pytest运行用例的常见方式及参数
标题pytest运行用例方式及参数
用例结构目录
“”"
在最外层目录下执行所有的用例
参数说明:
-s:显示用例的打印信息
-v:显示用例执行的详细信息
–alluredir:指定allure报告的路径
–clean-alluredir:清除allure报告的路径
-n:指定并发的进程数
-x:出现一条用例失败就停止执行
–maxfail:指定最大失败用例数
–reruns:指定用例失败重跑次数
–reruns-delay:指定用例失败重跑的间隔时间
–m:指定用例的标记表达式
-k:(keywords)指定用例的关键字表达式,可以使用and、or、not进行组合.例如用例包含了success,但是不包含failed的用例 ‘-k’,‘success’
“”"
import pytest
# 运行所有用例
pytest.main([‘-s’, ‘-v’])
# 运行指定用例:运行登录用例
pytest.main([‘-s’, ‘-v’, ‘./test_login.py’])
print(“运行指定模块用例完成***”)
# 运行制定的用例模块下的某个用例,使用两个冒号作为分隔符
pytest.main([‘-s’, ‘-v’, ‘./test_login.py::TestLogin::test_login_01’])
print(“运行指定某个用例完成***”)
# 分布式运行 依赖pytest-xdist插件
time_start = time.time()
pytest.main([‘-s’, ‘-v’, ‘./test_login.py’])
time_end = time.time()
print(“分布式运行总耗时:”, time_end - time_start)
print(“运行分布式用例前完成***”)
# 分布式运行[‘-n’,‘2’] -n 表示使用分布式,后面的数字表示并发的进程数;注意多线程的时候,是按顺序分配。两个线程则是,1.3.5 :2.4.6
time_start = time.time()
pytest.main([‘-s’, ‘-v’, ‘-n’, ‘2’, ‘./test_login.py’])
time_end = time.time()
print(“分布式运行总耗时:”, time_end - time_start)
print(“运行分布式用例完成***”)
# 失败用例重跑, -reruns 2 表示失败重跑2次 依赖pytest-rerunfailures插件
pytest.main([‘-s’, ‘-v’, ‘–reruns’, ‘2’, ‘./test_login.py’])
print(“运行失败重跑用例完成***”)
# -x 表示出现一条用例失败就停止执行,执行失败了就停止运行
pytest.main([‘-s’, ‘-v’, ‘-x’, ‘./test_login.py’])
print(“运行用例失败就停止执行完成***”)
**************************************************************************************************************
上面是all run 文件运行的命令。也可以在终端里面输入对应的命令执行测试
第三种执行方式:pytest.ini 文件,将需要执行的用例信息配置到pytest.ini文件中,main()中存在其他参数时,还是会先读取配置,这种优先级最高!!!
注意:文件的编码方式需要使用ANSI编码格式
“”"
pytest.ini 文件内容如下:
[pytest]
参数,多个参数使用空格分开
addopts = -v -s --html ./report/report.html
用例路径
testpaths = testcase
用例文件
python_files = test*.py
用例类
python_classes = Test*
用例方法
python_functions = test*
分组执行方式:pytest.ini 文件
markers =
smoke:冒烟测试
login:登录测试
register:注册测试
执行方式:pytest.main([‘-v’,‘-m’,‘smoke’])
执行方式:pytest.main([‘-v’,‘-m’,‘login’])
这里可以修改默认的方式,例如文件是AAA*.py
“”"
# 分组执行用例:冒烟,标记smoke ,要配合用例文件中的pytest.mark.smoke使用
pytest.main([‘-v’, ‘-m’, ‘smoke’])
# 分组执行用例:登录,标记login.smoke,多个分组执行用or 链接
pytest.main([‘-v’, ‘-m’, ‘smoke or login’])
# 无条件跳过测试用例:pytest.mark.skip(reason=“跳过原因”) --这种跳过方式,跳过后,用例不执行,但是会显示跳过的结果
pytest.main([‘-m’, ‘smoke or login’])
有条件跳过测试用例:pytest.mark.skipif(condition=True, reason=“跳过原因”) --这种跳过方式,跳过后,用例不执行
pytest.main([‘-v’, ‘-m’, ‘smoke or login’])
相关文章:
pytest运行用例的常见方式及参数
标题pytest运行用例方式及参数 用例结构目录 “”" 在最外层目录下执行所有的用例 参数说明: -s:显示用例的打印信息 -v:显示用例执行的详细信息 –alluredir:指定allure报告的路径 –clean-alluredir:清除allure报告的路径 -n:指定并发的进程数 -x:出现一条用…...
