当前位置: 首页 > news >正文

RabbitMQ服务异步通信

消息队列在使用过程中,面临着很多实际问题需要思考:

在这里插入图片描述

1. 消息可靠性


消息从发送,到消费者接收,会经理多个过程:

在这里插入图片描述

其中的每一步都可能导致消息丢失,常见的丢失原因包括:

  • 发送时丢失:
    • 生产者发送的消息未送达exchange
    • 消息送达exchange后未到达queue
  • MQ宕机,queue将消息丢失
  • consumer接收到消息后未消费就宕机

针对这些问题,RabbitMQ分别给出了解决方案:

  • 生产者确认机制
  • mq持久化
  • 消费者确认机制
  • 失败重试机制

下面我们就通过案例来演示每一个步骤。

创建Demo工程

在这里插入图片描述

1.1. 生产者消息确认

RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。这种机制必须给每个消息指定一个唯一ID。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。

返回结果有两种方式:

  • publisher-confirm,发送者确认
    • 消息成功投递到交换机,返回ack
    • 消息为投递到交换机,返回nack
  • publisher-return,发送者回执
    • 消息投递到交换机了,但是没有路由到队列,返回ack及路由失败原因

在这里插入图片描述

注意:确认机制发送消息时,需要给每个消息设置一个全局唯一id,以区分不同消息,避免ack冲突

1.1.1. 修改配置

首先,修改publisher服务中的application.yml文件,添加下面的内容:

spring:rabbitmq:publisher-confirm-type: correlatedpublisher-returns: truetemplate:mandatory: true

说明:

  • publish-confirm-type:开启publisher-confirm,这里支持两种类型:
    • simple:同步等待confirm结果,直到超时
    • correlated:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
  • publish-returns:开启publisher-return功能,同样是基于callback机制,不过是定义ReturnCallback
  • template.mandatory:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息

1.1.2. 定义Return回调

每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:

修改publisher服务,添加一个:

package cn.itcast.mq.config;import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.Configuration;@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {// 获取RabbitTemplate对象RabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);// 设置ReturnCallbackrabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {// 投递失败,记录日志log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",replyCode, replyText, exchange, routingKey, message);});}
}

1.1.3. 定义ConfirmCallback

ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。

在publisher服务的cn.itcast.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:

package cn.itcast.mq.spring;import lombok.extern.slf4j.Slf4j;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.connection.CorrelationData;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;import java.util.UUID;@Slf4j
@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {@Autowiredprivate RabbitTemplate rabbitTemplate;@Testpublic void testSendMessage2SimpleQueue() throws InterruptedException {String routingKey = "simple";// 准备消息String message = "hello, spring amqp!";// 全局唯一的消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 添加callbackcorrelationData.getFuture().addCallback(result -> {assert result != null;if (result.isAck()) {// ack消息成功log.debug("消息发送成功,消息ID:{}", correlationData.getId());} else {// nack消息失败log.error("消息发送失败,消息ID:{},原因:{}", correlationData.getId(), result.getReason());}},ex -> log.error("消息发送异常,消息ID:{},原因:{}", correlationData.getId(), ex.getMessage()));// 发送消息rabbitTemplate.convertAndSend("amq.topic", routingKey, message, correlationData);// 休眠一会儿,等待回调Thread.sleep(2000);}
}

1.2. 消息持久化

生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失。

要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制。

  • 交换机持久化
  • 队列持久化
  • 消息持久化

1.2.1. 交换机持久化

RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public DirectExchange simpleExchange(){// 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除return new DirectExchange("simple.direct", true, false);
}

事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的。

可以在RabbitMQ控制台看到持久化的交换机都会带上D的标示:

在这里插入图片描述

1.2.2. 队列持久化

RabbitMQ中队列默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public Queue simpleQueue(){// 使用QueueBuilder构建队列,durable就是持久化的return QueueBuilder.durable("simple.queue").build();
}

事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。

可以在RabbitMQ控制台看到持久化的队列都会带上D的标示:

在这里插入图片描述

1.2.3. 消息持久化

利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:

  • 1:非持久化
  • 2:持久化

用java代码指定:

在这里插入图片描述

默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。

1.3. 消费者消息确认

RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除。

而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。

设想这样的场景:

  • 1)RabbitMQ投递消息给消费者
  • 2)消费者获取消息后,返回ACK给RabbitMQ
  • 3)RabbitMQ删除消息
  • 4)消费者宕机,消息尚未处理

这样,消息就丢失了。因此消费者返回ACK的时机非常重要。

而SpringAMQP则允许配置三种确认模式:

  • manual:手动ack,需要在业务代码结束后,调用api发送ack。

  • auto:自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack;抛出异常则返回nack

  • none:关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除

由此可知:

  • none模式下,消息投递是不可靠的,可能丢失
  • auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack
  • manual:自己根据业务情况,判断什么时候该ack

一般,我们都是使用默认的auto即可。

1.3.1. 演示none模式

修改consumer服务的application.yml文件,添加下面内容:

spring:rabbitmq:listener:simple:acknowledge-mode: none # 关闭ack

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue(String msg) {log.info("消费者接收到simple.queue的消息:【{}】", msg);// 模拟异常System.out.println(1 / 0);log.debug("消息处理完成!");
}

测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。

1.3.2. 演示auto模式

再次把确认机制修改为auto:

spring:rabbitmq:listener:simple:acknowledge-mode: auto # 关闭ack

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unacked(未确定状态):

在这里插入图片描述

抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:

在这里插入图片描述

1.4. 消费失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力:

在这里插入图片描述

怎么办呢?

