Docker-技术架构演进之路
目录
一、概述
常见概念
二、架构演进
1.单机架构
2.应用数据分离架构
3.应用服务集群架构
4.读写分离 / 主从分离架构
5.引入缓存 —— 冷热分离架构
6.垂直分库
7.业务拆分 —— 微服务
8.容器化引入——容器编排架构
三、尾声
一、概述
在进行技术学习过程中,由于大部分读者没有经历过一些中大型系统的实际经验,导致无法从全局理解一些概念,所以本文以一个 "电子商务" 应用为例,介绍从一百个到千万级并发情况下服务端的架构的演进过程,同时列举出每个演进阶段会遇到的相关技术,让大家对架构的演进有一个整体的认知,方便大家对后续知识做深入学习时有一定的整体视野。
常见概念
在正式引入架构演进之前,为避免读者对架构中的概念完全不了解导致低效沟通,优先对其中一些比较重要的概念做前置介绍:
应用(Application)/ 系统(System)
为了完成一整套服务的一个程序或者一组相互配合的程序群。生活例子类比:为了完成一项任务,而搭建的由一个人或者一群相互配的人组成的团队。
模块(Module)/ 组件(Component)
当应用较复杂时,为了分离职责,将其中具有清晰职责的、内聚性强的部分,抽象出概念,便于理解。生活例子类比:军队中为了进行某据点的攻克,将人员分为突击小组、爆破小组、掩护小组、通信小组等。
分布式(Distributed)
系统中的多个模块被部署于不同服务器之上,即可以将该系统称为分布式系统。如 Web 服务器与数据库分别工作在不同的服务器上,或者多台 Web 服务器被分别部署在不同服务器上。生活例子类比:为了更好的满足现实需要,一个在同一个办公场地的工作小组被分散到多个城市的不同工作场地中进行远程配合工作完成目标。跨主机之间的模块之间的通信基本要借助网络支撑完成
集群(Cluster)
被部署于多台服务器上的、为了实现特定目标的一个/组特定的组件,整个整体被称为集群。比如多个 MySQL 工作在不同服务器上,共同提供数据库服务目标,可以被称为一组数据库集群。生活例子类比:为了解决军队攻克防守坚固的大城市的作战目标,指挥部将大批炮兵部队集中起来形成一个炮兵打击集群。
分布式 vs 集群。通常不用太严格区分两者的细微概念,细究的话,分布式强调的是物理形态,即工作在不同服务器上并且通过网络通信配合完成任务;而集群更在意逻辑形态,即是否为了完成特定服务目标。
主(Master)/ 从(Slave)
集群中,通常有一个程序需要承担更多的职责,被称为主;其他承担附属职责的被称为从。比如 MySQL 集群中,只有其中一台服务器上数据库允许进行数据的写入(增/删/改),其他数据库的数据修改全部要从这台数据库同步而来,则把那台数据库称为主库,其他数据库称为从库。
中间件(Middleware)
一类提供不同应用程序用于相互通信的软件,即处于不同技术、工具和数据库之间的桥梁。生活例子类比:一家饭店开始时,会每天去市场挑选买菜,但随着饭店业务量变大,成立一个采购部,由采购部专职于采买业务,称为厨房和菜市场之间的桥梁。
容器(Docker)
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux 或 Windows 操作系统的机器上,也可以实现虚拟化。可以理解为一个集装箱,集装箱里面是每个用户的货物,整体打包。
容器编排(K8S)
kubernetes,简称 K8s,是用 8 代替名字中间的 8 个字符“ubernete”而成的缩写。是一个开源的,用于管理云平台中多个主机上的容器化的应用,Kubernetes 的目标是让部署容器化的应用简单并且高效。可以理解为一个货船,安装集装箱的大小,货物情况合理的来组织集装箱完成整体货物的搬运。
评价指标(Metric)
在 Docker 环境中,评价指标(Metric)用于衡量 Docker 容器、镜像以及整个 Docker 系统的性能、资源使用情况、健康状态等,有助于用户监控、优化和管理 Docker 相关的工作负载
