目标检测中单阶段检测模型与双阶段检测模型详细对比与说明
《------往期经典推荐------》
一、AI应用软件开发实战专栏【链接】
项目名称 | 项目名称 |
---|---|
1.【人脸识别与管理系统开发】 | 2.【车牌识别与自动收费管理系统开发】 |
3.【手势识别系统开发】 | 4.【人脸面部活体检测系统开发】 |
5.【图片风格快速迁移软件开发】 | 6.【人脸表表情识别系统】 |
7.【YOLOv8多目标识别与自动标注软件开发】 | 8.【基于YOLOv8深度学习的行人跌倒检测系统】 |
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】 | 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】 |
11.【基于YOLOv8深度学习的安全帽目标检测系统】 | 12.【基于YOLOv8深度学习的120种犬类检测与识别系统】 |
13.【基于YOLOv8深度学习的路面坑洞检测系统】 | 14.【基于YOLOv8深度学习的火焰烟雾检测系统】 |
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】 | 16.【基于YOLOv8深度学习的舰船目标分类检测系统】 |
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】 | 18.【基于YOLOv8深度学习的血细胞检测与计数系统】 |
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】 | 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】 |
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】 | 22.【基于YOLOv8深度学习的路面标志线检测与识别系统】 |
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】 | 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】 |
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】 | 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】 |
27.【基于YOLOv8深度学习的人脸面部表情识别系统】 | 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】 |
29.【基于YOLOv8深度学习的智能肺炎诊断系统】 | 30.【基于YOLOv8深度学习的葡萄簇目标检测系统】 |
31.【基于YOLOv8深度学习的100种中草药智能识别系统】 | 32.【基于YOLOv8深度学习的102种花卉智能识别系统】 |
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】 | 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】 |
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】 | 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】 |
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】 | 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】 |
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】 | 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】 |
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】 | 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】 |
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】 | 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】 |