1.4.1. 本地重试

我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000 # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

  • 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
  • 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
  • 重试达到最大次数后,Spring会返回ack,消息会被丢弃

1.4.2. 失败策略

在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。

在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:

  • RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式
  • ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队
  • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列

@Bean
public DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}

2)定义一个RepublishMessageRecoverer,关联队列和交换机

@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}

完整代码:

package cn.itcast.mq.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;@Configuration
public class ErrorMessageConfig {@Beanpublic DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");}@Beanpublic Queue errorQueue(){return new Queue("error.queue", true);}@Beanpublic Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");}@Beanpublic MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");}
}

1.5. 总结

如何确保RabbitMQ消息的可靠性?

  • 开启生产者确认机制,确保生产者的消息能到达队列
  • 开启持久化功能,确保消息未消费前在队列中不会丢失
  • 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack
  • 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理

2. 死信交换机


2.1. 初始死信交换机

2.1.1. 什么是死信交换机

什么是死信?

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用basic.rejectbasic.nack声明消费失败,并且消息的requeue参数设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投地的队列消息满了,无法投递

如果这个包含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)。

如图,一个消息被消费者拒绝了,变成了死信:

在这里插入图片描述

因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:

在这里插入图片描述

如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:

在这里插入图片描述

另外,队列将死信投递给死信交换机时,必须知道两个信息:

  • 死信交换机名称
  • 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。

在这里插入图片描述

2.1.2. 利用死信交换机接收死信

在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。

我们可以给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。

在这里插入图片描述

我们在consumer服务中,定义一组死信交换机、死信队列:

// 声明普通的 simple.queue队列,并且为其指定死信交换机:dl.direct
@Bean
public Queue simpleQueue2(){return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化.deadLetterExchange("dl.direct") // 指定死信交换机.build();
}
// 声明死信交换机 dl.direct
@Bean
public DirectExchange dlExchange(){return new DirectExchange("dl.direct", true, false);
}
// 声明存储死信的队列 dl.queue
@Bean
public Queue dlQueue(){return new Queue("dl.queue", true);
}
// 将死信队列 与 死信交换机绑定
@Bean
public Binding dlBinding(){return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("simple");
}

2.1.3. 总结

什么样的消息会成为死信?

  • 消息被消费者reject或者返回nack
  • 消息超时未消费
  • 队列满了

死信交换机的使用场景是什么?

  • 如果队列绑定了死信交换机,死信会投递到死信交换机;
  • 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。

2.2. TTL

一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:

  • 消息所在的队列设置了超时时间
  • 消息本身设置了超时时间

在这里插入图片描述

2.2.1.接收超时死信的死信交换机

在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "dl.ttl.queue", durable = "true"),exchange = @Exchange(name = "dl.ttl.direct"),key = "ttl"
))
public void listenDlQueue(String msg){log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);
}

2.2.2. 声明一个队列,并且指定TTL

要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:

@Bean
public Queue ttlQueue(){return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化.ttl(10000) // 设置队列的超时时间,10秒.deadLetterExchange("dl.ttl.direct") // 指定死信交换机.build();
}

注意,这个队列设定了死信交换机为dl.ttl.direct

声明交换机,将ttl与交换机绑定:

@Bean
public DirectExchange ttlExchange(){return new DirectExchange("ttl.direct");
}
@Bean
public Binding ttlBinding(){return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");
}

发送消息,但是不要指定TTL:

@Test
public void testTTLQueue() {// 创建消息String message = "hello, ttl queue";// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);// 记录日志log.debug("发送消息成功");
}

发送消息的日志:

在这里插入图片描述

查看下接收消息的日志:

在这里插入图片描述

因为队列的TTL值是10000ms,也就是10秒。可以看到消息发送与接收之间的时差刚好是10秒。

2.2.3. 发送消息时,设定TTL

在发送消息时,也可以指定TTL:

@Test
public void testTTLMsg() {// 创建消息Message message = MessageBuilder.withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8)).setExpiration("5000").build();// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);log.debug("发送消息成功");
}

查看发送消息日志:

在这里插入图片描述

接收消息日志:

在这里插入图片描述

这次,发送与接收的延迟只有5秒。说明当队列、消息都设置了TTL时,任意一个到期就会成为死信。

2.2.4. 总结

消息超时的两种方式是?

  • 给队列设置ttl属性,进入队列后超过ttl时间的消息变为死信
  • 给消息设置ttl属性,队列接收到消息超过ttl时间后变为死信

如何实现发送一个消息20秒后消费者才收到消息?

  • 给消息的目标队列指定死信交换机
  • 将消费者监听的队列绑定到死信交换机
  • 发送消息时给消息设置超时时间为20秒

2.3. 延迟队列

利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue)模式。

延迟队列的使用场景包括:

  • 延迟发送短信
  • 用户下单,如果用户在15 分钟内未支付,则自动取消
  • 预约工作会议,20分钟后自动通知所有参会人员

因为延迟队列的需求非常多,所以RabbitMQ的官方也推出了一个插件,原生支持延迟队列效果。

这个插件就是DelayExchange插件。参考RabbitMQ的插件列表页面:https://www.rabbitmq.com/community-plugins.html

使用方式可以参考官网地址:https://blog.rabbitmq.com/posts/2015/04/scheduling-messages-with-rabbitmq

2.3.1. 安装DelayExchange插件

1)上传插件

因为我们是基于Docker安装,所以需要先查看RabbitMQ的插件目录对应的数据卷。如果不是基于Docker的同学,请参考第一章部分,重新创建Docker容器。

我们之前设定的RabbitMQ的数据卷名称为mq-plugins,所以我们使用下面命令查看数据卷:

docker volume inspect mq-plugins

可以得到下面结果:

在这里插入图片描述

接下来,将下载的插件上传到这个目录即可:

2)安装插件

最后就是安装了,需要进入MQ容器内部来执行安装。我的容器名为mq,所以执行下面命令:

docker exec -it mq bash

执行时,请将其中的 -it 后面的mq替换为你自己的容器名.