可用性(Availability)
考察单位时间段内,系统可以正常提供服务的概率/期望。例如: 年化系统可用性= 系统正常提供服务时长 / 一年总时长。这里暗含着一个指标,即如何评价系统提供无法是否正常,我们就不深入了。平时我们常说的 4 个 9 即系统可以提供 99.99% 的可用性,5 个 9 是 99.999% 的可用性,以此类推。我们平时只是用高可用(HighAvailability HA)这个非量化目标简要表达我们系统的追求。
响应时长(Response Time RT)
指用户完成输入到系统给出用户反应的时长。例如点外卖业务的响应时长 = 拿到外卖的时刻 - 完成点单的时刻。通常我们需要衡量的是最长响应时长、平均响应时长和中位数响应时长。这个指标原则上是越小越好,但很多情况下由于实现的限制,需要根据实际情况具体判断
吞吐(Throughput)vs 并发(Concurrent)
吞吐考察单位时间段内,系统可以成功处理的请求的数量。并发指系统同一时刻支持的请求最高量。例如一条 2 车道高速公路,一分钟可以通过 20 辆车,则并发是 2,一分钟的吞吐量是 20。实践中,并发量往往无法直接获取,很多时候都是用极短的时间段(比如 1 秒)的吞吐量做代替。我们平时用高并发(Hight Concurrnet)这个非量化目标简要表达系统的追求。
二、架构演进
1.单机架构
初期,我们需要利用我们精干的技术团队,快速将业务系统投入市场进行检验,并且可以迅速响应变化要求。但好在前期用户访问量很少,没有对我们的性能、安全等提出很高的要求,而且系统架构简单,无需专业的运维团队,所以选择单机架构是合适的。
用户在浏览器中输入 www.taobao.com,首先经过 DNS 服务将域名解析成 IP 地址10.102.41.1,随后浏览器访问该 IP 对应的应用服务。
相关软件
Web 服务器软件:Tomcat、Netty、Nginx、Apache 等
数据库软件:MySQL、Oracle、PostgreSQL、SQL Server 等
同学们目前的训练大多针对该阶段的业务系统,包括本科毕业设计的系统实现。
2.应用数据分离架构
随着系统的上线,我们不出意外地获得了成功。市场上出现了一批忠实于我们的用户,使得系统的访问量逐步上升,逐渐逼近了硬件资源的极限,同时团队也在此期间积累了对业务流程的一批经验。面对当前的性能压力,我们需要未雨绸缪去进行系统重构、架构挑战,以提升系统的承载能力。但由于预算仍然很紧张,我们选择了将应用和数据分离的做法,可以最小代价的提升系统的承载能力。
和之前架构的主要区别在于将数据库服务独立部署在同一个数据中心的其他服务器上,应用服务通过网络访问数据。
3.应用服务集群架构
我们的系统受到了用户的欢迎,并且出现了爆款,单台应用服务器已经无法满足需求了。我们的单机应用服务器首先遇到了瓶颈,摆在我们技术团队面前的有两种方案,大家针对方案的优劣展示了热烈的讨论:
• 垂直扩展 / 纵向扩展 Scale Up。通过购买性能更优、价格更高的应用服务器来应对更多的流量。这种方案的优势在于完全不需要对系统软件做任何的调整;但劣势也很明显:硬件性能和价格的增长关系是非线性的,意味着选择性能 2 倍的硬件可能需要花费超过 4 倍的价格,其次硬件性能提升是有明显上限的。
• 水平扩展 / 横向扩展 Scale Out。通过调整软件架构,增加应用层硬件,将用户流量分担到不同的应用层服务器上,来提升系统的承载能力。这种方案的优势在于成本相对较低,并且提升的上限空间也很大。但劣势是带给系统更多的复杂性,需要技术团队有更丰富的经验。
经过团队的学习、调研和讨论,最终选择了水平扩展的方案,来解决该问题,但这需要引入一个新的组件 —— 负载均衡:为了解决用户流量向哪台应用服务器分发的问题,需要一个专门的系统组件做流量分发。实际中负载均衡不仅仅指的是工作在应用层的,甚至可能是其他的网络层之中。同时流量调度算法也有很多种,这里简单介绍几种较为常见的:
• Round-Robin 轮询算法。即非常公平地将请求依次分给不同的应用服务器。
• Weight-Round-Robin 轮询算法。为不同的服务器(比如性能不同)赋予不同的权重(weight),能者多劳。
• 一致哈希散列算法。通过计算用户的特征值(比如 IP 地址)得到哈希值,根据哈希结果做分发,优点是确保来自相同用户的请求总是被分给指定的服务器。也就是我们平时遇到的专项客户经理服务。
相关软件
负载均衡软件:Nginx、HAProxy、LVS、F5 等
4.读写分离 / 主从分离架构
上一节提到,我们把用户的请求通过负载均衡分发到不同的应用服务器之后,可以并行处理了,并且可以随着业务的增长,可以动态扩张服务器的数量来缓解压力。但是现在的架构里,无论扩展多少台服务器,这些请求最终都会从数据库读写数据,到一定程度之后,数据的压力称为系统承载能力的瓶颈点。我们可以像扩展应用服务器一样扩展数据库服务器么?答案是否定的,因为数据库服务有其特殊性:如果将数据分散到各台服务器之后,数据的一致性将无法得到保障。所谓数据的一致性,此处是指:针对同一个系统,无论何时何地,我们都应该看到一个始终维持统一的数据。想象一下,银行管理的账户金额,如果收到一笔转账之后,一份数据库的数据修改了,但另外的数据库没有修改,则用户得到的存款金额将是错误的。
我们采用的解决办法是这样的,保留一个主要的数据库作为写入数据库,其他的数据库作为从属数据库。从库的所有数据全部来自主库的数据,经过同步后,从库可以维护着与主库一致的数据。然后为了分担数据库的压力,我们可以将写数据请求全部交给主库处理,但读请求分散到各个从库中。由于大部分的系统中,读写请求都是不成比例的,例如 100 次读 1 次写,所以只要将读请求由各个从库分担之后,数据库的压力就没有那么大了。当然这个过程不是无代价的,主库到从库的数据同步其实是由时间成本的,但这个问题我们暂时不做进一步探讨。
应用中需要对读写请求做分离处理,所以可以利用一些数据库中间件,将请求分离的职责托管出去。
相关软件
MyCat、TDDL、Amoeba、Cobar 等类似数据库中间件等
5.引入缓存 —— 冷热分离架构
随着访问量继续增加,发现业务中一些数据的读取频率远大于其他数据的读取频率。我们把这部分数据称为热点数据,与之相对应的是冷数据。针对热数据,为了提升其读取的响应时间,可以增加本地缓存,并在外部增加分布式缓存,缓存热门商品信息或热门商品的 html 页面等。通过缓存能把绝大多数请求在读写数据库前拦截掉,大大降低数据库压力。其中涉及的技术包括:使用 memcached 作为本地缓存,使用Redis 作为分布式缓存,还会涉及缓存一致性、缓存穿透/击穿、缓存雪崩、热点数据集中失效等问题。
相关软件:Memcached、Redis 等缓存软件
6.垂直分库
随着业务的数据量增大,大量的数据存储在同一个库中已经显得有些力不从心了,所以可以按照业务,将数据分别存储。比如针对评论数据,可按照商品 ID 进行 hash,路由到对应的表中存储;针对支付记录,可按照小时创建表,每个小时表继续拆分为小表,使用用户 ID 或记录编号来路由数据。只要实时操作的表数据量足够小,请求能够足够均匀的分发到多台服务器上的小表,那数据库就能通过水平扩展的方式来提高性能。其中前面提到的 Mycat 也支持在大表拆分为小表情况下的访问控制。这种做法显著的增加了数据库运维的难度,对 DBA 的要求较高。数据库设计到这种结构时,已经可以称为分布式数据库,但是这只是一个逻辑的数据库整体,数据库里不同的组成部分是由不同的组件单独来实现的,如分库分表的管理和请求分发,由 Mycat 实现,SQL 的解析由单机的数据库实现,读写分离可能由网关和消息队列来实现,查询结果的汇总可能由数据库接口层来实现等等,这种架构其实是 MPP(大规模并行处理)架构的一类实现。
