OpenGL ES -> 投影变换矩阵完美解决绘制GLSurfaceView绘制图形拉伸问题
GLSurfaceView
绘制图形拉伸问题
- 假如在
XML
文件中声明GLSurfaceView
的宽高为android:layout_width="match_parent"
android:layout_height="match_parent
GLSurfaceView
绘制的图形在Open GL ES
坐标系中,而Open GL ES
坐标系会根据GLSurfaceView
的宽高将绘制的图形拉伸,比如绘制一个正方形,有可能绘制成矩形,解决方案:Matrix.frustumM
透视投影解决Matrix.orthoM
正交投影解决
// 透视投影矩阵
public static void frustumM(float[] m, int offset,float left, float right, float bottom, float top,float near, float far) {}// 正交投影矩阵
public static void orthoM(float[] m, int mOffset,float left, float right, float bottom, float top,float near, float far) {}
OpenGL ES
坐标系
XML文件
<?xml version="1.0" encoding="utf-8"?>
<com.example.myapplication.MyGLSurfaceViewxmlns:android="http://schemas.android.com/apk/res/android"android:layout_width="match_parent"android:layout_height="match_parent" />
绘制拉伸正方形
自定义GLSurfaceView
代码
class MyGLSurfaceView(context: Context, attrs: AttributeSet) : GLSurfaceView(context, attrs) {private var mRenderer = MyGLRenderer()init {// 设置 OpenGL ES 3.0 版本setEGLContextClientVersion(3)setRenderer(mRenderer)// 设置渲染模式, 仅在需要重新绘制时才进行渲染,以节省资源renderMode = RENDERMODE_WHEN_DIRTY}
}
自定义GLSurfaceView.Renderer
代码
class MyGLRenderer : GLSurfaceView.Renderer {private var mDrawData: DrawData? = nulloverride fun onSurfaceCreated(gl: GL10?, config: EGLConfig?) {// 当 Surface 创建时调用, 进行 OpenGL ES 环境的初始化操作, 设置清屏颜色为青蓝色 (Red=0, Green=0.5, Blue=0.5, Alpha=1)GLES30.glClearColor(0.0f, 0.5f, 0.5f, 1.0f)mDrawData = DrawData().apply {initVertexBuffer()initShader()}}override fun onSurfaceChanged(gl: GL10?, width: Int, height: Int) {// 当 Surface 尺寸发生变化时调用,例如设备的屏幕方向发生改变, 设置视口为新的尺寸,视口是指渲染区域的大小GLES30.glViewport(0, 0, width, height)}override fun onDrawFrame(gl: GL10?) {// 每一帧绘制时调用, 清除颜色缓冲区GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT)mDrawData?.drawSomething()}
}
GLSurfaceView
需要的绘制数据
class DrawData{var mProgram : Int = -1var NO_OFFSET = 0var VERTEX_POS_DATA_SIZE = 3// 1. 准备正方形的顶点数据Float数组, 分配顶点数据Float数组的直接内存val vertex = floatArrayOf(-0.5f, 0.5f, 0.0f, // 左上-0.5f, -0.5f, 0.0f, // 左下0.5f, 0.5f, 0.0f, // 右上0.5f, -0.5f, 0.0f, // 右下)val vertexBuffer = ByteBuffer.allocateDirect(vertex.size * 4) // 分配直接内存.order(ByteOrder.nativeOrder()) // 使用小端, 即低地址存放低位数据, 高地址存放高位数据.asFloatBuffer()// 2. 创建顶点缓冲区对象(Vertex Buffer Object, VBO), 并上传顶点数据到缓冲区对象中fun initVertexBuffer(){vertexBuffer.put(vertex) // 将顶点数据放入 FloatBuffervertexBuffer.position(0) // 在将数据放入缓冲区后,位置指针会指向缓冲区的末尾。