当前位置: 首页 > news >正文

LC-搜索二维矩阵II、相交链表、反转链表、回文链表、环形链表、环形链表ll

搜索二维矩阵II

方法:从右上角开始搜索

  • 我们可以从矩阵的右上角开始进行搜索。
  • 如果当前元素 matrix[i][j] 等于 target,我们直接返回 true
  • 如果 matrix[i][j] 大于 target,说明 target 只能出现在左边的列,所以我们将列指针向左移动。
  • 如果 matrix[i][j] 小于 target,说明 target 只能出现在下方的行,所以我们将行指针向下移动。
  • 我们重复这个过程,直到找到目标元素或者行列指针越界。
class Solution {public boolean searchMatrix(int[][] matrix, int target) {if(matrix == null || matrix.length == 0 || matrix[0].length == 0){return false;}int m = matrix.length;//行数int n = matrix[0].length;//列数int row = 0;//从第一行开始int col = n-1;//从最后一列开始while(row < m && col >= 0){if(matrix[row][col] == target){return true;}else if(matrix[row][col] > target){col--;//当前元素大于目标,左移}else{row++;//当前元素小于目标,下移}}return false;}
}

 相交链表

双指针法

  1. 两个指针分别指向两个链表的头节点
    我们设立两个指针 pApB,分别指向链表 A 和链表 B 的头节点。

  2. 同时移动两个指针

    • 每次移动一个指针,如果当前指针指向的节点为空,则将其指向另一个链表的头节点。
    • 这样做的目的是:让两个指针在遍历完自己的链表后,能够到达另一个链表的头节点,最终相遇的地方就是交点。
  3. 相遇
    如果两个指针相遇,则返回相遇的节点;如果两个指针同时指向 null,则说明链表没有交点。

这种方法的核心思想就是“同步走,互相切换”,确保两个指针走过相同的路程,因此可以在 O(m + n) 时间复杂度内解决问题。

设「第一个公共节点」为 node ,「链表 headA」的节点数量为 a ,「链表 headB」的节点数量为 b ,「两链表的公共尾部」的节点数量为 c ,则有:

头节点 headA 到 node 前,共有 a−c 个节点;
头节点 headB 到 node 前,共有 b−c 个节点;

考虑构建两个节点指针 A​ , B 分别指向两链表头节点 headA , headB ,做如下操作:

指针 A 先遍历完链表 headA ,再开始遍历链表 headB ,当走到 node 时,共走步数为:
a+(b−c)
指针 B 先遍历完链表 headB ,再开始遍历链表 headA ,当走到 node 时,共走步数为:
b+(a−c)
如下式所示,此时指针 A , B 重合,并有两种情况:

a+(b−c)=b+(a−c)
若两链表 有 公共尾部 (即 c>0 ) :指针 A , B 同时指向「第一个公共节点」node 。
若两链表 无 公共尾部 (即 c=0 ) :指针 A , B 同时指向 null 。
因此返回 A 即可。

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode(int x) {*         val = x;*         next = null;*     }* }*/
public class Solution {public ListNode getIntersectionNode(ListNode headA, ListNode headB) {ListNode pA = headA;ListNode pB = headB;while(pA != pB){pA = (pA == null) ? headB : pA.next;pB = (pB == null) ? headA : pB.next;}return pA;}
}

反转链表

双指针: 

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode reverseList(ListNode head) {ListNode cur = head,pre = null;while(cur != null){ListNode tmp = cur.next;cur.next = pre;pre = cur;cur = tmp;}return pre;}
}

 回文链表

思路:

  1. 找到链表的中间节点:使用快慢指针,慢指针每次走一步,快指针每次走两步,最终快指针会指向链表的尾部,慢指针则会指向链表的中间节点。
  2. 反转后半部分链表:将链表的后半部分进行反转,反转后的链表与前半部分进行比较。
  3. 比较前后部分:比较反转后的后半部分与前半部分的节点值,如果相同,则该链表是回文链表。
/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public boolean isPalindrome(ListNode head) {if(head == null || head.next == null){return true;//链表为空或只有一个元素}ListNode slow = head,fast = head;//快指针走两步,慢指针走一步,直到快指针到达末尾while(fast != null && fast.next != null){slow = slow.next;fast = fast.next.next;}//反转链表的后半部分ListNode secondHalf = reverse(slow);ListNode firstHalf = head;//比较前后部分的节点值while(secondHalf != null){if(firstHalf.val != secondHalf.val){return false;}firstHalf = firstHalf.next;secondHalf = secondHalf.next;}return true;}public ListNode reverse(ListNode head){ListNode prev = null,curr = head;while(curr != null){ListNode temp = curr.next;curr.next = prev;prev = curr;curr = temp;}return prev;}
}