相关软件:Greenplum、TiDB、Postgresql XC、HAWQ 等,商用的如南大通用的 GBase、睿帆科技的雪球 DB、华为的 LibrA 等
7.业务拆分 —— 微服务
随着人员增加,业务发展,我们将业务分给不同的开发团队去维护,每个团队独立实现自己的微服务,然后互相之间对数据的直接访问进行隔离,可以利用 Gateway、消息总线等技术,实现相互之间的调用关联。甚至可以把一些类似用户管理等业务提成公共服务。
相关软件:Spring Cloud、Dubbo
8.容器化引入——容器编排架构
随着业务增长,然后发现系统的资源利用率不高,很多资源用来应对短时高并发,平时又闲置,需要动态扩缩容,还没有办法直接下线服务器,而且开发、测试、生产每套环境都要隔离的环境,运维的工作量变的非常大。容器化技术的出现给这些问题的解决带来了新的思路。
目前最流行的容器化技术是 Docker,最流行的容器管理服务是 Kubernetes(K8S),应用/服务可以打包为 Docker 镜像,通过 K8S 来动态分发和部署镜像。Docker 镜像可理解为一个能运行你的应用/服务的最小的操作系统,里面放着应用/服务的运行代码,运行环境根据实际的需要设置好。把整个“操作系统”打包为一个镜像后,就可以分发到需要部署相关服务的机器上,直接启动 Docker 镜像就可以把服务起起来,使服务的部署和运维变得简单。服务
通常会有生产和研发 k8s 集群,一般不会公用,而研发集群通过命名空间来完成应用隔离,有的公司按照研发目的划分为研发和测试集群,有的公司通过组织架构完成部门间的资源复用。
相关软件:Docker、K8S
三、尾声
至此,一个还算合理的高可用、高并发系统的基本雏形已显。注意,以上所说的架构演变顺序只是针对某个侧面进行单独的改进,在实际场景中,可能同一时间会有几个问题需要解决,或者可能先达到瓶颈的是另外的方面,这时候就应该按照实际问题实际解决。如在政府类的并发量可能不大,但业务可能很丰富的场景,高并发就不是重点解决的问题,此时优先需要的可能会是丰富需求的解决方案。
对于单次实施并且性能指标明确的系统,架构设计到能够支持系统的性能指标要求就足够了,但要留有扩展架构的接口以便不备之需。对于不断发展的系统,如电商平台,应设计到能满足下一阶段用户量和性能指标要求的程度,并根据业务的增长不断的迭代升级架构,以支持更高的并发和更丰富的业务。所谓的“大数据”其实是海量数据采集清洗转换、数据存储、数据分析、数据服务等场景解决方案的一个统称,在每一个场景都包含了多种可选的技术,如数据采集有Flume、Sqoop、Kettle 等,数据存储有分布式文件系统 HDFS、FastDFS,NoSQL数据库 HBase、MongoDB 等,数据分析有 Spark 技术栈、机器学习算法等。总的来说大数据架构就是根据业务的需求,整合各种大数据组件组合而成的架构,一般会提供分布式存储、分布式计算、多维分析、数据仓库、机器学习算法等能力。而服务端架构更多指的是应用组织层面的架构,底层能力往往是由大数据架构来提供。
相关文章:
Docker-技术架构演进之路
目录 一、概述 常见概念 二、架构演进 1.单机架构 2.应用数据分离架构 3.应用服务集群架构 4.读写分离 / 主从分离架构 5.引入缓存 —— 冷热分离架构 6.垂直分库 7.业务拆分 —— 微服务 8.容器化引入——容器编排架构 三、尾声 一、概述 在进行技术学习过程中&am…...
堆、优先队列、堆排序
堆: 定义: 必须是一个完全二叉树(完全二叉树:完全二叉树只允许最后一行不为满,且最后一行必须从左往右排序,最后一行元素之间不可以有间隔) 堆序性: 大根堆:每个父节点…...
C语言之宏定义
目录 前言 一、宏定义前操作 二、引用自定义.h文件 三、宏定义#define 四、对比typedef的差异 五、替换一个函数或表达式 六、嵌套宏替换 七、用宏和typedef创建一个“布尔型数据 八、定义有参数的宏 总结 前言 C语言中的宏定义是一种预处理指令,用来定义常量、函数…...