Miniconda + VSCode 的Python环境搭建
目录: 安装 VScode 安装 miniconda 在VScode 使用conda虚拟环境 运行Python程序 1.安装 vscode 编辑器 官网链接:Visual Studio Code - Code Editing. Redefined 下载得到:,双击安装。 安装成功…...
图解MySQL【日志】——Redo Log
Redo Log(重做日志) 为什么需要 Redo Log? 1. 崩溃恢复 数据库崩溃时,系统通过 Redo Log 来恢复尚未写入磁盘的数据。Redo Log 记录了所有已提交事务的操作,系统在重启后会重做这些操作,以保证数据不会丢…...
Trae AI驱动开发实战:30分钟从0到1实现Django REST天气服务
目录 一、Trae 安装 1、Trae 介绍 2、Trae 安装 二、项目构建 1、项目背景与技术选型 2、开发环境准备 三、需求分析 1、功能模块设计 2、数据库设计 四、功能实现 1、用户系统开发 2、天气服务实现 3、测试用例编写 五、Trae 体验总结 随着人工智能技术的迅猛发…...
【Linux网络编程】IP协议格式,解包步骤
目录 解析步骤 1.版本字段(大小:4比特位) 2.首部长度(大小:4比特位)(单位:4字节) 🍜细节解释: 3.服务类型(大小:8比特…...
中诺CHINO-E G076大容量录音电话产品使用注意事项
•本机需插上随机配置的电源适配器才能正常工作,切勿插入其它的适配器,以免损坏话机; •当本机出现异常时,请按“Δ/上查”键3秒,屏幕弹出确定恢复,按“设置”键恢复出厂设置; 注:…...
2025最新智能优化算法:改进型雪雁算法(Improved Snow Geese Algorithm, ISGA)求解23个经典函数测试集,MATLAB
一、改进型雪雁算法 雪雁算法(Snow Geese Algorithm,SGA)是2024年提出的一种新型元启发式算法,其灵感来源于雪雁的迁徙行为,特别是它们在迁徙过程中形成的独特“人字形”和“直线”飞行模式。该算法通过模拟雪雁的飞行…...
✨ 索引有哪些缺点以及具体有哪些索引类型
索引的定义与原理 索引是数据库中用于提高数据检索效率的数据结构。它就像是书籍的目录,通过目录可以快速定位到所需内容的页码,而在数据库中,索引可以帮助数据库系统快速找到符合查询条件的数据行,而不必对整个表进行扫描。 其…...
Promptic:Python 中的 LLM 应用开发利器
Promptic 是一个基于 Python 的轻量级库,旨在简化与大型语言模型(LLMs)的交互。它通过提供简洁的装饰器 API 和强大的功能,帮助开发者高效地构建 LLM 应用程序。Promptic 的设计理念是提供 90% 的 LLM 应用开发所需功能,同时保持代码的简洁和易用性。 1. Promptic 的核心…...
本地部署DeepSeek R1大模型
一、安装软件 1.1 安装Ollama 你可以访问Ollama的官方网站https://ollama.com/download,选择适合你操作系统的安装包进行下载。老周这里是Mac系统,所以选择下载macOS系统。 1.2 安装cherry studio 前往官网https://cherry-ai.com/download下载对应操…...
搅局外卖,京东连出三张牌
明牌暗牌,都不如民牌。 作者|古廿 编辑|杨舟 “京东来整顿外卖了”,这一网络热梗正在成为外界对京东近期一系列动作的高度概括。 0佣金、五险一金、品质外卖,京东连出三张牌打破外卖市场的旧秩序。此前这三项分别对应着长期被社会所诟病的…...
【ELK】【Elasticsearch】数据查询方式
1. 简单查询(URI Search) 通过 URL 参数直接进行查询,适合简单的搜索场景。 示例: bash 复制 GET /index_name/_search?qfield_name:search_value 说明: index_name:索引名称。 field_name…...
基于 JavaWeb 的 Spring Boot 网上商城系统设计和实现(源码+文档+部署讲解)
技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论…...