重置位置指针为 0,使得在后续操作中可以从缓冲区的开始位置读取数据val vbo = IntArray(1)GLES30.glGenBuffers(1, vbo, 0) // 生成一个缓冲区对象ID,并存储在数组 vbo 中,存放位置为0GLES30.glBindBuffer(GLES30.GL_ARRAY_BUFFER, vbo[0]) // 绑定生成的顶点缓冲区对象,使其成为当前缓冲区操作的目标GLES30.glBufferData(GLES30.GL_ARRAY_BUFFER,vertex.size * 4, // 数据总字节数 = 顶点数 * Float占4字节vertexBuffer,GLES30.GL_STATIC_DRAW)}fun initShader() {val vertexShaderCode = """#version 300 eslayout (location = 0) in vec4 aPosition;void main() {gl_Position = aPosition;}""".trimIndent() // 顶点着色器代码val fragmentShaderCode = """#version 300 esprecision mediump float;uniform vec4 vColor;out vec4 fragColor;void main() {fragColor = vColor;}""".trimIndent() // 片段着色器代码// 3. 加载顶点着色器和片段着色器, 并创建着色器程序val vertexShader = LoadShaderUtil.loadShader(GLES30.GL_VERTEX_SHADER, vertexShaderCode)val fragmentShader = LoadShaderUtil.loadShader(GLES30.GL_FRAGMENT_SHADER, fragmentShaderCode)mProgram = GLES30.glCreateProgram()GLES30.glAttachShader(mProgram, vertexShader)GLES30.glAttachShader(mProgram, fragmentShader)GLES30.glLinkProgram(mProgram)GLES30.glUseProgram(mProgram)}// 4. 使用着色器程序绘制图形fun drawSomething(){// 5. 获取顶点数据的位置, 并使用该位置的数据val positionHandle = GLES30.glGetAttribLocation(mProgram, "aPosition")GLES30.glEnableVertexAttribArray(positionHandle)GLES30.glVertexAttribPointer(positionHandle, VERTEX_POS_DATA_SIZE, GLES30.GL_FLOAT, false, 0, 0)// 6. 设置片段着色器的颜色val colorHandle = GLES30.glGetUniformLocation(mProgram, "vColor")GLES30.glUniform4f(colorHandle, 1.0f, 0.5f, 0.5f, 1.0f) // 红色// 7. 绘制正方形GLES30.glDrawArrays(GLES30.GL_TRIANGLE_STRIP, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)GLES30.glDisableVertexAttribArray(positionHandle)}
}object LoadShaderUtil{// 创建着色器对象fun loadShader(type: Int, source: String): Int {val shader = GLES30.glCreateShader(type)GLES30.glShaderSource(shader, source)GLES30.glCompileShader(shader)return shader}
}
效果图
透视投影绘制不拉伸的正方形
透视投影PerspectiveProjection
自定义GLSurfaceView
代码
class MyGLSurfaceView(context: Context, attrs: AttributeSet) : GLSurfaceView(context, attrs) {private var mRenderer = MyGLRenderer()init {// 设置 OpenGL ES 3.0 版本setEGLContextClientVersion(3)setRenderer(mRenderer)// 设置渲染模式, 仅在需要重新绘制时才进行渲染,以节省资源renderMode = RENDERMODE_WHEN_DIRTY}
}
自定义GLSurfaceView.Renderer
代码