大语言模型基础
简介 AI大模型是“人工智能预训练大模型”的简称,包含了“预训练”和“大模型”两层含义,二者结合产生了一种新的人工智能模式,即模型在大规模数据集上完成了预训练后无需微调,或仅需要少量数据的微调,就能直接支撑各类应用。AI大模型主要分为三类:大语言模型、CV大模型…...
vxe-table 如何实现跟 Excel 一样的数值或金额的负数自动显示红色字体
vxe-table 如何实现跟 Excel 一样的数值或金额的负数自动显示红色字体,当输入的值为负数时,会自动显示红色字体,对于数值或者金额输入时该功能就非常有用了。 查看官网:https://vxetable.cn gitbub:https://github.co…...
Web 自动化测试提速利器:Aqua 的 Web Inspector (检查器)使用详解
Web 自动化测试提速利器:Aqua 的 Web Inspector (检查器)使用详解 前言简介一、安装二、Web Inspector 的使用2.1 获取元素定位器(Locators)2.2 将定位器添加到代码2.3 验证定位器2.4 处理 Frames (框架) 总结 前言 Je…...
23种设计模式 - 空对象模式
模式定义 空对象模式(Null Object Pattern)是一种行为型设计模式,通过用无操作的空对象替代null值,消除客户端对空值的检查,避免空指针异常。其核心是让空对象与真实对象实现相同接口,但空对象不执行实际逻…...
【mysql80 安装】mysql8.0.31 安装修改3306端口
在离线安装 MySQL 时,可以通过修改 MySQL 的配置文件来更改默认的 3306 端口。以下是具体步骤: 1、vim /etc/my.cnf 打开配置文件后,找到 [mysqld] 部分,这是 MySQL 服务的配置区域。在该部分中,找到或添加以下内容&a…...
基于eBPF的全栈可观测性系统:重新定义云原生环境诊断范式
引言:突破传统APM的性能桎梏 某头部电商平台采用eBPF重构可观测体系后,生产环境指标采集性能提升327倍:百万QPS场景下传统代理模式CPU占用达63%,而eBPF直采方案仅消耗0.9%内核资源。核心业务的全链路追踪时延从900μs降至18μs&a…...
C语言基础学习指南:从零入门到实战应用——适合零基础学习者与进阶巩固
目录 一、C语言概述与开发环境搭建 二、核心语法与数据类型 三、控制结构与运算符 四、函数与模块化编程 五、指针与内存管理 六、实践建议与资源推荐 结语 一、C语言概述与开发环境搭建 C语言是一种高效、灵活的通用编程语言,广泛应用于系统开发、嵌入式系…...
软件架构设计:架构风格
一、架构风格概述 定义 架构风格是对软件系统整体结构和组织方式的抽象描述,提供了一套通用的设计原则和模式。 作用 提高系统的可维护性、可扩展性和可复用性。帮助开发团队在设计和实现过程中保持一致性和规范性。 常见架构风格 分层架构、MVC架构、微服务架构、…...
为啥vue3设计不直接用toRefs,而是reactive+toRefs
Vue 3 设计中将 reactive 和 toRefs 结合使用而非直接使用 toRefs,主要基于以下设计考量: 1. 响应式粒度的不同需求 reactive 适用于对象整体响应式 reactive 会为整个对象创建响应式代理,自动追踪对象内部所有属性的变化。这种设计适用于需要…...
go 网络编程 websocket gorilla/websocket
在 Go 语言中,你可以使用标准库中的 net/http 包和第三方库 gorilla/websocket 来实现一个 WebSocket 服务器。gorilla/websocket 库提供了对 WebSocket 协议的高级抽象,使得处理 WebSocket 连接变得相对简单。 package mainimport ("fmt"&qu…...
【微服务】springboot远程docker进行debug调试使用详解
目录 一、前言 二、线上问题常用解决方案 2.1 微服务线上运行中常见的问题 2.2 微服务线上问题解决方案 2.3 远程debug概述 2.3.1 远程debug原理 2.3.2 远程debug优势 三、实验环境准备 3.1 搭建springboot工程 3.1.1 工程结构 3.1.2 引入基础依赖 3.1.3 添加配置文…...
CORS跨域问题常见解决办法
1.引言 在现代前端开发中,跨域资源共享(Cross-Origin Resource Sharing, CORS)是一种通过设置 HTTP 头来允许或阻止不同源之间的资源访问的机制。浏览器出于安全考虑,默认情况下会阻止跨域请求。本文将详细介绍 CORS 的工作原理、…...