进入容器内部后,执行下面命令开启插件:

rabbitmq-plugins enable rabbitmq_delayed_message_exchange

结果如下:

在这里插入图片描述

3)使用插件

DelayExchange插件的原理是对官方原生的Exchange做了功能的升级:

  • 将DelayExchange接收到的消息暂存在内存中(官方的Exchange是无法存储消息的)
  • 在DelayExchange中计时,超时后才投递消息队列中

在RabbitMQ的管理平台声明一个DelayExchange:

在这里插入图片描述

消息的延迟时间需要在发送消息的时候指定:

在这里插入图片描述

2.3.2. DelayExchange原理

DelayExchange需要将一个交换机声明为delayed类型。当我们发送消息到delayExchange时,流程如下:

  • 接收消息
  • 判断消息是否具备x-delay属性
  • 如果有x-delay属性,说明是延迟消息,持久化到硬盘,读取x-delay值,作为延迟时间
  • 返回routing not found结果给消息发送者
  • x-delay时间到期后,重新投递消息到指定队列

2.3.3. 使用DelayExchange

插件的使用也非常简单:声明一个交换机,交换机的类型可以是任意类型,只需要设定delayed属性为true即可,然后声明队列与其绑定即可。

1)声明DelayExchange交换机

基于注解方式(推荐):

在这里插入图片描述

也可以基于@Bean的方式:

在这里插入图片描述

2)发送消息

发送消息时,一定要携带x-delay属性,指定延迟的时间:

在这里插入图片描述

2.3.4. 总结

延迟队列插件的使用步骤包括哪些?

  • 声明一个交换机,添加delayed属性为true

  • 发送消息时,添加x-delay头,值为超时时间

3. 惰性队列


3.1. 消息堆积问题

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题。

在这里插入图片描述

解决消息堆积有两种思路:

  • 增加更多消费者,提高消费速度。也就是我们之前说的work queue模式
  • 扩大队列容积,提高堆积上限

要提升队列容积,把消息保存在内存中显然是不行的。

3.2. 惰性队列

从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的概念,也就是惰性队列。惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存
  • 支持数百万条的消息存储

3.2.1. 基于命令行设置lazy-queue

而要设置一个队列为惰性队列,只需要在声明队列时,指定x-queue-mode属性为lazy即可。可以通过命令行将一个运行中的队列修改为惰性队列:

rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues  

命令解读:

  • rabbitmqctl:RabbitMQ的命令行工具
  • set_policy:添加一个策略
  • Lazy:策略名称,可以自定义
  • "^lazy-queue$":用正则表达式匹配队列的名字
  • '{"queue-mode": "lazy"}':设置队列模式为lazy模式
  • --apply-to queues:策略的作用对象,是所有的队列

3.2.2. 基于@Bean声明lazy-queue

在这里插入图片描述

3.2.3. 基于@RabbitListener声明LazyQueue

在这里插入图片描述

在这里插入图片描述

3.3. 总结

消息堆积问题的解决方案?

  • 队列上绑定多个消费者,提高消费速度
  • 使用惰性队列,可以再mq中保存更多消息

惰性队列的优点有哪些?

  • 基于磁盘存储,消息上限高
  • 没有间歇性的page-out,性能比较稳定

惰性队列的缺点有哪些?

  • 基于磁盘存储,消息时效性会降低
  • 性能受限于磁盘的IO

4. MQ集群


4.1. 集群分类

RabbitMQ的是基于Erlang语言编写,而Erlang又是一个面向并发的语言,天然支持集群模式。RabbitMQ的集群有两种模式:

  • 普通集群:是一种分布式集群,将队列分散到集群的各个节点,从而提高整个集群的并发能力。

  • 镜像集群:是一种主从集群,普通集群的基础上,添加了主从备份功能,提高集群的数据可用性。

镜像集群虽然支持主从,但主从同步并不是强一致的,某些情况下可能有数据丢失的风险。因此在RabbitMQ的3.8版本以后,推出了新的功能:仲裁队列来代替镜像集群,底层采用Raft协议确保主从的数据一致性。

4.2. 普通集群

4.2.1. 集群结构和特征

普通集群,或者叫标准集群(classic cluster),具备下列特征:

  • 会在集群的各个节点间共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
  • 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回
  • 队列所在节点宕机,队列中的消息就会丢失

结构如图:

在这里插入图片描述

4.2.2. 部署

1)集群分类

在RabbitMQ的官方文档中,讲述了两种集群的配置方式:

  • 普通模式:普通模式集群不进行数据同步,每个MQ都有自己的队列、数据信息(其它元数据信息如交换机等会同步)。例如我们有2个MQ:mq1,和mq2,如果你的消息在mq1,而你连接到了mq2,那么mq2会去mq1拉取消息,然后返回给你。如果mq1宕机,消息就会丢失。
  • 镜像模式:与普通模式不同,队列会在各个mq的镜像节点之间同步,因此你连接到任何一个镜像节点,均可获取到消息。而且如果一个节点宕机,并不会导致数据丢失。不过,这种方式增加了数据同步的带宽消耗。

我们先来看普通模式集群,我们的计划部署3节点的mq集群:

主机名控制台端口amqp通信端口
mq18081 —> 156728071 —> 5672
mq28082 —> 156728072 —> 5672
mq38083 —> 156728073 —> 5672

集群中的节点标示默认都是:rabbit@[hostname],因此以上三个节点的名称分别为:

  • rabbit@mq1
  • rabbit@mq2
  • rabbit@mq3
2)获取cookie

RabbitMQ底层依赖于Erlang,而Erlang虚拟机就是一个面向分布式的语言,默认就支持集群模式。集群模式中的每个RabbitMQ 节点使用 cookie 来确定它们是否被允许相互通信。

要使两个节点能够通信,它们必须具有相同的共享秘密,称为Erlang cookie。cookie 只是一串最多 255 个字符的字母数字字符。

每个集群节点必须具有相同的 cookie。实例之间也需要它来相互通信。

我们先在之前启动的mq容器中获取一个cookie值,作为集群的cookie。执行下面的命令:

docker exec -it mq cat /var/lib/rabbitmq/.erlang.cookie

可以看到cookie值如下:

FXZMCVGLBIXZCDEMMVZQ

接下来,停止并删除当前的mq容器,我们重新搭建集群。

docker rm -f mq
3)准备集群配置

在/tmp目录新建一个配置文件 rabbitmq.conf:

cd /tmp
# 创建文件
touch rabbitmq.conf

文件内容如下:

loopback_users.guest = false
listeners.tcp.default = 5672
cluster_formation.peer_discovery_backend = rabbit_peer_discovery_classic_config
cluster_formation.classic_config.nodes.1 = rabbit@mq1
cluster_formation.classic_config.nodes.2 = rabbit@mq2
cluster_formation.classic_config.nodes.3 = rabbit@mq3

再创建一个文件,记录cookie

cd /tmp
# 创建cookie文件
touch .erlang.cookie
# 写入cookie
echo "FXZMCVGLBIXZCDEMMVZQ" > .erlang.cookie
# 修改cookie文件的权限
chmod 600 .erlang.cookie

准备三个目录,mq1、mq2、mq3:

cd /tmp
# 创建目录
mkdir mq1 mq2 mq3

然后拷贝rabbitmq.conf、cookie文件到mq1、mq2、mq3:

# 进入/tmp
cd /tmp
# 拷贝
cp rabbitmq.conf mq1
cp rabbitmq.conf mq2
cp rabbitmq.conf mq3
cp .erlang.cookie mq1
cp .erlang.cookie mq2
cp .erlang.cookie mq3
4)启动集群

创建一个网络:

docker network create mq-net

docker volume create

运行命令

docker run -d --net mq-net \
-v ${PWD}/mq1/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \
-v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \
-e RABBITMQ_DEFAULT_USER=itcast \
-e RABBITMQ_DEFAULT_PASS=123321 \
--name mq1 \
--hostname mq1 \
-p 8071:5672 \
-p 8081:15672 \
rabbitmq:3.8-management
docker run -d --net mq-net \
-v ${PWD}/mq2/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \
-v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \
-e RABBITMQ_DEFAULT_USER=itcast \
-e RABBITMQ_DEFAULT_PASS=123321 \
--name mq2 \
--hostname mq2 \
-p 8072:5672 \
-p 8082:15672 \
rabbitmq:3.8-management
docker run -d --net mq-net \
-v ${PWD}/mq3/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \
-v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \
-e RABBITMQ_DEFAULT_USER=itcast \
-e RABBITMQ_DEFAULT_PASS=123321 \
--name mq3 \
--hostname mq3 \
-p 8073:5672 \
-p 8083:15672 \
rabbitmq:3.8-management
5)测试

在mq1这个节点上添加一个队列:

在这里插入图片描述

如图,在mq2和mq3两个控制台也都能看到:

在这里插入图片描述

6)数据共享测试

点击这个队列,进入管理页面:

在这里插入图片描述

然后利用控制台发送一条消息到这个队列:

在这里插入图片描述

结果在mq2、mq3上都能看到这条消息:

在这里插入图片描述

7)可用性测试

我们让其中一台节点mq1宕机:

docker stop mq1

然后登录mq2或mq3的控制台,发现simple.queue也不可用了:

在这里插入图片描述

说明数据并没有拷贝到mq2和mq3。

4.3. 镜像集群

4.3.1.集群结构和特征

镜像集群:本质是主从模式,具备下面的特征:

  • 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份。
  • 创建队列的节点被称为该队列的主节点,备份到的其它节点叫做该队列的镜像节点。
  • 一个队列的主节点可能是另一个队列的镜像节点
  • 所有操作都是主节点完成,然后同步给镜像节点
  • 主宕机后,镜像节点会替代成新的主

结构如图:

在这里插入图片描述

4.3.2. 部署

在刚刚的案例中,一旦创建队列的主机宕机,队列就会不可用。不具备高可用能力。如果要解决这个问题,必须使用官方提供的镜像集群方案。

官方文档地址:https://www.rabbitmq.com/ha.html

1)镜像模式的特征

默认情况下,队列只保存在创建该队列的节点上。而镜像模式下,创建队列的节点被称为该队列的主节点,队列还会拷贝到集群中的其它节点,也叫做该队列的镜像节点。

但是,不同队列可以在集群中的任意节点上创建,因此不同队列的主节点可以不同。甚至,一个队列的主节点可能是另一个队列的镜像节点

用户发送给队列的一切请求,例如发送消息、消息回执默认都会在主节点完成,如果是从节点接收到请求,也会路由到主节点去完成。镜像节点仅仅起到备份数据作用

当主节点接收到消费者的ACK时,所有镜像都会删除节点中的数据。

总结如下:

  • 镜像队列结构是一主多从(从就是镜像)
  • 所有操作都是主节点完成,然后同步给镜像节点
  • 主宕机后,镜像节点会替代成新的主(如果在主从同步完成前,主就已经宕机,可能出现数据丢失)
  • 不具备负载均衡功能,因为所有操作都会有主节点完成(但是不同队列,其主节点可以不同,可以利用这个提高吞吐量)
2)镜像模式的配置

镜像模式的配置有3种模式:

ha-modeha-params效果
准确模式exactly队列的副本量count集群中队列副本(主服务器和镜像服务器之和)的数量。count如果为1意味着单个副本:即队列主节点。count值为2表示2个副本:1个队列主和1个队列镜像。换句话说:count = 镜像数量 + 1。如果群集中的节点数少于count,则该队列将镜像到所有节点。如果有集群总数大于count+1,并且包含镜像的节点出现故障,则将在另一个节点上创建一个新的镜像。
all(none)队列在群集中的所有节点之间进行镜像。队列将镜像到任何新加入的节点。镜像到所有节点将对所有群集节点施加额外的压力,包括网络I / O,磁盘I / O和磁盘空间使用情况。推荐使用exactly,设置副本数为(N / 2 +1)。
nodesnode names指定队列创建到哪些节点,如果指定的节点全部不存在,则会出现异常。如果指定的节点在集群中存在,但是暂时不可用,会创建节点到当前客户端连接到的节点。