class MyGLRenderer : GLSurfaceView.Renderer {private var mDrawData: DrawDataWithPerspectiveProjection? = nulloverride fun onSurfaceCreated(gl: GL10?, config: EGLConfig?) {// 当 Surface 创建时调用, 进行 OpenGL ES 环境的初始化操作, 设置清屏颜色为青蓝色 (Red=0, Green=0.5, Blue=0.5, Alpha=1)GLES30.glClearColor(0.0f, 0.5f, 0.5f, 1.0f)mDrawData = DrawDataWithPerspectiveProjection().apply {initVertexBuffer()initShader()}}override fun onSurfaceChanged(gl: GL10?, width: Int, height: Int) {// 当 Surface 尺寸发生变化时调用,例如设备的屏幕方向发生改变, 设置视口为新的尺寸,视口是指渲染区域的大小GLES30.glViewport(0, 0, width, height)mDrawData?.computeMVPMatrix(width.toFloat(), height.toFloat())}override fun onDrawFrame(gl: GL10?) {// 每一帧绘制时调用, 清除颜色缓冲区GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT)mDrawData?.drawSomething()}
}
GLSurfaceView
需要的绘制数据
class DrawDataWithPerspectiveProjection {var mProgram : Int = -1var NO_OFFSET = 0var VERTEX_POS_DATA_SIZE = 3// 1. 准备正方形的顶点数据Float数组, 分配顶点数据Float数组的直接内存val vertex = floatArrayOf(-0.5f, 0.5f, 0.0f, // 左上-0.5f, -0.5f, 0.0f, // 左下0.5f, 0.5f, 0.0f, // 右上0.5f, -0.5f, 0.0f, // 右下)val vertexBuffer = ByteBuffer.allocateDirect(vertex.size * 4) // 分配直接内存.order(ByteOrder.nativeOrder()) // 使用小端, 即低地址存放低位数据, 高地址存放高位数据.asFloatBuffer()// 2. 创建顶点缓冲区对象(Vertex Buffer Object, VBO), 并上传顶点数据到缓冲区对象中fun initVertexBuffer(){vertexBuffer.put(vertex) // 将顶点数据放入 FloatBuffervertexBuffer.position(0) // 在将数据放入缓冲区后,位置指针会指向缓冲区的末尾。重置位置指针为 0,使得在后续操作中可以从缓冲区的开始位置读取数据val vbo = IntArray(1)GLES30.glGenBuffers(1, vbo, 0) // 生成一个缓冲区对象ID,并存储在数组 vbo 中,存放位置为0GLES30.glBindBuffer(GLES30.GL_ARRAY_BUFFER, vbo[0]) // 绑定生成的顶点缓冲区对象,使其成为当前缓冲区操作的目标GLES30.glBufferData(GLES30.GL_ARRAY_BUFFER,vertex.size * 4, // 数据总字节数 = 顶点数 * Float占4字节vertexBuffer,GLES30.GL_STATIC_DRAW)}fun initShader() {val vertexMapShaderCode = """#version 300 esuniform mat4 uMVPMatrix;layout (location = 0) in vec4 aPosition;void main() {gl_Position = uMVPMatrix * aPosition;}""".trimIndent()val fragmentShaderCode = """#version 300 esprecision mediump float;uniform vec4 vColor;out vec4 fragColor;void main() {fragColor = vColor;}""".trimIndent() // 片段着色器代码// 3. 加载顶点着色器和片段着色器, 并创建着色器程序val vertexShader = LoadShaderUtil.loadShader(GLES30.GL_VERTEX_SHADER, vertexMapShaderCode)val fragmentShader = LoadShaderUtil.loadShader(GLES30.GL_FRAGMENT_SHADER, fragmentShaderCode)mProgram = GLES30.glCreateProgram()GLES30.glAttachShader(mProgram, vertexShader)GLES30.glAttachShader(mProgram, fragmentShader)GLES30.glLinkProgram(mProgram)GLES30.glUseProgram(mProgram)}// 4. 使用着色器程序绘制图形fun drawSomething(){// 新增矩阵传递代码val matrixHandle = GLES30.glGetUniformLocation(mProgram, "uMVPMatrix")GLES30.glUniformMatrix4fv(matrixHandle, 1, false, mMVPMatrix, 0)// 5. 