C++17中的std::scoped_lock:简化多锁管理的利器
文章目录 1. 为什么需要std::scoped_lock1.1 死锁问题1.2 异常安全性1.3 锁的管理复杂性 2. std::scoped_lock的使用方法2.1 基本语法2.2 支持多种互斥锁类型2.3 自动处理异常 3. std::scoped_lock的优势3.1 避免死锁3.2 简化代码3.3 提供异常安全保证 4. 实际应用场景4.1 数据…...
Linux内核实时机制7 - 实时改造机理 - 软中断优化下
Linux内核实时机制7 - 实时改造机理 - 软中断优化下 https://blog.csdn.net/u010971180/article/details/145722641以下分别以Linux4.19、Linux5.4、Linux5.10、Linux5.15 展开分析,深入社区实时改造机理的软中断优化过程。https://blog.csdn.net/weixin_41028621/article/det…...
计算机网络:应用层 —— 文件传送协议 FTP
文章目录 FTP 是什么?FTP 的应用FTP 的基本工作原理主动模式被动模式 总结 FTP 是什么? 将某台计算机中的文件通过网络传送到可能相很远的另一台计算机中,是一项基本的网络应用,即文件传送。 文件传送协议FTP(File T…...
[笔记.AI]如何判断模型是否通过剪枝、量化、蒸馏生成?
以下摘自与DeepSeek-R1在线联网版的对话 一、基础判断维度 技术类型核心特征验证方法剪枝模型参数减少、结构稀疏化1. 检查模型参数量是否显著小于同类标准模型1 2. 分析权重矩阵稀疏性(如非零参数占比<30%)4量化权重/激活值精度降低、推理速度提升1…...
python: SQLAlchemy (ORM) Simple example using mysql in Ubuntu 24.04
mysql sql script: create table School 表 (SchoolId char(5) NOT NULL comment主鍵primary key,學校編號,SchoolName nvarchar(500) NOT NULL DEFAULT comment 學校名稱,SchoolTelNo varchar(8) NULL DEFAULT comment電話號碼,PRIMARY KEY (SchoolId) #主…...
【前端】【nuxt】nuxt优势(MVP开发),转换SSR与SPA模式
Nuxt.js 核心优势 自动化路由系统 无需手动配置路由:在 pages/ 目录下创建 .vue 文件即可自动生成路由,支持动态路由(如 pages/user/[id].vue → /user/:id)。嵌套路由:通过 parent.vue parent/child.vue 目录结构自动…...
洛谷B3619(B3620)
B3619 10 进制转 x 进制 - 洛谷 B3620 x 进制转 10 进制 - 洛谷 代码区: #include<algorithm> #include<iostream> #include<vector> using namespace std;int main(){int n,x;cin >> n >> x;vector<char> arry;while(n){if(…...
基于springboot+vue的酒店管理系统的设计与实现
开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…...
android调用ffmpeg解析rtsp协议的视频流
文章目录 一、背景二、解析rtsp数据1、C层功能代码2、jni层的定义3、app层的调用 三、源码下载 一、背景 本demo主要介绍android调用ffmpeg中的接口解析rtsp协议的视频流(不解析音频),得到yuv数据,把yuv转bitmap在android设备上显…...
cursor使用记录
一、如何查看自己登录的是哪个账号 操作路径:Cursor -- 首选项 -- Cursor Setting (有快捷键) 二、状态修改为竖排(默认是横排) 默认如图展示,想要像vscode、idea等等在左侧竖着展示 操作路径࿱…...
Java 使用websocket
添加依赖 <!-- WebSocket 支持 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency>添加配置类 Configuration public class WebSocketConfig {B…...
蓝桥杯 Java B 组之背包问题、最长递增子序列(LIS)
Day 4:背包问题、最长递增子序列(LIS) 📖 一、动态规划(Dynamic Programming)简介 动态规划是一种通过将复杂问题分解成更小的子问题来解决问题的算法设计思想。它主要用于解决具有最优子结构和重叠子问题…...