并查集算法篇上期:并查集原理及实现
引入 那么我们在介绍我们并查集的原理之前,我们先来看一下并查集所应用的一个场景:那么现在我们有一个长度为n的数组,他们分别属于不同的集合,那么现在我们要查询数组当中某个元素和其他元素是否处于同一集合当中,或者…...
树莓派4基于Debian GNU/Linux 12 (Bookworm)添加多个静态ipv4网络
假设之前已经配置了 在eth0接口配置了192.168.0.100,现在要在同一接口(例如 eth0)上添加 192.168.1.100: 直接编辑 /etc/NetworkManager/system-connections/ 中相应的连接文件(该文件的文件名通常与连接名称相同&…...
「正版软件」PDF Reader - 专业 PDF 编辑阅读工具软件
PDF Reader 轻松查看、编辑、批注、转换、数字签名和管理 PDF 文件,以提高工作效率并充分利用 PDF 文档。 像专业人士一样编辑 PDF 编辑 PDF 文本 轻松添加、删除或修改 PDF 文档中的原始文本以更正错误。自定义文本属性,如颜色、字体大小、样式和粗细。…...
Python连接MySQL数据库图文教程,Python连接数据库MySQL入门教程
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言1. 环境准备1.1安装 Python1.2选择开发环境1.3安装 MySQL 数据库1.4 安装 pymysql 库 2. 连接数据库3. 数据库基本操作3.1 创建数据库3.2 创建表3.3 插入数据3.…...
Websocket——心跳检测
1. 前言:为什么需要心跳机制? 在现代的实时网络应用中,保持客户端和服务端的连接稳定性是非常重要的。尤其是在长时间的网络连接中,存在一些异常情况,导致服务端无法及时感知到客户端的断开,可能造成不必要…...
量子计算驱动的金融衍生品定价革命:突破传统蒙特卡洛模拟的性能边界
引言:金融计算的算力困局 某国际投行采用128量子位处理器对亚洲期权组合定价时,其量子振幅估计算法在2.7秒内完成传统GPU集群需要68小时的计算任务。在蒙特卡洛路径模拟实验中,量子随机游走算法将10,000维衍生品的价格收敛速度提升4个数量级…...
文心智能体平台已全面接入DeepSeek模型,全部免费!
文心智能体平台已全面接入DeepSeek模型!即日起,您可以在创建智能体时,自由选择所需要的模型,欢迎大家体验。 ✅ 零成本体验:当前阶段所有用户可免费使用DeepSeek模型。 ✅ 智能适配:4款DeepSe…...
DuodooBMS源码解读之 odoo_phoenix_alarm模块
Odoo18 扩展模块声光报警器用户使用手册 一、模块概述 本扩展模块是基于 Odoo18 原生系统进行开发的,主要用于实现与上位声光报警设备的通讯功能。通过该模块,用户可以方便地向设备发送指令,控制设备的声音、灯光等操作。本手册将详细介绍该…...
docker从容器中cp到本地、cp本地到容器
在 Docker 中,你可以使用 docker cp 命令从容器中复制文件到本地主机。以下是具体步骤: 1. 查找容器 ID 或名称 首先,你需要知道容器的 ID 或名称。你可以使用以下命令列出所有正在运行的容器: docker ps 这将显示所有正在运行…...
网络工程师 (49)UDP协议
前言 UDP协议,即用户数据报协议(User Datagram Protocol),是一种无连接的、不可靠的、面向报文的传输层通信协议。 一、基本特点 无连接性:UDP在发送数据之前不需要与目标设备建立连接,也无需在数据发送结束…...
1.20作业
1 mfw(git泄露) ./git,原本以为点了链接下了index文件,就可以打开看源码,结果解析不了 老老实实用了githacker githacker --url --output 1 assert() 断言(assert)的用法 | 菜鸟教程 命令注入: /?page).system(cat ./templates/fl…...
HTML/CSS中交集选择器
1.作用:选中同时符合多个条件的元素 交集就是或的意思 2.语法:选择器1选择器2选择器3......选择器n{} 3.举例: /* 选中:类名为beauty的p元素,此种写法用的非常的多 */p.beauty{color: red;}/* 选中:类名包含rich和beauty的元素 */.rich.beauty{color: blue;} 4.注意: 1.有标签…...