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】 | 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】 |
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】 | 48.【基于深度学习的车辆检测追踪与流量计数系统】 |
49.【基于深度学习的行人检测追踪与双向流量计数系统】 | 50.【基于深度学习的反光衣检测与预警系统】 |
51.【基于深度学习的危险区域人员闯入检测与报警系统】 | 52.【基于深度学习的高密度人脸智能检测与统计系统】 |
53.【基于深度学习的CT扫描图像肾结石智能检测系统】 | 54.【基于深度学习的水果智能检测系统】 |
55.【基于深度学习的水果质量好坏智能检测系统】 | 56.【基于深度学习的蔬菜目标检测与识别系统】 |
57.【基于深度学习的非机动车驾驶员头盔检测系统】 | 58.【太基于深度学习的阳能电池板检测与分析系统】 |
59.【基于深度学习的工业螺栓螺母检测】 | 60.【基于深度学习的金属焊缝缺陷检测系统】 |
61.【基于深度学习的链条缺陷检测与识别系统】 | 62.【基于深度学习的交通信号灯检测识别】 |
63.【基于深度学习的草莓成熟度检测与识别系统】 | 64.【基于深度学习的水下海生物检测识别系统】 |
65.【基于深度学习的道路交通事故检测识别系统】 | 66.【基于深度学习的安检X光危险品检测与识别系统】 |
67.【基于深度学习的农作物类别检测与识别系统】 | 68.【基于深度学习的危险驾驶行为检测识别系统】 |
69.【基于深度学习的维修工具检测识别系统】 | 70.【基于深度学习的维修工具检测识别系统】 |
71.【基于深度学习的建筑墙面损伤检测系统】 | 72.【基于深度学习的煤矿传送带异物检测系统】 |
73.【基于深度学习的老鼠智能检测系统】 | 74.【基于深度学习的水面垃圾智能检测识别系统】 |
75.【基于深度学习的遥感视角船只智能检测系统】 | 76.【基于深度学习的胃肠道息肉智能检测分割与诊断系统】 |
77.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】 | 78.【基于深度学习的心脏超声图像间隔壁检测分割与分析系统】 |
79.【基于深度学习的果园苹果检测与计数系统】 | 80.【基于深度学习的半导体芯片缺陷检测系统】 |
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】,持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~
《------正文------》
目录
- 什么是双阶段检测器
- 步骤1:生成区域建议
- 步骤2:对建议区域进行细化和分类
- 优势
- 缺点
- 两级检测器的示例
- **R-CNN(基于区域的卷积神经网络)**
- **Fast R-CNN**
- 单阶段检测器
- 步骤1:输入图像
- 步骤2:将图像划分为网格
- 步骤3:使用主干CNN提取特征
- 步骤4:预测边界框和类概率
- 步骤5:使用锚框(可选)
- 步骤6:过滤低置信度预测
- 步骤7:非最大抑制(NMS)
- 第8步:最终输出
- 单级探测器优点
- 单级探测器缺点
- 目标检测的最新进展和混合方法
- 1.混合方法
- 2.特征金字塔网络FPN
- 3.注意力机制
- 4.数据增强
什么是双阶段检测器
两阶段检测器,如Faster-R-CNN(基于区域的卷积神经网络),已经成为目标检测中的突出解决方案。这些检测器包括两个关键阶段:区域建议和对象分类。在区域建议阶段,识别使用**选择性搜索或区域建议网络(RPN)**等算法生成的潜在对象区域。随后,对象分类阶段采用这些区域建议来分类和细化边界框预测。
步骤1:生成区域建议
检测器的第一阶段识别图像中可能包含对象的区域。此过程不是对对象进行分类,而是查找对象可能存在的区域(称为区域建议)。
它是如何工作的:一个轻量级的算法(如Region Proposals,RPN)扫描图像,并建议一些可能存在对象的潜在边界框。
例如:如果你有一个汽车、行人和狗的图像,第一阶段可能会在看起来像对象的区域周围输出边界框,但还没有说明它们是什么。
步骤2:对建议区域进行细化和分类
在第二阶段,检测器关注步骤1中的区域建议。对每个区域进行细化与分类:
- 细化:调整边界框以更好地适应对象。
- 分类:识别盒子内的对象(例如,“汽车”、“狗”、“行人”)。
工作原理:CNN处理每个区域建议以预测确切的对象类,并调整边界框以与对象紧密对齐。