在PyTorch中使用插值法来优化卷积神经网络(CNN)所需硬件资源
插值法其实就是在已知数据点之间估计未知点的值。通过已知的离散数据点,构造一个连续的曲线函数,预测数据点之间的空缺值是什么并且自动填补上去。 适用场景: 在卷积神经网络(CNN)中的应用场景中,经常遇到计算资源有限,比如显存不够或者处理速度慢,需要用插值来降低计…...
seacmsv9 SQL注入漏洞(报错注入)
一、海洋CMS简介 海洋cms是为解决站长核心需求而设计的视频内容管理系统,一套程序自适应电脑、手机、平板、APP多个终端入口,无任何加密代码、安全有保障,是您最佳的建站工具。——来自seacms官网(简而言之就是专门搭建看片网站的…...
Java 中的内存泄漏问题及解决方案
在 Java 中,内存泄漏(Memory Leak)是指在程序运行过程中,某些对象已经不再使用,但由于引用仍然存在,这些对象无法被垃圾回收器回收,从而导致内存无法释放,最终可能导致系统性能下降甚…...
解决 ERROR: Failed building wheel for vllm Failed to build vllm
1. 完整报错 copying build\lib\vllm\model_executor\layers\fused_moe\configs\E256,N128,device_nameNVIDIA_H100_80GB_HBM3,dtypefp8_w8a8,block_shape[128,128].json -> build\bdist.win-amd64\wheel.\vllm\model_executor\layers\fused_moe\configs error: could not …...
从CNN到Transformer:遥感影像目标检测的未来趋势
文章目录 前言专题一、深度卷积网络知识专题二、PyTorch应用与实践(遥感图像场景分类)专题三、卷积神经网络实践与遥感影像目标检测专题四、卷积神经网络的遥感影像目标检测任务案例【FasterRCNN】专题五、Transformer与遥感影像目标检测专题六、Transfo…...
ecovadis社会企业责任认证
EcoVadis 是一家全球性的企业社会责任 (CSR) 评级机构,旨在通过评估企业在环境、劳工与人权、商业道德和可持续采购等方面的表现,帮助提升其可持续性和社会责任实践。 EcoVadis 认证的核心内容 环境 评估企业在能源消耗、碳排放、废物管理等方面的表现。…...
使用 Docker 部署 Flask 应用
使用 Docker 部署 Flask 应用 一、引言 在现代软件开发中,应用的部署和环境管理是至关重要的环节。传统的部署方式常常会遇到 “在我机器上能运行,在你机器上不行” 的问题,而 Docker 的出现很好地解决了这个痛点。Docker 是一个用于开发、部署和运行应用程序的开放平台,…...
istio介绍补充以及使用篇
istio介绍补充以及使用篇 前言 介绍istio各个组件创建istio的方式手动注入自动注入side car 使用istio做流量灰度如有需要收藏的看官,顺便也用发财的小手点点赞哈,如有错漏,也欢迎各位在评论区评论! 前言 前篇istio介绍了引入ist…...
DeepSeek 助力 Vue 开发:打造丝滑的 键盘快捷键(Keyboard Shortcuts)
前言:哈喽,大家好,今天给大家分享一篇文章!并提供具体代码帮助大家深入理解,彻底掌握!创作不易,如果能帮助到大家或者给大家一些灵感和启发,欢迎收藏关注哦 💕 目录 Deep…...
【JavaScript】《JavaScript高级程序设计 (第4版) 》笔记-Chapter19-表单脚本
十九、表单脚本 表单脚本 JavaScript 较早的一个用途是承担一部分服务器端表单处理的责任。虽然 Web 和 JavaScript 都已经发展了很多年,但 Web 表单的变化不是很大。由于不能直接使用表单解决问题,因此开发者不得不使用JavaScript 既做表单验证…...
如何使用深度学习进行手写数字识别(MNIST)
目录 手写数字识别(MNIST)1. 导入必要的库2. 加载和预处理数据3. 构建模型4. 编译模型5. 训练模型6. 评估模型7. 可视化训练过程(可选)代码说明运行环境总结当然可以!下面是一个使用Python和Keras(TensorFlow后端)实现的简单深度学习案例——手写数字识别(MNIST数据集)…...
【UCB CS 61B SP24】Lecture 5 - Lists 3: DLLists and Arrays学习笔记
本文内容为构建双向循环链表、使用 Java 的泛型将其优化为通用类型的链表以及数组的基本语法介绍。 1. 双向链表 回顾上一节课写的代码,当执行 addLast() 与 getLast() 方法时需要遍历链表,效率不高,因此可以添加一个指向链表末尾的索引&am…...