环形链表

  • 初始化指针:使用两个指针,slowfastslow 每次走一步,fast 每次走两步。
  • 判断是否相遇:如果存在环,slowfast 会在环内相遇。如果没有环,fast 会指向 null,即链表的末尾。
  • 结束条件
    • 如果 slowfast 相遇,则说明链表有环,返回 true
    • 如果 fast 到达 null,则说明链表没有环,返回 false
/*** Definition for singly-linked list.* class ListNode {*     int val;*     ListNode next;*     ListNode(int x) {*         val = x;*         next = null;*     }* }*/
public class Solution {public boolean hasCycle(ListNode head) {if(head == null || head.next == null){return false;}ListNode slow = head,fast = head;while(fast != null && fast.next != null){slow = slow.next;fast = fast.next.next;if(slow == fast){return true;}}return false;}
}

环形链表ll

  • 使用快慢指针检查链表是否有环。
  • 如果有环,重新定位慢指针到头节点,同时让慢指针和快指针都以相同的速度(每次一步)向前走,直到它们相遇。
  • 相遇的节点就是入环的第一个节点。
/*** Definition for singly-linked list.* class ListNode {*     int val;*     ListNode next;*     ListNode(int x) {*         val = x;*         next = null;*     }* }*/
public class Solution {public ListNode detectCycle(ListNode head) {if(head == null || head.next == null){return null;}ListNode slow = head,fast = head;while(fast != null && fast.next != null){slow = slow.next;fast = fast.next.next;if(slow == fast){//找到环的起点ListNode pointer = head;while(pointer != slow){pointer = pointer.next;//pointer从头节点开始走slow = slow.next;//slow从相遇点开始走}return pointer;}}return null;}
}

相关文章:

LC-搜索二维矩阵II、相交链表、反转链表、回文链表、环形链表、环形链表ll

搜索二维矩阵II 方法&#xff1a;从右上角开始搜索 我们可以从矩阵的右上角开始进行搜索。如果当前元素 matrix[i][j] 等于 target&#xff0c;我们直接返回 true。如果 matrix[i][j] 大于 target&#xff0c;说明 target 只能出现在左边的列&#xff0c;所以我们将列指针向左…...

如何查看 Linux 服务器的 MAC 地址:深入解析与实践指南

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

国产FPGA开发板选择

FPGA开发板是学习和开发FPGA的重要工具&#xff0c;选择合适的开发板对学习效果和开发效率至关重要。随着国产FPGA的发展&#xff0c;淘宝上的许多FPGA开发板店铺也开始进行国产FPGA的设计和销售&#xff0c;本文将对国产FPGA和相关店铺做个简单梳理&#xff0c;帮助有需要使用…...

iOS 获取设备占用内存

获取应用占用内存 获取应用进程占用内存 - (NSUInteger)memoryUsage {task_vm_info_data_t vmInfo;mach_msg_type_number_t count TASK_VM_INFO_COUNT;kern_return_t result task_info(mach_task_self(), TASK_VM_INFO, (task_info_t)&vmInfo, &count);if (result …...

用自己的数据训练yolov11目标检测

文章目录 概要理论知识整体架构流程架构优化多任务支持多参数体量 操作实操环境配置数据准备数据标注数据放置路径 训练预测 概要 官网&#xff1a;https://github.com/ultralytics/ultralytics?tabreadme-ov-file 提示&#xff1a;以 停车场空位检测 公开数据集示例&#x…...

golang如何将结构体和函数进行绑定?

在Go语言中&#xff0c;结构体和函数的绑定通常通过方法&#xff08;method&#xff09;来实现。方法是一种特殊的函数&#xff0c;它与某个类型关联&#xff0c;特别是结构体类型。下面是如何将结构体和函数进行绑定的具体步骤&#xff1a; 定义结构体&#xff1a;首先需要定义…...

【苍穹外卖】学习

软件开发整体介绍 作为一名软件开发工程师,我们需要了解在软件开发过程中的开发流程&#xff0c; 以及软件开发过程中涉及到的岗位角色&#xff0c;角色的分工、职责&#xff0c; 并了解软件开发中涉及到的三种软件环境。那么这一小节&#xff0c;我们将从 软件开发流程、角色…...