示例:
对于步骤1中的边界框,第二阶段会:
- 优化汽车的盒子,使其紧紧地围绕在汽车周围。
- 把里面的物体归类为“汽车”。
优势
- 更高的准确性:两阶段检测器更准确,因为它们通过两个步骤来细化检测-首先生成区域建议,然后对其进行分类和细化。这使得他们更好地处理遮挡和复杂的场景。
- 更好的定位:它们在第二阶段通过细化边界框来精确定位物体,使其成为自动驾驶等任务的理想选择。
- 对噪声更鲁棒:第一阶段过滤掉嘈杂的建议,使两阶段检测器即使在嘈杂的图像中也能表现良好,比如监控视频。
缺点
- **更慢:**两级检测器通常比一级检测器更慢,因为它们有两个阶段来处理每张图像。这使得两级检测器不太适合速度至关重要的应用。
- **更复杂:**两级检测器也比一级检测器更复杂,因为它们有两个阶段需要训练。这使得两级检测器更难以训练和部署。
两级检测器的示例
R-CNN(基于区域的卷积神经网络)
- 第一阶段:使用选择性搜索算法生成区域建议(可能的对象位置)。
- 第二阶段:CNN处理每个区域建议,对对象进行分类并细化边界框。
Fast R-CNN
- 第一阶段:使用选择性搜索生成区域建议。
- 第二阶段:它不像R-CNN那样单独处理每个区域,而是从CNN的单个前向传递中提取所有提案的特征。这使得它更快,同时仍然细化和分类的建议。
Faster R-CNN
- 第一阶段:用**区域建议网络(RPN)**取代选择性搜索,直接从图像中生成区域建议,使其更有效。
- 第二阶段:使用另一个CNN层对区域提案进行细化和分类。
Mask R-CNN
- Faster R-CNN的扩展:
- 第一阶段:使用RPN生成区域提案。
- 第二阶段:优化边界框,对对象进行分类,并添加额外的分支来预测每个对象的分割掩码。
单阶段检测器
单阶段检测器,如YOLO(You Only Look Once)和SSD(Single Shot MultiBox Detector),因其简单性和实时性能而广受欢迎。这些检测器直接预测对象边界框和类概率在一个单一的通过图像,消除了一个单独的区域建议阶段的需要。
步骤1:输入图像
- 模型的输入是整个图像(例如,对于YOLO为416x416像素)。
- 与两阶段检测器不同,在此步骤中不生成区域建议。相反,图像作为一个整体进行处理。
步骤2:将图像划分为网格
- 图像被划分为单元格网格。举例来说:
- 如果网格为13x13,则总共有169个单元格。
- 每个单元负责检测中心落在该单元内的对象。
步骤3:使用主干CNN提取特征
- 卷积神经网络(CNN) 被用作从输入图像中提取重要特征的骨干。
- 常见的主干架构:
- YOLO:使用自定义CNN或Darknet。
- SSD:使用VGG16、ResNet或MobileNet。
- RetinaNet:使用ResNet和特征金字塔网络(FPN)。
工作流程:
- CNN将输入图像转换为特征图:
- 特征图总结了图像中不同空间位置的重要特征(边缘、纹理、形状)。
- 空间分辨率被降低,例如,从416x416像素到13x13网格单元。
步骤4:预测边界框和类概率
每个网格单元预测:
- 边界框坐标:
- 每个网格单元预测一个或多个边界框,定义如下:
- x,y:长方体中心相对于网格单元的坐标。
- w,h:框的宽度和高度,标准化为图像尺寸。
2.置信度评分:
- 表示边界框包含对象的可能性的分数。
- 例如,如果置信度为0.95,则意味着模型有95%的置信度认为存在对象。
3.类别概率:
- 该模型预测所有可能的对象类别的概率(例如,狗、车、人)。
- 举例来说:
- 对象是狗的概率= 0.85。
- 物体是猫的概率= 0.10。
步骤5:使用锚框(可选)
- 锚框是在每个网格单元上具有不同形状和大小的预定义边界框。
- 该模型预测的不是任意框尺寸,而是:调整(偏移)锚框尺寸以更好地适应对象。
为什么要使用锚框?
- 真实世界图像中的对象大小和形状各不相同。锚框使模型更容易检测不同比例和纵横比的对象。
- 举例来说:
- 长宽比为2:1的锚盒可以更好地检测汽车。
- 宽高比为1:1的锚框可以更好地检测人。
步骤6:过滤低置信度预测
- 在对所有网格单元进行预测后,模型会过滤掉置信度得分较低的框。
- 举例来说:
- 如果置信度阈值为0.5,则丢弃得分低于0.5的框。
步骤7:非最大抑制(NMS)
- 多个重叠的框可以预测相同的对象。
- **非最大抑制(NMS)**用于仅保留具有最高置信度分数的框并删除重叠框。
- 这确保了每个对象只有一个边界框。
示例:
- 假设两个盒子检测到同一只狗:
- 方框1:置信度= 0.85,IoU = 0.7。
- 方框2:置信度= 0.75,IoU = 0.7。