获取顶点数据的位置, 并使用该位置的数据val positionHandle = GLES30.glGetAttribLocation(mProgram, "aPosition")GLES30.glEnableVertexAttribArray(positionHandle)GLES30.glVertexAttribPointer(positionHandle, VERTEX_POS_DATA_SIZE, GLES30.GL_FLOAT, false, 0, 0)// 6. 设置片段着色器的颜色val colorHandle = GLES30.glGetUniformLocation(mProgram, "vColor")GLES30.glUniform4f(colorHandle, 1.0f, 0.5f, 0.5f, 1.0f) // 红色// 7. 绘制正方形GLES30.glDrawArrays(GLES30.GL_TRIANGLE_STRIP, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)GLES30.glDisableVertexAttribArray(positionHandle)}// 最终变化矩阵private val mMVPMatrix = FloatArray(16)// 投影矩阵private val mProjectionMatrix = FloatArray(16)// 相机矩阵private val mViewMatrix = FloatArray(16)private var mViewPortRatio = 1ffun computeMVPMatrix(width: Float, height: Float) {// 1. 设置透视投影矩阵,为了让近平面宽高比与屏幕宽高比一致takeIf { width > height }?.let {mViewPortRatio = width / heightMatrix.frustumM(mProjectionMatrix, // 透视投影矩阵NO_OFFSET, // 偏移量-mViewPortRatio, // 近平面的坐标系左边界mViewPortRatio, // 近平面的坐标系右边界-1f, // 近平面的坐标系的下边界1f, // 近平面坐标系的上边界1f, // 近平面距离相机距离2f // 远平面距离相机距离)} ?: run {mViewPortRatio = height / widthMatrix.frustumM(mProjectionMatrix, // 透视投影矩阵NO_OFFSET, // 偏移量-1f, // 近平面坐标系左边界1f, // 近平面坐标系右边界-mViewPortRatio, // 近平面坐标系下边界mViewPortRatio, // 近平面坐标系上边界1f, // 近平面距离相机距离2f // 远平面距离相机距离)}// 2. 设置相机矩阵// 相机位置(0f, 0f, 1f)// 物体位置(0f, 0f, 0f)// 相机方向(0f, 1f, 0f)Matrix.setLookAtM(mViewMatrix, // 相机矩阵NO_OFFSET, // 偏移量0f, // 相机位置x0f, // 相机位置y1f, // 相机位置z0f, // 物体位置x0f, // 物体位置y0f, // 物体位置z0f, // 相机上方向x1f, // 相机上方向y0f // 相机上方向z)// 3. 设置最终变化矩阵Matrix.multiplyMM(mMVPMatrix, // 最终变化矩阵NO_OFFSET, // 偏移量mProjectionMatrix, // 投影矩阵NO_OFFSET, // 投影矩阵偏移量mViewMatrix, // 相机矩阵NO_OFFSET // 相机矩阵偏移量)}
}
效果图
相关文章:
OpenGL ES -> 投影变换矩阵完美解决绘制GLSurfaceView绘制图形拉伸问题
GLSurfaceView绘制图形拉伸问题 假如在XML文件中声明GLSurfaceView的宽高为 android:layout_width"match_parent"android:layout_height"match_parent GLSurfaceView绘制的图形在Open GL ES坐标系中,而Open GL ES坐标系会根据GLSurfaceView的宽高将…...
【Three.js】JS 3D library(一个月进化史)
#春节过完了,该继续投入学习了~ 作为一个平面开发者,想要增进更多的技能,掌握web3D开发# 前置知识与技能 1. JavaScript 基础 - 掌握ES6语法(类、模块、箭头函数、解构等) - 熟悉异步编程(Promise、…...
在 debian 12 上安装 mysqlclient 报错
报错如下 Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple Collecting mysqlclientUsing cached https://pypi.tuna.tsinghua.edu.cn/packages/61/68/810093cb579daae426794bbd9d88aa830fae296e85172d18cb0f0e5dd4bc/mysqlclient-2.2.7.tar.gz (91 kB)Installi…...
wordpress主题插件开发中高频使用的38个函数
核心模板函数 get_header()/get_footer()/get_sidebar() – 加载模板部件 the_title()/the_content()/the_excerpt() – 显示文章标题、内容、摘要 the_post() – 循环中获取文章数据 bloginfo(‘url’) – 获取站点URL wp_head()/wp_footer() – 输出头部/尾部代码 wp_n…...