架构——LVS负载均衡主要模式及其原理、服务水平、优缺点

LVS&#xff08;Linux Virtual Server&#xff09;是一款高性能的开源负载均衡软件&#xff0c;支持多种负载均衡模式。以下是其主要模式及其原理、服务水平、优缺点&#xff1a; 1. NAT 模式&#xff08;Network Address Translation&#xff09; 原理&#xff1a; 请求流程…...

DFS算法篇:理解递归,熟悉递归,成为递归

1.DFS原理 那么dfs就是大家熟知的一个深度优先搜索&#xff0c;那么听起来很高大尚的一个名字&#xff0c;但是实际上dfs的本质就是一个递归&#xff0c;而且是一个带路径的递归&#xff0c;那么递归大家一定很熟悉了&#xff0c;大学c语言课程里面就介绍过递归&#xff0c;我…...

让编程变成一种享受-明基RD320U显示器

引言 作为一名有着多年JAVA开发经验的从业者&#xff0c;在工作过程中&#xff0c;显示器的重要性不言而喻。它不仅是我们与代码交互的窗口&#xff0c;更是影响工作效率和体验的关键因素。在多年的编程生涯中&#xff0c;我遇到过各种各样的问题。比如&#xff0c;在进行代码…...

C语言简单练习题

文章目录 练习题一、计算n的阶乘bool类型 二、计算1!2!3!...10!三、计算数组arr中的元素个数二分法查找 四、动态打印字符Sleep()ms延时函数system("cls")清屏函数 五、模拟用户登录strcmp()函数 六、猜数字小游戏产生一个随机数randsrandRAND_MAX时间戳time() 示例 …...

基于Python的深度学习音乐推荐系统(有配套论文)

音乐推荐系统 提供实时音乐推荐功能&#xff0c;根据用户行为和偏好动态调整推荐内容 Python、Django、深度学习、卷积神经网络 、算法 数据库&#xff1a;MySQL 系统包含角色&#xff1a;管理员、用户 管理员功能&#xff1a;用户管理、系统设置、音乐管理、音乐推荐管理、系…...

Java:单例模式(Singleton Pattern)及实现方式

一、单例模式的概念 单例模式是一种创建型设计模式&#xff0c;确保一个类只有一个实例&#xff0c;并提供一个全局访问点来访问该实例&#xff0c;是 Java 中最简单的设计模式之一。该模式常用于需要全局唯一实例的场景&#xff0c;例如日志记录器、配置管理、线程池、数据库…...

解锁养生秘籍,拥抱健康生活

在这个快节奏的时代&#xff0c;人们行色匆匆&#xff0c;常常在忙碌中忽略了健康。其实&#xff0c;养生并非遥不可及&#xff0c;它就藏在生活的细微之处&#xff0c;等待我们去发现和实践。 规律作息是健康的基础。日出而作&#xff0c;日落而息&#xff0c;顺应自然规律&am…...

数据结构之堆(Heap)

数据结构之堆&#xff08;Heap&#xff09; 数据结构之堆&#xff08;Heap&#xff09;一、堆的核心概念1. 定义与性质2. 存储方式 二、核心操作与算法1. 操作复杂度概览2. 关键操作详解(1) 向上调整&#xff08;Sift Up&#xff09;(2) 向下调整&#xff08;Sift Down&#xf…...

人工智能 - 机器学习、深度学习、强化学习是人工智能领域的理论基础和方法论

机器学习、深度学习、强化学习是人工智能领域的三大核心方向,各自具有独特的理论基础和方法论。以下是它们的核心理论知识总结: 一、机器学习(Machine Learning, ML) 1. 基础概念 目标:通过数据驱动的方式,让机器从经验中学习规律,完成预测、分类或决策任务。 核心范式…...

github上文件过大无法推送问题

GitHub 对文件大小有限制&#xff0c;超过 100 MB 的文件无法直接推送到仓库中。 解决思路&#xff1a; 使用 Git Large File Storage (Git LFS) 来管理大文件不上传对应的大文件 使用Git LFS&#xff1a; 1. 安装 Git LFS 首先&#xff0c;你需要安装 Git LFS。可以按照以…...