- NMS保留Box 1并删除Box 2,因为它具有更高的置信度得分。
第8步:最终输出
- 在过滤和NMS之后,模型输出:
- 检测对象的边界框。
- 类别标签和置信度得分。
示例如下:
- 检测到的对象:
- 犬:边界框=(50,60,100,120)置信度= 0.95。
- 球:边界框=(200,180,50,50)置信度= 0.85。
单级探测器优点
- 更快:它们在一个步骤中处理图像,使其成为视频监控或自动驾驶汽车等实时应用的理想选择。
- 更简单:只有一个阶段进行训练,与两阶段检测器相比,它们更容易训练和部署。
- 对规模变化的鲁棒性:由于它们不依赖于区域建议,因此它们可以更好地处理不同大小的对象,使其能够有效地执行交通场景分析等任务。
单级探测器缺点
- 较低的准确性:由于一级检测器在单个步骤中处理检测而不进行细化,因此它们通常不如两级检测器准确。这使得它们不太适合需要非常高精度的任务,如医学成像。
- 对遮挡的鲁棒性较低:单阶段检测器难以检测部分隐藏的对象,因为它们缺乏一个细化阶段来处理遮挡等具有挑战性的场景。这可能会使它们在自动驾驶等应用中的可靠性降低,在这些应用中,物体可能会被部分阻挡。
目标检测的最新进展和混合方法
为了解决一级检测器的速度和两级检测器的准确性之间的权衡,研究人员引入了各种创新和混合方法,这些方法结合了联合收割机这两种方法的优点。以下是一些值得注意的进展:
1.混合方法
混合模型混合了一级和两级检测器的元素,以平衡速度和准确性。
- 示例:
- Faster R-CNN:虽然主要是两阶段检测器,但它采用**区域建议网络(RPN)**作为第一阶段。RPN是一个单阶段检测器,直接从特征图中生成区域建议。然后在第二阶段对这些建议进行改进,将一级检测器的速度与两级检测器的精度相结合。
2.特征金字塔网络FPN
FPN用于提高不同大小对象的检测性能。
- 工作原理:
- FPN从CNN的不同层创建特征图的层次结构。
- 较低的层捕捉适合小对象的精细细节。
- 更高的层为更大的对象捕获更抽象的特征。
- 这种多尺度特征表示允许网络有效地检测不同尺度的对象。
- 优点:提高检测大小差异很大的对象的准确性。
3.注意力机制
注意力机制使模型能够在检测过程中优先考虑图像的重要部分。
- 它是如何工作的:
- 该模型关注图像中最有可能包含对象的区域。
- 注意力有助于抑制不相关的背景信息,提高检测精度,特别是对于遮挡或混乱的场景。
- 例如:转换器或注意力模块集成到目标检测架构中,如DETR(检测Transformer)。
4.数据增强
数据增强技术人为地扩展了训练数据集,使模型更加健壮。
例如:
- 翻转:水平或垂直镜像图像。
- 裁剪:提取图像的子区域。
- 缩放:更改图像及其对象的大小。
- 色彩调整:改变亮度、对比度或饱和度。
- 优点:使模型对光照、对象方向和比例的变化更加鲁棒,最终提高准确性和泛化能力。
好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!
相关文章:
目标检测中单阶段检测模型与双阶段检测模型详细对比与说明
《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...
简识Spring创建Bean方式和设计模式
一、理论解释: Spring在创建Bean时主要有四种方式,这些方式分别涉及到了不同的设计模式。以下是具体的创建方式及对应的设计模式: 通过反射调用构造方法创建Bean: 方式:在Spring的配置文件中,使用<bean…...
空字符串““、空白字符串“ “和 null 三者的区别
空字符串、空白字符串和 null 三者的区别表格: 类型定义示例长度是否有值空字符串字符串长度为 0,但不是 null,即存在一个有效的空字符串对象。""0有值(空值)空白字符串字符串包含空格、制表符等空白字符&a…...
agent和android怎么结合:健康助手,旅游助手,学习助手
agent和android怎么结合:健康助手,旅游助手,学习助手 创新点 智能交互创新:提出全新的agent - Android交互模式,如基于手势、语音、眼动等多模态融合的交互方式。例如让agent能够同时理解用户的语音指令和手势动作,在Android设备上提供更加自然和高效的交互体验,比如在…...
1.16作业
1 进注册界面,第一次以为抓包选把isadmin ture了就好 第二次尝试,勾选is admin,有需要invitecode(经典) 2 p r**5 r**4 - r**3 r**2 - r 2023 q r**5 - r**4 r**3 - r**2 r 2023 n 25066797992811602609904…...