这里我们以rabbitmqctl命令作为案例来讲解配置语法。

语法示例:

1. exactly模式
rabbitmqctl set_policy ha-two "^two\." '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'
  • rabbitmqctl set_policy:固定写法
  • ha-two:策略名称,自定义
  • "^two\.":匹配队列的正则表达式,符合命名规则的队列才生效,这里是任何以two.开头的队列名称
  • '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}': 策略内容
    • "ha-mode":"exactly":策略模式,此处是exactly模式,指定副本数量
    • "ha-params":2:策略参数,这里是2,就是副本数量为2,1主1镜像
    • "ha-sync-mode":"automatic":同步策略,默认是manual,即新加入的镜像节点不会同步旧的消息。如果设置为automatic,则新加入的镜像节点会把主节点中所有消息都同步,会带来额外的网络开销
2. all模式
rabbitmqctl set_policy ha-all "^all\." '{"ha-mode":"all"}'
  • ha-all:策略名称,自定义
  • "^all\.":匹配所有以all.开头的队列名
  • '{"ha-mode":"all"}':策略内容
    • "ha-mode":"all":策略模式,此处是all模式,即所有节点都会称为镜像节点
3. nodes模式
rabbitmqctl set_policy ha-nodes "^nodes\." '{"ha-mode":"nodes","ha-params":["rabbit@nodeA", "rabbit@nodeB"]}'
  • rabbitmqctl set_policy:固定写法
  • ha-nodes:策略名称,自定义
  • "^nodes\.":匹配队列的正则表达式,符合命名规则的队列才生效,这里是任何以nodes.开头的队列名称
  • '{"ha-mode":"nodes","ha-params":["rabbit@nodeA", "rabbit@nodeB"]}': 策略内容
    • "ha-mode":"nodes":策略模式,此处是nodes模式
    • "ha-params":["rabbit@mq1", "rabbit@mq2"]:策略参数,这里指定副本所在节点名称
3)测试

我们使用exactly模式的镜像,因为集群节点数量为3,因此镜像数量就设置为2.

运行下面的命令:

docker exec -it mq1 rabbitmqctl set_policy ha-two "^two\." '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'

下面,我们创建一个新的队列:

在这里插入图片描述

在任意一个mq控制台查看队列:

在这里插入图片描述

4)测试数据共享

给two.queue发送一条消息:

在这里插入图片描述

然后在mq1、mq2、mq3的任意控制台查看消息:

在这里插入图片描述

5)测试高可用

现在,我们让two.queue的主节点mq1宕机:

docker stop mq1

查看集群状态:

在这里插入图片描述

查看队列状态:

在这里插入图片描述

发现依然是健康的!并且其主节点切换到了rabbit@mq2上。

4.4. 仲裁队列

4.4.1. 集群特征

仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:

  • 与镜像队列一样,都是主从模式,支持主从数据同步
  • 使用非常简单,没有复杂的配置
  • 主从同步基于Raft协议,强一致

4.4.2. 部署

从RabbitMQ 3.8版本开始,引入了新的仲裁队列,他具备与镜像队里类似的功能,但使用更加方便。

1) 添加仲裁队列

在任意控制台添加一个队列,一定要选择队列类型为Quorum类型。

在这里插入图片描述

在任意控制台查看队列:

在这里插入图片描述

可以看到,仲裁队列的 + 2字样。代表这个队列有2个镜像节点。

因为仲裁队列默认的镜像数为5。如果你的集群有7个节点,那么镜像数肯定是5;而我们集群只有3个节点,因此镜像数量就是3.

2) 测试

可以参考对镜像集群的测试,效果是一样的。

3) 集群扩容
1. 加入集群

1)启动一个新的MQ容器:

docker run -d --net mq-net \
-v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \
-e RABBITMQ_DEFAULT_USER=itcast \
-e RABBITMQ_DEFAULT_PASS=123321 \
--name mq4 \
--hostname mq5 \
-p 8074:15672 \
-p 8084:15672 \
rabbitmq:3.8-management

2)进入容器控制台:

docker exec -it mq4 bash

3)停止mq进程

rabbitmqctl stop_app

4)重置RabbitMQ中的数据:

rabbitmqctl reset

5)加入mq1:

rabbitmqctl join_cluster rabbit@mq1

6)再次启动mq进程

rabbitmqctl start_app

在这里插入图片描述

2. 增加仲裁队列副本

我们先查看下quorum.queue这个队列目前的副本情况,进入mq1容器:

docker exec -it mq1 bash

执行命令:

rabbitmq-queues quorum_status "quorum.queue"

结果:

在这里插入图片描述

现在,我们让mq4也加入进来:

rabbitmq-queues add_member "quorum.queue" "rabbit@mq4"

结果:

在这里插入图片描述

再次查看:

rabbitmq-queues quorum_status "quorum.queue"

在这里插入图片描述

查看控制台,发现quorum.queue的镜像数量也从原来的 +2 变成了 +3:

在这里插入图片描述

4.4.3. Java代码创建仲裁队列

@Bean
public Queue quorumQueue() {return QueueBuilder.durable("quorum.queue") // 持久化.quorum() // 仲裁队列.build();
}

4.4.4. SpringAMQP连接MQ集群

注意,这里用address来代替host、port方式

spring:rabbitmq:addresses: 192.168.150.105:8071, 192.168.150.105:8072, 192.168.150.105:8073username: itcastpassword: 123321virtual-host: /

相关文章:

RabbitMQ服务异步通信

消息队列在使用过程中,面临着很多实际问题需要思考: 1. 消息可靠性 消息从发送,到消费者接收,会经理多个过程: 其中的每一步都可能导致消息丢失,常见的丢失原因包括: 发送时丢失: 生…...