Unity Excel导表工具转Lua文件
思路介绍 借助EPPlus读取Excel文件中的配置数据,根据指定的不同类型的数据配置规则来解析成对应的代码文本,将解析出的字符串内容写入到XXX.lua.txt文件中即可 EPPlus常用API //命名空间 using OfficeOpenXml;//Excel文件路径 var fileExcel new File…...
kafka消费能力压测:使用官方工具
背景 在之前的业务场景中,我们发现Kafka的实际消费能力远低于预期。尽管我们使用了kafka-go组件并进行了相关测试,测试情况见《kafka-go:性能测试》这篇文章。但并未能准确找出消费能力低下的原因。 我们曾怀疑这可能是由我的电脑网络带宽问题或Kafka部…...
算法题(74):Pow(x,n)
审题: 需要我们计算出x(double类型)的n次幂,并返回 思路: 方法一:递归 (1)首先我们的n分为正和负,对于负的我们需要将n转为正的进行运算后,用1.0除以运算结果…...
windwos与linux环境下Iperf3带宽测试工具的安装、使用
目录 一、前言 二、windows 2.1下载 2.2安装 2.3使用 2.3.1服务端 2.3.2客户端 2.3.3输出内容 1.客户端 2.服务端 2.4.相关命令 三、linux 3.1安装 3.2使用 1.服务端 2.客户端 3.输出内容 1.客户端 2.服务端 一、前言 在数字化浪潮下,网络性能…...
GCC编译器(含预处理/编译/汇编/链接四阶段详解)
GCC编译器(含预处理/编译/汇编/链接四阶段详解) 1. 预处理阶段(生成 .i 文件)2. 编译阶段(生成 .s 文件)3. 汇编阶段(生成 .o 文件)4. 链接阶段(生成可执行文件ÿ…...
20250221 NLP
1.向量和嵌入 https://zhuanlan.zhihu.com/p/634237861 encoder的输入就是向量,提前嵌入为向量 二.多模态文本嵌入向量过程 1.文本预处理 文本tokenizer之前需要预处理吗? 是的,文本tokenizer之前通常需要对文本进行预处理。预处理步骤可…...
Mac M3/M4 本地部署Deepseek并集成vscode
Mac 部署 使用傻瓜集成平台ollama,ollama平台依赖于docker,Mac的M3/M4 因doesn’t have VT-X/AMD-v enabled 所以VB,VM无法使用,导致docker无法启动,需要使用docker的替代品podman, 它完全兼容docker brew install p…...
flink使用demo
1、添加不同数据源 package com.baidu.keyue.deepsight.memory.test;import com.baidu.keyue.deepsight.memory.WordCount; import com.baidu.keyue.deepsight.memory.WordCountData; import org.apache.flink.api.common.RuntimeExecutionMode; import org.apache.flink.api.…...
目标检测中单阶段检测模型与双阶段检测模型详细对比与说明
《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...
简识Spring创建Bean方式和设计模式
一、理论解释: Spring在创建Bean时主要有四种方式,这些方式分别涉及到了不同的设计模式。以下是具体的创建方式及对应的设计模式: 通过反射调用构造方法创建Bean: 方式:在Spring的配置文件中,使用<bean…...
空字符串““、空白字符串“ “和 null 三者的区别
空字符串、空白字符串和 null 三者的区别表格: 类型定义示例长度是否有值空字符串字符串长度为 0,但不是 null,即存在一个有效的空字符串对象。""0有值(空值)空白字符串字符串包含空格、制表符等空白字符&a…...
agent和android怎么结合:健康助手,旅游助手,学习助手
agent和android怎么结合:健康助手,旅游助手,学习助手 创新点 智能交互创新:提出全新的agent - Android交互模式,如基于手势、语音、眼动等多模态融合的交互方式。例如让agent能够同时理解用户的语音指令和手势动作,在Android设备上提供更加自然和高效的交互体验,比如在…...
1.16作业
1 进注册界面,第一次以为抓包选把isadmin ture了就好 第二次尝试,勾选is admin,有需要invitecode(经典) 2 p r**5 r**4 - r**3 r**2 - r 2023 q r**5 - r**4 r**3 - r**2 r 2023 n 25066797992811602609904…...