuntu22.04
安装 VMware Fusion 下载 Ubuntu 安装VMware 完成之后运行新建 将对应Ubuntu 版本拖拽 如图 选择第一个回车 选绿色 回车 为空 相关命令行 sudo apt install net-tools sudo apt install ubuntu-desktop sudo reboot 常用命令行 uname uname -a clear ll ifconfig (查…...
Spring Boot接收参数的19种方式
Spring Boot是一个强大的框架,允许开发人员通过多种方式接收和处理参数。无论是HTTP请求参数、路径变量,还是请求体中的数据,Spring Boot都能提供灵活的处理方式。本文将介绍19种不同的方式来接收参数。 1. 查询参数(Query Param…...
Linux firewalld 常用命令
本文参考RedHat官网文章How to configure a firewall on Linux with firewalld。 Firewalld 是守护进程名,对应命令为firewall-cmd。帮助详见以下命令: $ firewall-cmd --helpUsage: firewall-cmd [OPTIONS...]General Options-h, --help Pr…...
火语言RPA--Excel插入空行
【组件功能】:在Excel内指定的位置插入空行 配置预览 配置说明 在第n行之前 支持T或# 填写添加插入第n行之前行号。 插入n行 支持T或# 插入多少行。 Sheet页名称 支持T或# Excel表格工作簿名称。 示例 Excel插入空行 描述 在第3行之后插入3行。 配置 输…...
纷析云开源版- Vue2-增加字典存储到localStorage
main.js //保存字典数据到LocalStorage Vue.prototype.$api.setting.SystemDictType.all().then(({data}) > {loadDictsToLocalStorage(data) })新增 dictionary.js 放在 Utils文件夹里面 // 获取字典数据 export function getDictByType(dictType) {const dicts JSON.par…...
LangChain-基础(prompts、序列化、流式输出、自定义输出)
LangChain-基础 我们现在使用的大模型训练数据都是基于历史数据训练出来的,它们都无法处理一些实时性的问题或者一些在训练时为训练到的一些问题,解决这个问题有2种解决方案 基于现有的大模型上进行微调,使得它能适应这些问题(本…...
机器学习在脑卒中预测中的应用:不平衡数据集处理方法详解
机器学习在脑卒中预测中的应用:不平衡数据集处理方法详解 目录 引言 脑卒中的全球影响机器学习在医疗预测中的挑战类别不平衡问题的核心痛点数据预处理与特征选择 数据来源与清洗缺失值处理方法类别特征编码特征选择技术处理类别不平衡的四大方法 SMOTE(合成少数类过采样技术…...