适用于 Windows 仅 0.6MB 且免费无广告的绿色截图工具

软件介绍 YasoCut 可是一款源自 GitHub 的宝藏截图软件,专为 Windows 系统打造,亮点十足。它体积超小,仅有 0.6MB,并且简单易用、免费无广告,还贴心地提供了绿色版本。 这款软件的独特之处在于,和常见截图…...

three.js+WebGL踩坑经验合集(8.2):z-fighting叠面问题和camera.near的坑爹关系

本篇延续上篇内容: three.jsWebGL踩坑经验合集(8.1):用于解决z-fighting叠面问题的polygonOffset远没我们想象中那么简单-CSDN博客 笔者在上篇提到,叠面的效果除了受polygonOffset影响以外,还跟相机的近裁剪面camera.near密切相关&#xff…...

[LeetCode力扣hot100]-链表

相交链表 160. 相交链表 - 力扣(LeetCode) 思路就是遍历两个链表,有相同的部分就可以视为相交。 但是长度不一样,比如两个会相交的链表,headA 的长度为 a c,headB 的长度为 b c,其中 c 是公…...

Deepseek官方整理的13类提示词推荐

最近 deepseek 实在是太火了,网上出现了各种大神教你怎么用好它的免费教程,当然也还有各种需要付费才教你怎么用提示词的课程。但我觉得对于使用 AI 来说,根本就不需要教,关键是要理解一条和 AI 沟通的核心原则:和人交…...

hystrix超详细教学

1、什么是hystrix? 是一个做熔断的框架,当程序被高并发访问时可能会造成微服务的宕机,hystrix可以熔断微服务之间通信。防止后台服务发生雪崩。 2、Hystrix作用 熔断查看微服务请求状态 3、Hystrix使用场景 是在微服务架构下才有意义&am…...

Linux的基础指令和环境部署,项目部署实战(下)

目录 上一篇:Linxu的基础指令和环境部署,项目部署实战(上)-CSDN博客 1. 搭建Java部署环境 1.1 apt apt常用命令 列出所有的软件包 更新软件包数据库 安装软件包 移除软件包 1.2 JDK 1.2.1. 更新 1.2.2. 安装openjdk&am…...

250217-数据结构

1. 定义 数据结构是数据的存储结构,即数据是按某些结构来存储的,比如线性结构,比如树状结构等。 2. 学习意义 数据结构是服务于算法的,为了实现算法的高效计算,所以将数据按特定结构存储。比如使用快速插入或删除的…...

【Java基础】Java数组

前言 在Java编程中,数组是一种非常基础且重要的数据结构。无论你是新手还是有经验的开发者,理解如何有效地使用数组对于编写高效和可维护的代码至关重要。 数组的静态初始化 静态初始化是指在声明数组的同时为其元素赋值。这种方式非常适合于你已经知…...

【拥抱AI】GPT Researcher如何自定义配置LLM

GPT Researcher默认的 LLM(大型语言模型)和嵌入式模型是 OpenAI,因为其卓越的性能和速度。不过,GPT Researcher 支持各种开源和闭源的 LLM 和嵌入式模型,你可以通过更新 SMART_LLM、FAST_LLM 和 EMBEDDING 环境变量轻松…...

网工项目理论1.7 设备选型

本专栏持续更新,整一个专栏为一个大型复杂网络工程项目。阅读本文章之前务必先看《本专栏必读》。 一.交换机选型要点 制式:盒式交换机/框式交换机。功能:二层交换机/三层交换机。端口密度:每交换机可以提供的端口数量。端口速率:百兆/千兆/万兆。交换容量:交换矩阵…...

扩散模型中的马尔可夫链设计演进:从DDPM到Stable Diffusion全解析

一、技术原理与数学推导(附核心公式) 1.1 扩散过程数学建模 马尔可夫链前向过程定义: q(x_{1:T}|x_0) \prod_{t1}^T q(x_t|x_{t-1})噪声调度函数(以余弦调度为例): \beta_t \frac{1 - \cos(\pi t/T)}…...

游戏引擎学习第112天

黑板:优化 今天的内容是关于优化的,主要讨论了如何在开发中提高代码的效率,尤其是当游戏的帧率出现问题时。优化并不总是要将代码做到最快,而是要确保代码足够高效,以避免性能问题。优化的过程是一个反复迭代的过程&a…...

国鑫DeepSeek 671B本地部署方案:以高精度、高性价比重塑AI推理新标杆

随着DeepSeek大模型应用火爆全球,官方服务器总是被挤爆。而且基于企业对数据安全、网络、算力的更高需求,模型本地化部署的需求日益增长,如何在有限预算内实现高效、精准的AI推理能力,成为众多企业的核心诉求。国鑫作为深耕AI领域…...

【YOLOv8】

文章目录 1、yolov8 介绍2、创新点3、模型结构设计3.1、backbone3.2、head 4、正负样本匹配策略5、Loss6、Data Augmentation7、训练、推理8、分割 Demo附录——V1~V8附录——相关应用参考 1、yolov8 介绍 YOLOv8 是 ultralytics 公司在 2023 年 1 月 10 号开源的 YOLOv5 的下…...

Android - Handler使用post之后,Runnable没有执行

问题:子线程创建的Handler。如果 post 之后,在Handler.removeCallbacks(run)移除了,下次再使用Handler.postDelayed(Runnable)接口或者使用post时,Runnable是没有执行。导致没有收到消息。 解决办法:只有主线程创建的…...