Elasticsearch:将 Ollama 与推理 API 结合使用

作者&#xff1a;来自 Elastic Jeffrey Rengifo Ollama API 与 OpenAI API 兼容&#xff0c;因此将 Ollama 与 Elasticsearch 集成非常容易。 在本文中&#xff0c;我们将学习如何使用 Ollama 将本地模型连接到 Elasticsearch 推理模型&#xff0c;然后使用 Playground 向文档提…...

【Linux】详谈 进程控制

目录 一、进程是什么 二、task_struct 三、查看进程 四、创建进程 4.1 fork函数的认识 4.2 2. fork函数的返回值 五、进程终止 5.1. 进程退出的场景 5.2. 进程常见的退出方法 5.2.1 从main返回 5.2.1.1 错误码 5.2.2 exit函数 5.2.3 _exit函数 5.2.4 缓冲区问题补…...

构建高效智能对话前端:基于Ant Design X 的deepseek对话应用

文章目录 实现的效果前言Ant Design X添加欢迎组件创建对话气泡存储对话历史渲染对话气泡 输入组件WebSocket 连接总结 实现的效果 待机页面&#xff1a; 等待页面&#xff1a; 完成页面&#xff1a; 前言 随着人工智能技术的飞速发展&#xff0c;大模型对话系统已成为…...

WordPress“更新失败,响应不是有效的JSON响应”问题的修复

在使用WordPress搭建网站时&#xff0c;许多人在编辑或更新文章时&#xff0c;可能会遇到一个提示框&#xff0c;显示“更新失败&#xff0c;响应不是有效的JSON响应”。这个提示信息对于不了解技术细节的用户来说&#xff0c;太难懂。其实&#xff0c;这个问题并不复杂&#x…...

华为交换机trunk简介配置

目录 一、Trunk 口简介二、Trunk 口配置案例及命令&#xff08;一&#xff09;组网需求&#xff08;二&#xff09;配置步骤&#xff08;三&#xff09;验证配置 三、注意事项 一、Trunk 口简介 Trunk 口是交换机中一种重要的端口类型&#xff0c;主要用于连接交换机与交换机、…...

DeepSeek从入门到精通(清华大学)

​ DeepSeek是一款融合自然语言处理与深度学习技术的全能型AI助手&#xff0c;具备知识问答、数据分析、编程辅助、创意生成等多项核心能力。作为多模态智能系统&#xff0c;它不仅支持文本交互&#xff0c;还可处理文件、图像、代码等多种格式输入&#xff0c;其知识库更新至2…...

【SpringBoot3】面向切面 AspectJ AOP 使用详解

文章目录 一、AspectJ介绍二、简单使用步骤 1、引入依赖2、定义一个Aspect3、开启AOP支持 三、AOP 核心概念四、切点&#xff08;Pointcut&#xff09; 1. execution2. within3. this & target4. args & args5. within & target & annotation 五、通知&#xf…...

容器运行常见数据库

一.涉及镜像压缩包 均为amd架构版本&#xff1a;mysql:5.7.42、postgres:13.16、dm8:20250206_rev257733_x86_rh6_64、oceanbase-ce:v4.0、opengauss:5.0.2 通过网盘分享的文件&#xff1a;db.tgz 链接: https://pan.baidu.com/s/1EBbFPZj1FxCA4_GxjVunWg?pwd563s 提取码: 5…...

OpenGL ES学习大纲

如果您想从头学习 OpenGL ES,以下是一个详细的学习大纲,涵盖了从基础到高级的知识点,循序渐进地帮助您掌握 OpenGL ES 的核心概念、API 使用、渲染管线、着色器编程、性能优化等内容。 1. 学习前的准备 1.1 基础知识 在学习 OpenGL ES 之前,您需要掌握以下基础知识: 数学…...

Kotlin 优雅的接口实现

1. 日常遇到的冗余的接口方法实现 日常开发中&#xff0c;经常会要实现接口&#xff0c;但是很多场景中&#xff0c;只需要用到其中一两个方法&#xff0c;例如 ActivityLifecycleCallbacks&#xff0c;它有很多个接口需要实现&#xff0c;但是很多时候我们只需要用到其中的一…...

数据结构实现顺序表的尾插,尾删,按值查找/修改/删除,按下标查找/增加/删除

头文件&#xff1a;head.h #ifndef __HEAD_H__ #define __HEAD_H__#include <stdio.h> #include <string.h> #include <stdlib.h> #define MAXSIZE 20enum num {success,false-1};typedef int datatype;typedef struct {int len;datatype data[MAXSIZE]; }S…...

qt实现文字跑马灯效果

实现跑马灯的方式多种多少样&#xff0c;可以通过定时器&#xff0c;或者animation等来实现。 本文通过定时器&#xff0c;将第一个文字&#xff0c;移动到最后一个这种方式来实现&#xff0c;还有其他方式哈。 直接上源码 h文件 #ifndef TEXTTICKER_H #define TEXTTICKER_…...