迅为RK3568开发板篇Openharmony配置HDF控制UART-实操-HDF驱动配置UART-修改HCS配置
对于不同的平台,需要在对应的平台目录修改对应的 hcs 文件,接下来示例为在 rk3568下新增 uart4 uart9 uart7 的修改方法。 修改 vendor/hihope/rk3568/hdf_config/khdf/device_info/device_info.hcs 文件,device_info.hcs 中添加以下内容&…...
实时股票行情接口与WebSocket行情接口的应用
实时股票行情接口与WebSocket行情接口的应用 实时股票行情接口是量化交易和投资决策的核心工具之一,行情接口的种类和功能也在不断扩展。介绍几种常见的行情接口,包括实时股票行情接口、Level2行情接口、WebSocket行情接口以及量化行情接口,…...
k8s故障处理经典案例(Classic Case of k8s Fault Handling)
k8s故障处理经典案例 问题描述 kubernetes版本:v1.22.5 部分Pod在新版本发布后一直处于ContainerCreating状态,经过kubectl delete命令删除后一直Terminating状态。 排查过程 遇到问题先查日志 首先进入宿主机,查看三个日志,…...
关于uniApp的面试题及其答案解析
我的血液里流淌着战意!力量与智慧指引着我! 文章目录 1. 什么是uniApp?2. uniApp与原生小程序开发有什么区别?3. 如何使用uniApp实现条件编译?4. uniApp支持哪些平台,各有什么特点?5. 在uniApp中…...
给老系统做个安全检查——Burp SqlMap扫描注入漏洞
背景 在AI技术突飞猛进的今天,类似Cursor之类的工具已经能写出堪比大部分程序员水平的代码了。然而,在我们的代码世界里,仍然有不少"老骥伏枥"的系统在兢兢业业地发光发热。这些祖传系统的代码可能早已过时,架构可能岌…...
langchain系列 - FewShotPromptTemplate 少量示例
导读 环境:OpenEuler、Windows 11、WSL 2、Python 3.12.3 langchain 0.3 背景:前期忙碌的开发阶段结束,需要沉淀自己的应用知识,过一遍LangChain 时间:20250220 说明:技术梳理,针对FewShotP…...
【C语言】fgetpos函数用法介绍
目录 一、函数概述 二、核心参数与数据类型 三、典型应用场景 四、与 ftell() 的对比 五、错误处理与调试 六、进阶示例:多位置标记与恢复 七、注意事项 八、总结 fgetpos() 是C标准库中用于文件操作的关键函数之一,其核心功能是获取文件流的当前…...
《算法基础入门:最常用的算法详解与应用(持续更新实战与面试题)》
1. 排序算法 排序算法是将一组数据按特定的顺序排列起来的算法,常见的有: 冒泡排序(Bubble Sort)选择排序(Selection Sort)插入排序(Insertion Sort)归并排序(Merge So…...
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-split_dota.py
split_dota.py ultralytics\data\split_dota.py 目录 split_dota.py 1.所需的库和模块 2.def bbox_iof(polygon1, bbox2, eps1e-6): 3.def load_yolo_dota(data_root, split"train"): 4.def get_windows(im_size, crop_sizes(1024,), gaps(200,), im_rate_t…...
如何使用Python快速开发一个带管理系统界面的网站-解析方案
如果你想用 Python 开发一个 管理系统界面 的网站,并且希望界面美观,可以考虑以下几个框架和库: 1. Streamlit(快速、简洁) 适合:数据分析、仪表盘、内部管理系统特点: 写法简单,类…...
25年HVV关于0day的面试题
以下是对0day漏洞如何防,基本上是每次HVV中大家都会提到的,今天总结了100day防护手段。 《网安面试指南》https://mp.weixin.qq.com/s/RIVYDmxI9g_TgGrpbdDKtA?token1860256701&langzh_CN 5000篇网安资料库https://mp.weixin.qq.com/s?__bizMzkw…...