上帝之眼——nmap
nmap介绍 Nmap(网络映射器)是一款广受欢迎的网络探测和安全评估工具,被誉为“上帝之眼”。它以其强大的扫描功能和广泛的应用场景,成为系统管理员和安全专家手中的得力助手。本文将对Nmap进行详细介绍,包括其优点、基本…...
6.日常英语笔记
It’s a pity that my English hasn’t improved much, and I’m not able to chat with you freely. lung 肺 pulmonary 医学中的肺部相关的 pulmonary disease 肺部疾病 pneumonia 肺炎 pulmonary inflammation 肺炎 stick on the wall 贴到墙上 paste on the wall faint w…...
工业路由器和工业交换机,打造高效稳定的工业网络?
工业路由器和工业交换机各有千秋,但如何将它们完美结合,构建稳定高效的工业网络?答案就在这里! 工业物联网(IIoT)是高效、稳定的工业网络成为智慧工厂、工业自动化和远程监控等场景的基础支撑。工业路由器…...
[c++]--类和对象
目录 前言 一、类的定义 1.类定义格式 2.访问限定符 3.类域 二、实例化 1.实例化概念 2.对象大小 三、this指针 四、C和C语言实现Stack对比 五、类的默认成员函数 1.构造函数 2.析构函数 3.拷贝构造函数 4.赋值运算符重载 4.1.运算符重载 4.2.赋值运算符重载 5.取地址运算符重载…...
图论 之 迪斯科特拉算法求解最短路径
文章目录 题目743.网络延迟时间3341.到达最后一个房间的最少时间I 求解最短路径的问题,分为使用BFS和使用迪斯科特拉算法,这两种算法求解的范围是有区别的 BFS适合求解,边的权值都是1的图中的最短路径的问题 图论 之 BFS迪斯科特拉算法适合求…...
Linux中[root@localhost ~]#
root :当前登录用户 :分隔符 localhost :主机名。当前电脑的名字 ~:当前用户所在的位置 #:命令提示符,从这个位置开始可以输入命令 另一个提示符是$ 如果是 root ,则提示# 如果是普…...
DuodooBMS源码解读之 sale_delivery模块
发货通知单下载功能操作手册 一、功能概述 该代码实现了发货通知单的下载功能,用户可以选择要下载的发货通知单,系统将生成包含发货通知单详细信息的 Excel 文件供用户下载。 二、文件结构及说明 sale_delivery/controllers/download.py 定义了一个 …...
uniapp引入uview组件库(可以引用多个组件)
第一步安装 npm install uview-ui2.0.31 第二步更新uview npm update uview-ui 第三步在main.js中引入uview组件库 第四步在uni.scss中引入import "uview-ui/theme.scss"样式 第五步在文件中使用组件...
SpringCloud-Eureka初步使用
什么是REST是一组用于规范资源在网络中转移的表现形式软件架构设计风格.简单来说就是客户端和服务器之间的一种交互形式 什么是RESTful,满足了REST风格的接口或者程序,RESTful API是其中的接口,spring中提供了RestTemplate这个类,他强制执行了REST的规范,包括使用HTTP协议的状…...
【gitlab】认识 持续集成与部署
持续集成(CI)与持续部署(CD) 1. 什么是持续集成(CI)? 持续集成(Continuous Integration,CI)是一种软件开发实践,强调开发人员频繁地将代码提交到…...
机器学习,我们主要学习什么?
机器学习的发展历程 机器学习的发展历程,大致分为以下几个阶段: 1. 起源与早期探索(20世纪40年代-60年代) 1949年:Hebb提出了基于神经心理学的学习机制,开启了机器学习的先河1950年代:机器学习的…...
React 高阶组件的优缺点
React 高阶组件的优缺点 优点 1. 代码复用性高 公共逻辑封装:当多个组件需要实现相同的功能或逻辑时,高阶组件可以将这些逻辑封装起来,避免代码重复。例如,多个组件都需要在挂载时进行数据获取操作,就可以创建一个数…...