BMS项目-面试及答疑整理
1. SOC计算用的什么原理实现的? bms目前计算SOC使用的安时积分+开路电压首先得对电池有一个抽象得概念,把电池比作游泳池,电量比作游泳池里面的水,电流比作流入和流出得水流,那么充电也就是往游泳池里面灌入水流安时积分:对水流进行一个实时监测,比如1S一次监测,那么每…...
js第十二题
题十二:轮播图 要求: 1.鼠标不在图片上方时,进行自动轮播,并且左右箭头不会显示;当鼠标放在图片上方时,停止轮播,并且左右箭头会显示; 2.图片切换之后,图片中下方的小…...
LeetCode-76.最小覆盖子串
1、题目描述: 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 "" 。 注意: 对于 t 中重复字符,我们寻找的子字符串中该字符数量必须…...
CAS单点登录(第7版)20.用户界面
如有疑问,请看视频:CAS单点登录(第7版) 用户界面 概述 概述 对 CAS 用户界面 (UI) 进行品牌化涉及编辑 CSS 样式表以及一小部分相对简单的 HTML 包含文件,也称为视图。(可选&…...
【强化学习的数学原理】第08课-值函数近似-笔记
学习资料:bilibili 西湖大学赵世钰老师的【强化学习的数学原理】课程。链接:强化学习的数学原理 西湖大学 赵世钰 文章目录 一、例子:曲线拟合二、原理-目标函数介绍三、原理-优化算法和函数选择四、原理-示例与分析五、Sarsa和Q-learning六、…...
基于css实现正六边形的三种方案
方案一:通过旋转三个长方形生成正六边形 分析: 如下图所示,我们可以通过旋转三个长方形来得到一个正六边形。疑问: 1. 长方形的宽高分别是多少? 设正六边形的边长是100,基于一些数学常识,可以…...
React VS Vue
React 和 Vue 是目前最流行的两个前端框架,它们在设计理念、生态系统和开发体验上各有特点。以下是对 React 和 Vue 的全方位对比: 1. 核心设计理念 React 库而非框架:React 是一个用于构建 UI 的库,专注于视图层,其…...
CMake 编译工具
在使用 CMake 时,你可以通过指定工具链文件来设置编译器(如 GCC、G 或 Clang)。以下是具体步骤: 1. 创建工具链文件 首先,创建一个工具链文件(例如 toolchain.cmake),并在其中指定…...
el-tree选中数据重组成树
vueelement-ui 实现el-tree选择重新生成一个已选中的值组成新的数据树,效果如下 <template><div class"flex"><el-tree class"tree-row" :data"list" ref"tree" :props"{children: children, label: …...
IO、NIO解读和不同点,以及常用的文件流操作方法
java高级——IO、NIO解读和不同点,以及常用的文件流操作方法 前情提要文章介绍1. 什么是IO1.1 节点的分类1.2 传输方式 2. 七大传输方式解读2.1 File类解读2.1.1 创建文件的三种方式2.2.2 File的常用方法2.2.3 如何正确认识FileUtils 2.2 字节流(核心&am…...
51单片机-按键
1、独立按键 1.1、按键介绍 轻触开关是一种电子开关,使用时,轻轻按开关按钮就可使开关接通,当松开手时,开关断开。 1.2、独立按键原理 按键在闭合和断开时,触点会存在抖动现象。P2\P3\P1都是准双向IO口,…...
Spring Boot Actuator 监控✨
Spring Boot Actuator 是 Spring Boot 提供的一个强大的监控和管理工具,它可以帮助你深入了解和监控你的应用程序的运行状态。通过 Actuator,你可以获取应用程序的健康状况、内存使用情况、线程信息、HTTP 请求跟踪等。🚀 核心知识点 &#…...
SpringBoot论坛网站 – 功能详解与部署教程
项目概述 《SpringBoot的论坛网站》是一个基于SpringBoot框架开发的现代化论坛平台,旨在为用户提供一个便捷的交流空间。该项目不仅功能丰富,还具备良好的扩展性和易用性,适合用于学习、分享和讨论各类话题。以下是项目的核心功能模块和部署…...