深入解析 Flutter 性能优化:从原理到实践

深入解析 Flutter 性能优化:从原理到实践的全面指南 Flutter 是一个高性能的跨平台框架,但在开发复杂应用时,性能问题仍然可能出现。性能优化是开发高质量 Flutter 应用的关键。本篇博客将从 Flutter 的渲染原理出发,结合实际场景…...

springcloud的组件及作用

Spring Cloud是一个用于构建分布式系统的工具集,它提供了一系列组件来简化微服务架构的开发和部署。以下是一些关键的Spring Cloud组件及其作用: 1. 服务注册与发现 Eureka:Eureka是Spring Cloud中的核心组件之一,用于实现服务注…...

认识Vue3

目录 1. Vue3的优势 2. Vue2 选项式 API vs Vue3 组合式API 使用create-vue搭建Vue3项目 1. 认识create-vue 2. 使用create-vue创建Vue3项目 熟悉Vue3项目目录和关键文件 组合式API - setup选项 1. setup选项的写法和执行时机 2. setup中写代码的特点 组合式API - re…...

Node.js 中的 Event 模块详解

Node.js 中的 Event 模块是实现事件驱动编程的核心模块。它基于观察者模式,允许对象(称为“事件发射器”)发布事件,而其他对象(称为“事件监听器”)可以订阅并响应这些事件。这种模式非常适合处理异步操作和…...

【JavaEE进阶】MyBatis通过注解实现增删改查

目录 🍃前言 🍀打印日志 🌴传递参数 🎋增(Insert) 🚩返回主键 🎄删(Delete) 🌲改(Update) 🌳查(Select) 🚩起别名 🚩结果映射 🚩开启驼…...

【GESP C++三级考试考点详细解读】

GESP C三级考试考点解读及洛谷OJ练习题单 1. 数据编码(原码、反码、补码) 考点解读: 理解计算机中数值的二进制表示方式,包括原码(符号位绝对值)、反码(符号位不变,其余位取反&…...

算法——舞蹈链算法

一,基本概念 算法简介 舞蹈链算法(Dancing Links,简称 DLX)是一种高效解决精确覆盖问题的算法,实际上是一种数据结构,可以用来实现 X算法,以解决精确覆盖问题。由高德纳(Donald E.…...

Java状态机

目录 1. 概念 2. 定义状态机 3. 生成一个状态机 4. 使用 1. 概念 在Java的应用开发里面,应该会有不少的人接触到一个业务场景下,一个数据的状态会发生多种变化,最经典的例子例如订单,当然还有像用户的状态变化(冻结…...

3.1 Hugging Face Transformers快速入门:零基础到企业级开发的实战指南

Hugging Face Transformers快速入门:零基础到企业级开发的实战指南 一、Transformers库:NLP领域的"瑞士军刀" 1.1 核心能力全景 预训练模型库:支持150,000+模型(BERT、GPT、T5等)统一API设计:3行代码完成文本分类、生成、翻译等任务多模态支持:文本、图像、音…...

Java+SpringBoot+数据可视化的家庭记账小程序(程序+论文+安装+调试+售后等)

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,我会一一回复,希望帮助更多的人。 系统介绍 在当下这个科技日新月异、经济蓬勃向上的时代,中国经济正以令人瞩目的速度迅…...

Java-数据结构-(HashMap HashSet)

一、Tree和Hash的区别 在上一篇文章中,我们讲到了"TreeMap"和"TreeSet",但当我们刷题的时候却会发现,实际应用Map和Set时,却常常都只会用"HashMap"和"HashSet",这是为什么呢…...

【Prometheus】prometheus结合pushgateway实现脚本运行状态监控

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全…...

python爬虫系列课程3:解决爬虫过程中遇到的编码问题

python爬虫系列课程3:解决爬虫过程中遇到的乱码问题 在爬取某些网站时,以4399小游戏网站为例,正常编写爬虫代码并执行之后会出现乱码,代码如下: import requestsheaders = {User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko…...

ocr智能票据识别系统|自动化票据识别集成方案

在企业日常运营中,对大量票据实现数字化管理是一项耗时且容易出错的任务。随着技术的进步,OCR(光学字符识别)智能票据识别系统的出现为企业提供了一个高效、准确的解决方案,不仅简化了财务流程,还大幅提升了…...

Go入门之map

map类型是引用类型,必须初始化才能使用,为key-value形式 var userinfo make(map[string]string)userinfo["username"] "zhangsan"var user map[string]string{"username": "张三","age": &qu…...

SpringBoot 中封装 Cors 自动配置

在现代 Web 开发中,跨域资源共享(CORS)是一个常见的问题。Spring Boot 提供了灵活的方式来处理 CORS 配置。本文将介绍如何通过自动配置的方式,在 Spring Boot 应用程序中全局配置 CORS。 背景 当浏览器从一个域名的网页去请求另…...

Github很慢/无法访问:简单两步搞定

第一步:获取github当前的DNS列表 第二步:把它们复制到自己本地的hosts文件中,保存 比大象装冰箱还少一步!( 下面具体说怎么操作 ~) 获取github当前的DNS列表 http://raw.hellogithub.com/hosts 把这个地址粘贴到浏…...

反射机制的简单示例

一个使用反射机制的简单示例&#xff0c;这个示例将展示如何使用反射来实现一个通用的数据导出功能。 首先&#xff0c;让我们创建必要的项目结构和文件&#xff1a; 首先修改 pom.xml 添加依赖&#xff1a; <?xml version"1.0" encoding"UTF-8"?&…...

DeepSeek在学术读写翻译中的独特优势

上下文理解能力 DeepSeek的核心优势之一在于其卓越的上下文理解能力。它能够根据前文内容准确理解和回应用户的提问或指令&#xff0c;确保对话的连贯性和相关性。这一能力在处理长篇对话和复杂文本时尤为重要&#xff0c;能够帮助用户更好地把握整体逻辑和细节。 2. 翻译专业…...

rust笔记4-属性derive

在 Rust 中,#[derive] 是一种属性(attribute),用于自动为类型实现某些 Trait。通过 #[derive],编译器可以自动生成这些 Trait 的默认实现,从而减少手动编写重复代码的工作量。 #[derive] 通常用于实现一些常见的 Trait,例如: Debug:为类型生成格式化输出的代码。Clon…...