算法1-4 数楼梯
题目描述 楼梯有 N 阶,上楼可以一步上一阶,也可以一步上二阶。 编一个程序,计算共有多少种不同的走法。 输入格式 一个数字,楼梯数。 输出格式 输出走的方式总数。 输入输出样例 输入 #1 4 输出 #1 5 说明/提示 对于…...
我的世界1.20.1forge开发教程(6)——自定义燃料,熔炼规则、配方
配方篇 在Minecraft中,配方代码是用于定义合成配方的一种数据格式。在开发者的角度,配方代码通常以JSON格式编写,包含了合成所需的原料、合成产物以及合成方式等信息。 在1.12版本之前,开发者需要通过修改游戏的源代码来添加自定义配方。这通常需要对游戏的Java代码进行修…...
推荐几款SpringBoot项目手脚架
作为程序员、一般需要搭建项目手脚架时、都会去Gitee或Github上去找、但是由于Github在国内并不稳定、所以就只能去Gitee去上查找。 不同语言检索方式不一样、但是也类似。 Gitee WEB应用开发 / 后台管理框架 芋道源码 ELADMIN 后台管理系统 一个基于 Spring Boot 2.7.1…...
01 1个路由器+两个子网
前言 这是最近一个朋友的 ensp 相关的问题, 这里来大致了解一下 ensp, 计算机网络拓扑 相关基础知识 这里一系列文章, 主要是参照了这位博主的 ensp 专栏 这里 我只是做了一个记录, 自己实际操作了一遍, 增强了一些 自己的理解 当然 这里仅仅是一个 简单的示例, 实际场景…...
buu-[OGeek2019]babyrop-好久不见41
打开 /dev/urandom 设备文件,读取4个字节到 buf 中。 将 buf 传递给 sub_804871F() 函数,该函数似乎对输入进行某种处理并返回一个值 v2。 最后,将 v2 传递给 sub_80487D0() 函数。 这个函数首先将 a1 转换为字符串 s。 然后从标准输入读…...
PV和UV的区别
文章目录 1. UV(Unique Visitor / 独立访客):多少人来过2. PV(Page View / 页面浏览量):访问了多少次3. 对比 UV 和 PV4. 示例场景5. 扩展指标 UV 侧重用户规模,反映“多少人来过”。PV 侧重访问…...
DeepSeek掘金——调用DeepSeek API接口 实现智能数据挖掘与分析
调用DeepSeek API接口:实现智能数据挖掘与分析 在当今数据驱动的时代,企业和开发者越来越依赖高效的数据挖掘与分析工具来获取有价值的洞察。DeepSeek作为一款先进的智能数据挖掘平台,提供了强大的API接口,帮助用户轻松集成其功能到自己的应用中。本文将详细介绍如何调用D…...
JavaScript变量的作用域介绍
JavaScript变量的作用域介绍 JavaScript 变量的作用域决定了变量在代码中的可访问性。 var 是 JavaScript 中最早用于声明变量的关键字,它函数作用域或全局作用域。 let 关键字,具有块级作用域、全局作用域。 const关键字,具有块级作用域…...
ollama如何安全卸载,解决Ollama unins000.msg is missing
春节后在本地电脑安装了Ollama的客户端,每次开机自启,影响开机速度,而且本地的模型不如联网的回答效果好,果断选择了卸载,但是今天卸载发现提示下方的错误。根据此文章可以解决当前的问题。 根据此文章可以解决当前的…...
2.5GE 超千兆SFP光模块型号(常用光模块收发光功率范围)
SFP 2.5GE超千兆光模,参考表格: 型号类型工作波长 (nm)发光功率 (dBm)光功率灵敏度 (dBm)传输距离 (m)SFP-25G-SR多模光纤850-10.0 to -3.0-18.0300 (OM3) / 400 (OM4)SFP-25G-LR单模光纤1310-5.0 to 1.0-24.010,000SFP-25G-ER单模光纤1550-1.0 to 4.0…...