俄罗斯方块游戏完整代码示例
以下是一个基于Cocos Creator引擎开发的俄罗斯方块游戏的完整代码示例。该游戏实现了俄罗斯方块的基本功能,并且代码整合在单个文件中,无需任何外部依赖,可以直接在浏览器中运行。 1. 创建Cocos Creator项目 首先,确保你已经安装了…...
【设计模式】【结构型模式】组合模式(Composite)
👋hi,我不是一名外包公司的员工,也不会偷吃茶水间的零食,我的梦想是能写高端CRUD 🔥 2025本人正在沉淀中… 博客更新速度 👍 欢迎点赞、收藏、关注,跟上我的更新节奏 🎵 当你的天空突…...
【设计模式】03-理解常见设计模式-行为型模式(专栏完结)
前言 前面我们介绍完创建型模式和创建型模式,这篇介绍最后的行为型模式,也是【设计模式】专栏的最后一篇。 一、概述 行为型模式主要用于处理对象之间的交互和职责分配,以实现更灵活的行为和更好的协作。 二、常见的行为型模式 1、观察者模…...
Qt 6.8版本 自制windows下运行软件<一>——串口调试助手
自制串口调试助手 哔哩哔哩效果展示 一、 说明 本人在读学生,跟随哔哩哔哩网站北京迅为公司的教学视频,进行学习qt,由于视频中的实现过程是利用ui界面的实现,本人在学习过程中,通过完全敲代码的形式,实现同…...
Qt——静态函数中发送信号方法总结(不需要通过类内部信号与槽实现,关键是清楚你发送的信号源自哪个对象)
【系列专栏】:博主结合工作实践输出的,解决实际问题的专栏,朋友们看过来! 《项目案例分享》 《极客DIY开源分享》 《嵌入式通用开发实战》 《C++语言开发基础总结》 《从0到1学习嵌入式Linux开发》 《QT开发实战》 《Android开发实战》...
深入解析 vLLM:高性能 LLM 服务框架的架构之美(一)原理与解析
修改内容时间2.4.1处理请求的流程,引用更好的流程图2025.02.11首发2025.02.08 深入解析 vLLM:高性能 LLM 服务框架的架构之美(一)原理与解析 深入解析 vLLM:高性能 LLM 服务框架的架构之美(二)…...
关于视频去水印的一点尝试
一. 视频去水印的几种方法 1. 使用ffmpeg delogo滤镜 delogo 滤镜的原理是通过插值算法,用水印周围的像素填充水印的位置。 示例: ffmpeg -i input.mp4 -filter_complex "[0:v]delogox420:y920:w1070:h60" output.mp4 该命令表示通过滤镜…...
前端常见面试题-2025
vue4.0 Vue.js 4.0 是在 2021 年 9 月发布。Vue.js 4.0 是 Vue.js 的一个重要版本,引入了许多新特性和改进,旨在提升开发者的体验和性能。以下是一些关键的更新和新特性: Composition API 重构:Vue 3 引入了 Composition API 作为…...
JavaEE-SpringBoot快速入门
文章目录 本节目标Maven什么是Maven创建一个Maven项目maven项目功能maven的依赖管理全球仓库, 私服, 本地服务器, 配置国内镜像 第一个SpringBoot项目创建项目运行SpringBoot程序 SpringBoot原理初步Web服务器 总结 本节目标 了解什么是maven, 配置国内源使用Springboot创建项…...
盛铂科技 SMF106 低相位噪声贴片式频率综合器模块
在现代通信和电子设备领域,频率综合器作为关键组件,其性能优劣直接影响系统的整体表现。盛铂科技的 SMF106 低相位噪声贴片式频率综合器,以其卓越的性能和独特设计,成为众多高性能系统的选择。 一、频率覆盖范围广,步进…...
前端【技术方案】重构项目
1. 明确重构目标 优化性能 减少页面加载时间降低资源占用 提升代码可维护性 更规范的代码风格更清晰的代码结构更明确的模块设计 扩展功能 为项目添加新功能改进现有功能 2. 评估项目现状 审查代码 全面检查现有代码,找出代码中的问题,如代码冗余、耦合…...