前端(AJAX)学习笔记(CLASS 2):图书管理案例以及图片上传

* BootStrap弹框 功能&#xff1a;不离开当前页面&#xff0c;显示单独内容&#xff0c;供用户操作 步骤&#xff1a; 1、引入bootstrap.css和bootstrap.js 2、准备弹框标签&#xff0c;确认结构 3、通过自定义属性&#xff0c;控制弹框的显示和隐藏 其中的bootstrap.css…...

跟李沐学AI:InstructGPT论文精读(SFT、RLHF)

原论文&#xff1a;[2203.02155] Training language models to follow instructions with human feedback 原视频&#xff1a;InstructGPT 论文精读【论文精读48】_哔哩哔哩_bilibili 简介 1. RLHF 的基本概念 RLHF 是一种结合强化学习和人类反馈的训练方法&#xff0c;旨在…...

RedisTemplate存储含有特殊字符解决

ERROR信息: 案发时间: 2025-02-18 01:01 案发现场: UserServiceImpl.java 嫌疑人: stringRedisTemplate.opsForValue().set(SystemConstants.LOGIN_CODE_PREFIX phone, code, Duration.ofMinutes(3L)); // 3分钟过期作案动机: stringRedisTemplate继承了Redistemplate 使用的…...

燧光 XimmerseMR SDK接入Unity

官网SDK文档连接&#xff1a; RhinoX Unity XR SDK 一&#xff1a;下载SDK 下载链接&#xff1a;RhinoX Unity XR SDK 二&#xff1a;打开Unity项目&#xff0c;添加Package 1、先添加XR Core Utilties包和XR Interaction Toolkit包 2、导 2、再导入下载好的燧光SDK 三&…...

Mycat中间件

一、概述 Mycat是开源的&#xff0c;活跃的、基于java语言编写的MySQL数据库中间件。可以像使用MySQL一样使用mycat&#xff0c;对于开发人员来说根本感觉不到mycat的存在&#xff1b; 二、安装 Mycat是采用java语言开发的开源数据库中间件&#xff0c;支持windows和linux运行环…...

【HBase】HBaseJMX 接口监控信息实现钉钉告警

目录 一、JMX 简介 二、JMX监控信息钉钉告警实现 一、JMX 简介 官网&#xff1a;Apache HBase ™ Reference Guide JMX &#xff08;Java管理扩展&#xff09;提供了内置的工具&#xff0c;使您能够监视和管理Java VM。要启用远程系统的监视和管理&#xff0c;需要在启动Java…...

OpenLayers总结3

一、 静态测距 1.原理 静态测距主要是针对地图上已有的矢量要素&#xff08;如线要素&#xff09;&#xff0c;利用 OpenLayers 提供的几何计算函数来获取其长度。在实际操作中&#xff0c;先加载包含几何要素的 GeoJSON 数据到矢量图层&#xff0c;当鼠标指针移动到要素上时…...

【OpenCV】在Liunx中配置OpenCV环境变量

将 /usr/local/include/opencv4 加入到环境变量中&#xff0c;可以帮助编译器找到 OpenCV 的头文件。这可以通过设置 CPLUS_INCLUDE_PATH 和 C_INCLUDE_PATH 环境变量来实现。以下是具体步骤&#xff1a; 方法一&#xff1a;临时设置环境变量 如果您希望临时设置这些环境变量…...

游戏引擎学习第109天

回顾目前进展 在这一期中&#xff0c;讨论了游戏开发中的一个重要问题——如何处理Z轴值的表示&#xff0c;尤其是在一个3D游戏中&#xff0c;如何更好地表示和存储这些值。上次的进展中&#xff0c;已经解决了透视投影的问题&#xff0c;意味着渲染部分的Z轴代码基本上已经完…...

npm、yarn、pnpm 的异同及为何推荐 pnpm

文章目录 一、引言二、npm 介绍&#xff08;一&#xff09;工作原理和特点&#xff08;二&#xff09;优势与不足 三、yarn 介绍&#xff08;一&#xff09;诞生背景和特性&#xff08;二&#xff09;与 npm 的主要区别 四、pnpm 介绍&#xff08;一&#xff09;核心优势和创新…...

基于遗传算法排课系统

一、遗传算法介绍&#xff1a; 遗传算法核心的任务是要通过编码体系&#xff0c;给出解决方案的染色体表现规则&#xff0c;首先需要随机初始化一定数量的种群&#xff08;population&#xff09;&#xff0c;而种群则由一定数目的个体(individual)构成。每个个体实际上是染色体…...

Windows 图形显示驱动开发-GpuMmu 示例方案

本文介绍常见使用方案以及实现这些方案所需的操作顺序。 更新进程的页表条目 下面是更新页表条目以将属于进程 (P) 的分配映射到物理内存的操作序列。 假定页表分配已驻留在图形处理单元中GPU)内存段。 视频内存管理器在分页进程上下文中为进程 P 的根页表分配分配虚拟地址范…...

【Linux AnolisOS】关于Docker的一系列问题。尤其是拉取东西时的网络问题,镜像源问题。

AnolisOS 8中使用Docker部署&#xff08;全&#xff09;_anolis安装docker-CSDN博客 从在虚拟机安装龙蜥到安装docker上面这篇文章写的很清晰了&#xff0c;我重点讲述我解决文章里面问题一些的方法。 问题1&#xff1a; docker: Get https://registry-1.docker.io/v2/: net/h…...

策略+适配器模式详解

文章目录 1.策略模式1.目录结构2.Strategy.java 策略接口3.StrategyA.java 策略A4.StrategyB.java 策略B5.StrategyC.java 策略C6.Context.java 策略上下文7.Client.java 客户端8.小结 2.适配器模式1.目录结构2.CustomPaymentProcessor.java 自己的支付接口3.PayPalPaymentServ…...