Ubuntu24.04安装不同版本的pip
目录 1.安装pip 2. 为不同的Python版本安装pip 3. 安装python库 1.安装pip 一般情况下,Ubuntu系统默认提供Python 3,但可能没有安装pip。可以通过以下命令安装pip sudo apt update sudo apt install python3-pip 安装完成后,可以通过以下…...
fastadmin实现海报批量生成、邮件批量发送
记录一个海报批量生成、邮件批量发送功能开发,业务场景如下: 国外客户做观展预登记,工作人员通过后台,批量给这些观众生成入场证件并发送到观众登记的邮箱,以方便观众入场时快速进场。证件信息包含入场二维码、姓名&a…...
拆解微软CEO纳德拉战略蓝图:AI、量子计算、游戏革命如何改写未来规则!
2025年2月19日 知名博主Dwarkesh Patel对话微软CEO萨蒂亚纳德拉 在最新访谈释放重磅信号:AI将掀起工业革命级增长,量子计算突破引爆材料科学革命,游戏引擎进化为世界模拟器。 整个视频梳理出几大核心观点,揭示科技巨头的未来十年…...
深度学习(2)-深度学习关键网络架构
关键网络架构 深度学习有4种类型的网络架构:密集连接网络、卷积神经网络、循环神经网络和Transformer。每种类型的模型都是针对特定的输入模式,网络架构包含了关于数据结构的假设,即模型搜索的假设空间。某种架构能否解决某个问题࿰…...
MyBatis中的日志和映射器说明
1.MyBatis中的日志 1.1 什么是日志 在我们编写应用的时候,有一些信息需要及时查看,查看的时候有时需要输出到控制台,有时需要输出到文件。MyBatis也需要日志,一般情况下,使用log4j进行日志管理。 1.2 在MyBatis中…...
pip下载速度变快可以用清华镜像源
pip下载速度变快可以用清华镜像源 https://pypi.tuna.tsinghua.edu.cn/simplepip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple参考清华镜像源地址(国内下载python包必备地址)_清华源镜像地址-CSDN博客...
骶骨神经
骶骨肿瘤手术后遗症是什么_39健康网_癌症 [健康之路]匠心仁术(七) 勇闯禁区 骶骨肿瘤切除术...
LeetCode刷题---二分查找---441
排列硬币 441. 排列硬币 - 力扣(LeetCode) 题目 你总共有 n 枚硬币,并计划将它们按阶梯状排列。对于一个由 k 行组成的阶梯,其第 i 行必须正好有 i 枚硬币。阶梯的最后一行 可能 是不完整的。 给你一个数字 n ,计算…...
DeepSeek 提示词:定义、作用、分类与设计原则
🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编…...
最短路的方案数+打印路径
这个题目整合了我们最短路用到的很多技能 如何统计最短路径的方案数呢,这就需要我们另外开一个全局数组 如何打印路径呢,还是开一个全局的数组,记录前一个是啥就行 简单的来说,要增加啥新的功能,直接多开全局变量就行…...
Python爬虫系列教程之第十三篇:构建高可用爬虫系统 —— 混合架构与自动化监控
大家好,欢迎继续关注本系列爬虫教程!随着爬虫项目规模的不断扩大和业务需求的提升,单一技术方案往往难以满足实际应用中对高可用性、稳定性和自动化监控的要求。如何构建一个既能应对多种反爬策略,又能在异常情况下自动恢复、实时…...
Python学习心得浅拷贝与深拷贝
一、变量的赋值、浅拷贝以及深拷贝的定义: 1.变量的赋值:只是形成两个变量,实际上还是指向同一个对象 2.浅拷贝:拷贝时,对象包含的子对象内容不拷贝,因此,源对象与拷贝对象会引用同一个子对象…...
cs106x-lecture13(Autumn 2017)-SPL实现
打卡cs106x(Autumn 2017)-lecture13 (以下皆使用SPL实现,非STL库,后续课程结束会使用STL实现) 1、v1v2p1p2 The following code C uses pointers and produces two lines of output. What is the output? int v1 10; int v2 25; int* p1 &v1…...