第十六天 HarmonyOS WebView开发实战:从加载网页到与JavaScript交互
HarmonyOS WebView开发实战:从加载网页到与JavaScript交互 一、WebView基础与HarmonyOS特性解析 在移动应用开发中,WebView作为内嵌浏览器组件,在HarmonyOS(鸿蒙系统)中扮演着重要角色。它不仅能够加载本地和远程网页…...
Unity学习part2
为bilibili教程【【Unity教程】零基础带你从小白到超神】 https://www.bilibili.com/video/BV1gQ4y1e7SS/?p50&share_sourcecopy_web&vd_source6e7a3cbb802eb986578ad26fae1eeaab的笔记 1、灯光的使用 定向光模拟太阳,是平行光。旋转定向光,光…...
贪吃蛇游戏
贪吃蛇 一、html <div class"container" id"app"></div><script src"./js/index.js"></script>二、css * {margin: 0;top: 0;} .set {margin: 15px auto;width: 600px; } .container {width: 600px;height: 600px;bac…...
docker修改镜像默认存储路径(基于 WSL2 的迁移方法)
打开powershell窗口 任意地方shift右键 1、停止 WSL wsl --shutdown2、导出数据 wsl --export docker-desktop-data E:\docker\DockerDesktopdata\docker-desktop-data.tar wsl --export docker-desktop E:\docker\DockerDesktop\docker-desktop.tar3、取消注册 wsl --un…...
C#+SqlSugar实现主从库读写分离
在使用 **SqlSugar** 进行分库操作时,可以通过配置多个数据库连接,并根据业务逻辑动态切换数据库。以下是一个完整的分库示例,展示如何实现分库功能。 --- ### **1. 安装 NuGet 包** 安装 SqlSugarCore: bash dotnet add packag…...
从无序到有序:上北智信通过深度数据分析改善会议室资源配置
当前企业普遍面临会议室资源管理难题,预约机制不完善和临时会议多导致资源调度不合理,既有空置又有过度拥挤现象。 针对上述问题,上北智信采用了专业数据分析手段,巧妙融合楼层平面图、环形图、折线图和柱形图等多种可视化工具&a…...
以太网详解(八)传输层协议:TCP/UDP 协议
文章目录 传输层协议概述为什么需要传输层?传输层功能网络层与传输层在实现 “端到端” 传输的异同两类服务:面向连接/无连接服务 传输控制协议 TCPTCP 协议数据单元格式TCP 的重传机制快重传和快恢复快重传举例快恢复算法 用户数据报协议 UDPUDP 概述UDP 基本工作过…...
CentOS 8 配置bond
CentOS 8 网络配置的详细步骤和对应的配置文件内容。 1. 配置聚合网卡(Bonding) 配置intranet聚合网卡 在/etc/sysconfig/network-scripts/目录下创建ifcfg-intranet文件,内容如下: TYPE=Bond NAME=intranet DEVICE=intranet ONBOOT=yes BOOTPROTO=none IPADDR=10.2.1.22…...
C语言基础16:二维数组、字符数组
二维数组 定义 二维数组本质上是一个行列式的组合,也就是说二维数组由行和列两部分组成。属于多维数组,二维数组数据是通过行列进行解读。 二维数组可被视为一个特殊的一维数组,相当于二维数组又是一个一维数组,只不过它的元素…...
Java 同步锁性能的最佳实践:从理论到实践的完整指南
目录 一、同步锁性能分析 (一)性能验证说明 1. 使用同步锁的代码示例 2. 不使用同步锁的代码示例 3. 结果与讨论 (二)案例初步优化分析说明 1. 使用AtomicInteger原子类尝试优化分析 2. 对AtomicInteger原子类进一步优化 …...
思科、华为、H3C常用命令对照表
取消/关闭 思科no华为undo华三undo 查看 思科show华为display华三display 退出 思科exit华为quit华三quit 设备命名 思科hostname华为sysname华三sysname 进入全局模式 思科enable、config terminal华为system-view华三system-view 删除文件 思科delete华为delete华…...