【C# 数据结构】队列 FIFO
目录 队列的概念FIFO (First-In, First-Out)Queue<T> 的工作原理:示例:解释: 小结: 环形队列1. **FIFO?**2. **环形缓冲队列如何实现FIFO?**关键概念: 3. **环形缓冲队列的工作过程**假设…...
git 克隆及拉取github项目到本地微信开发者工具,微信开发者工具通过git commit、git push上传代码到github仓库
git 克隆及拉取github项目到本地微信开发者工具,微信开发者工具通过git commit、git push上传代码到github仓库 git 克隆及拉取github项目到本地 先在自己的用户文件夹新建一个项目文件夹,取名为项目名 例如这样 C:\Users\HP\yzj-再打开一个终端页面&…...
【机器学习】多元线性回归算法和正规方程解求解
多元线性方差和正规方差解 一、摘要二、多元线性回归介绍三、正规方程解的求解及代码实现 一、摘要 本文围绕多元线性回归的正规方程解展开,为初学者系统介绍了相关基本概念、求解方法、实际应用以及算法封装要点。 首先,深入阐释了正规方程解这一多元…...
在Linux上创建一个Docker容器并在其中执行Python脚本
在Linux上创建一个Docker容器并在其中执行Python脚本的过程,涉及多个方面的内容,包括安装Docker、编写Dockerfile、构建镜像、运行容器等。 1. 安装Docker 在Linux上使用Docker之前,你需要确保系统已安装Docker。Docker支持的Linux发行版有…...
Linux C 静态库如何生成并使用
1. 编写源文件 首先创建一个简单的示例项目,包含一个头文件和一个源文件。 头文件 my_lib.h // my_lib.h #ifndef MY_LIB_H #define MY_LIB_H// 函数声明 int add(int a, int b);#endif 源文件 my_lib.c #include <stdio.h>void print_hello() {printf(&q…...
清华大学deepseek教程第四版 DeepSeek+DeepResearch 让科研像聊天一样简单(附下载)
deepseek使用教程系列 DeepSeekDeepResearch 让科研像聊天一样简单(附下载) https://pan.baidu.com/s/1VMgRmCSEzNvhLZQc8mu6iQ?pwd1234 提取码: 1234 或 https://pan.quark.cn/s/f3d4511b790a...
请解释 Vue 中的生命周期钩子,不同阶段触发的钩子函数及其用途是什么?
vue生命周期钩子详解(Vue 3版本) 一、生命周期阶段划分 Vue组件的生命周期可分为四大阶段,每个阶段对应特定钩子函数: 创建阶段:初始化实例并准备数据挂载阶段:将虚拟DOM渲染为真实DOM更新阶段ÿ…...
输入搜索、分组展示选项、下拉选取,el-select 实现:即输入关键字检索,返回分组选项,选取跳转到相应内容页 —— VUE 项目-全局模糊检索
后端数据代码写于下一篇:输入搜索、分组展示选项、下拉选取,全局跳转页,el-select 实现 —— 后端数据处理代码,抛砖引玉展思路 【效果图】:分组展示选项 【去界面操作感受一下】—> 便捷简洁的企业官网 【录制效…...
Transformer为什么需要多头注意力(Multi-Head Attention)?如果没有多头会怎么样?
直接回答 关键点: Transformer 中的多头注意力(Multi-Head Attention)允许模型同时关注输入数据的不同方面,提升性能。 如果没有多头,模型可能无法捕捉复杂关系,表现会下降。 什么是多头注意力ÿ…...
VUE中的组件加载方式
加载方式有哪些,及如何进行选择 常规的静态引入是在组件初始化时就加载所有依赖的组件,而懒加载则是等到组件需要被渲染的时候才加载。 对于大型应用,可能会有很多组件,如果一开始都加载,可能会影响首屏加载时间。如…...
Linux自启动fastapi服务
步骤一 在/etc/systemd/system/文件夹下创建pyod.service(其中/path/to/conda/bin/activate要改为activate实际存放位置,例如miniconda的实际存放位置为/root/miniconda3/bin/activate) [Unit] DescriptionPyOD Uvicorn Service Afternetwo…...
C++与Python:两种编程语言的区别
C和Python都是当今编程领域广泛使用的语言,它们各有特色,适用于不同的开发场景。本文将从语言特性、性能、学习难度、应用领域等多个方面探讨C与Python之间的区别。 一、语言特性 类型系统: C:是一种静态类型语言…...