3D模型在线转换工具:轻松实现3DM转OBJ
3D模型在线转换是一款功能强大的在线工具,支持多种3D模型格式的在线预览和互转。无论是工业设计、建筑设计,还是数字艺术领域,这款工具都能满足您的需求。 3DM与OBJ格式简介 3DM格式:3DM是一种广泛应用于三维建模的文件格式&…...
AI IDE 新势力 Trae 功能深度解析:Builder与Chat模式的应用场景与市场竞争力分析
文章目录 一、前言二、简介2.1 Trae 的背景与定位 三、Trae 核心功能3.1 Builder模式介绍3.2 Chat模式介绍 四、Trae 实际应用案例4.1 Trae 安装与配置4.1.1 Trae 安装与配置4.1.2 Trae 设置 4.2 实战案例分享4.2.1 Trae Builder模式:从0到1生成对接 DeepSeek 的聊天…...
天 锐 蓝盾终端安全管理系统:办公U盘拷贝使用管控限制
天 锐 蓝盾终端安全管理系统以终端安全为基石,深度融合安全、管理与维护三大要素,通过对桌面终端系统的精准把控,助力企业用户构筑起更为安全、稳固且可靠的网络运行环境。它实现了管理的标准化,有效破解终端安全管理难题…...
ADCP处理软件CODAS安装 (conda方法安装)
夏威夷大学出品的ADCP处理软件,我主要用来查看船载ADCP流速数据。 1. 先安装conda(miniconda就可以),这里不再赘述,安装完可以添加conda库和取消登录自动激活conda conda config --add channels conda-forge # 添加库 conda config --set a…...
JUC并发—9.并发安全集合三
大纲 1.并发安全的数组列表CopyOnWriteArrayList 2.并发安全的链表队列ConcurrentLinkedQueue 3.并发编程中的阻塞队列概述 4.JUC的各种阻塞队列介绍 5.LinkedBlockingQueue的具体实现原理 6.基于两个队列实现的集群同步机制 1.并发安全的数组列表CopyOnWriteArrayList …...
后端Java Stream数据流的使用=>代替for循环
API讲解 对比 示例代码对比 for循环遍历 package cn.ryanfan.platformback.service.impl;import cn.ryanfan.platformback.entity.Algorithm; import cn.ryanfan.platformback.entity.AlgorithmCategory; import cn.ryanfan.platformback.entity.DTO.AlgorithmInfoDTO; im…...
强化学习-GAE方法
2016-ICLR-HIGH-DIMENSIONAL CONTINUOUS CONTROL USING GENERALIZED ADVANTAGE ESTIMATION 解决问题 强化学习的目标为最大化策略的预期总回报,其中一个主要困难为 行为对reward的影响存在一个长时间的延迟(credit assignment problem)。价…...
51c大模型~合集71
我自己的原文哦~ https://blog.51cto.com/whaosoft/12260659 #大模型推理加速技术的学习路线 EfficientQAT 可以在 41 小时内在单个 A100-80GB GPU 上完成对 2-bit Llama-2-70B 模型的量化感知训练。与全精度模型相比,精度仅下降了不到 3%(69.48 v…...
PyTorch-基础(CUDA、Dataset、transforms、卷积神经网络、VGG16)
PyTorch-基础 环境准备 CUDA Toolkit安装(核显跳过此步骤) CUDA Toolkit是NVIDIA的开发工具,里面提供了各种工具、如编译器、调试器和库 首先通过NVIDIA控制面板查看本机显卡驱动对应的CUDA版本,如何去下载对应版本的Toolkit工…...
Linux(centos)系统安装部署MySQL8.0数据库(GLIBC版本)
安装前检查服务器glibc版本,下载对应版本包 rpm -qa | grep glibc mysql安装包及依赖包已整理好,下载地址:https://pan.quark.cn/s/3137acc814c0,下载即可安装 一、下载MySQL mysql安装包及依赖包已整理好,下载地址…...