[qt5学习笔记]Application Example示例程序源码解析
开发环境问题 vs2022下直接打开ui、ts文件失败 解决办法如下图, 设置designer独立运行。估计是嵌入运行存在些许bug。 同理,ts编辑工具linguist也存在这个问题。 qrc rc的编辑嵌入编辑都正常,但分离式更稳定可靠。 qt creator编译失败 原…...
华为交换机堆叠技术简介配置
目录 一、华为堆叠技术简介(一)提高可靠性(二)扩展端口数量(三)增大带宽(四)简化组网(五)长距离堆叠 二、华为交换机堆叠技术的案例及命令配置(一…...
腿足机器人之四- 卡尔曼滤波
腿足机器人之四卡尔曼滤波 概率学基础贝叶斯准则熵 卡尔曼滤波扩展卡尔曼滤波信息滤波器 在机器人(四足、人形)领域,感知和行动的不确定性可能由多种因素引起,如传感器噪声、外部环境的变化、非精确控制以及实时性算力限制等。 和…...
nginx 部署前端vue项目
👨⚕ 主页: gis分享者 👨⚕ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅! 👨⚕ 收录于专栏:前端工程师 文章目录 一、🍓什么是nginx?二、🍓nginx 部署…...
【第1章:深度学习概览——1.6 深度学习框架简介与选择建议】
嘿,各位老铁们,今天咱们来一场深度学习框架的深度探索之旅。在这个充满无限可能的深度学习时代,深度学习框架就像是连接理论与实践的桥梁,帮助我们从算法设计走向实际应用。随着技术的飞速发展,深度学习框架的选择变得越来越多样化,每一种框架都有其独特的优势和适用场景…...
NLLB 与 ChatGPT 双向优化:探索翻译模型与语言模型在小语种应用的融合策略
作者:来自 vivo 互联网算法团队- Huang Minghui 本文探讨了 NLLB 翻译模型与 ChatGPT 在小语种应用中的双向优化策略。首先介绍了 NLLB-200 的背景、数据、分词器和模型,以及其与 LLM(Large Language Model)的异同和协同关系。接着…...
C#的委托delegate与事件event
在C#中,delegate(委托)和 event(事件)是两个非常重要的概念,它们主要用于实现回调机制和事件驱动编程。下面详细介绍它们的原理和使用场景。 1. Delegate(委托) 1.1 委托的原理 委托…...
Spring Boot 集成MyBatis-Plus
文章目录 一、背景说明二、集成过程 2.1 引入 maven 依赖2.2 增加属性配置2.3 自动配置类 三、验证集成 3.1 控制器3.2 服务类3.3 Mapper接口类3.4 实体类3.4 不要忘记XML文件3.5 发起请求 四、技巧拓展 4.1 如何打印sql语句?4.2 如何对参数增加非空验证?…...
javacv将视频切分为m3u8视频并播放
学习链接 ffmpeg-demo 当前对应的 gitee代码 Spring boot视频播放(解决MP4大文件无法播放),整合ffmpeg,用m3u8切片播放。 springboot 通过javaCV 实现mp4转m3u8 上传oss 如何保护会员或付费视频?优酷是怎么做的? - HLS 流媒体加密 ffmpe…...
Docker 入门与实战:从安装到容器管理的完整指南
🚀 Docker 入门与实战:从安装到容器管理的完整指南 🌟 📖 简介 在现代软件开发中,容器化技术已经成为不可或缺的一部分。而 Docker 作为容器化领域的领头羊,以其轻量级、高效和跨平台的特性,深…...
计算机视觉:卷积神经网络(CNN)基本概念(二)
第一章:计算机视觉中图像的基础认知 第二章:计算机视觉:卷积神经网络(CNN)基本概念(一) 第三章:计算机视觉:卷积神经网络(CNN)基本概念(二) 第四章:搭建一个经典的LeNet5神经网络 接上一篇《计算机视觉&am…...