PyTorch Tensor 形状变化操作详解

PyTorch Tensor 形状变化操作详解 在深度学习中&#xff0c;Tensor 的形状变换是非常常见的操作。PyTorch 提供了丰富的 API 来帮助我们调整 Tensor 的形状&#xff0c;以满足模型输入、计算或数据处理的需求。本文将详细介绍 PyTorch 中常见的 Tensor 形状变换操作&#xff0…...

关于Node.js前端面试的试题概念、工作原理及实际应用

文章目录 1. 什么是Node.js&#xff1f;2. Node.js是如何工作的&#xff1f;3. Node.js与其他流行的框架相比有何优势&#xff1f;4. Node.js如何克服I/O操作阻塞的问题&#xff1f;5. 为什么Node.js是单线程的&#xff1f;6. 如果Node.js是单线程的&#xff0c;那么它是如何处…...

OpenCV机器学习(3)期望最大化(Expectation-Maximization, EM)算法cv::ml::EM

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 cv::ml::EM 是 OpenCV 机器学习模块中的一部分&#xff0c;用于实现期望最大化&#xff08;Expectation-Maximization, EM&#xff09;算法。EM …...

Spring Boot 集成 Kettle

Kettle 简介 Kettle 最初由 Matt Casters 开发&#xff0c;是 Pentaho 数据集成平台的一部分。它提供了一个用户友好的界面和丰富的功能集&#xff0c;使用户能够轻松地设计、执行和监控 ETL 任务。Kettle 通过其强大的功能和灵活性&#xff0c;帮助企业高效地处理大规模数据集…...

Debezium同步之如何同步GIS数据

Debezium 可以用于同步数据库中的变更数据(CDC),包括GIS(地理信息系统)数据。GIS 数据通常存储在具有地理空间数据类型的表中,例如 PostGIS(PostgreSQL 的扩展)中的 geometry 或 geography 类型。通过 Debezium,可以实时捕获和同步这类数据的变更。本文章简单介绍Post…...

Java与C语言中取模运算符%的区别对比

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: Java 文章目录 &#x1f4af;前言&#x1f4af;C语言中的取模运算符 %基本行为示例 注意事项示例&#xff1a;负数取模 &#x1f4af;Java中的取模运算符 %基本行为示例 对浮点数的支持示例&#xff1a;浮点数取模 符…...

如何commit后更新.gitignore实现push

目录 步骤 1: 更新 .gitignore 文件 步骤 2: 移除已追踪的大文件 步骤 3: 提交更改 步骤 4: 尝试推送 注意事项 如果已经执行了git commit&#xff0c;但后来意识到需要更新.gitignore文件以排除某些不应该被追踪的大文件或目录&#xff0c;并希望在不丢失现有提交记录的情…...

从MySQL迁移到PostgreSQL的完整指南

1.引言 在现代数据库管理中&#xff0c;选择合适的数据库系统对业务的成功至关重要。随着企业数据量的增长和对性能要求的提高&#xff0c;许多公司开始考虑从MySQL迁移到PostgreSQL。这一迁移的主要原因包括以下几个方面&#xff1a; 1.1 性能和扩展性 PostgreSQL以其高性能…...

20250214 随笔 Nginx 负载均衡在数据库中的应用

Nginx 负载均衡在数据库中的应用 在高并发环境下&#xff0c;数据库的性能往往是系统的瓶颈。为了提高数据库的吞吐能力、优化请求分配、减少单点故障&#xff0c;我们可以使用 Nginx 负载均衡 来优化数据库的访问。本文将介绍如何使用 Nginx 进行数据库负载均衡&#xff0c;以…...

从养殖场到科技前沿:YOLOv11+OpenCV精准计数鸡蛋与鸡

前言 谁能想到,鸡蛋和鸡的计数居然能变成一项高科技活儿?想象一下,早上去市场,卖家把鸡蛋摔得稀巴烂,结果鸡蛋滚得到处都是——难道你就得一个个捡回来数?还得小心别弄错?可是,你又不是超人!别担心,科技来帮忙!今天的主角是YOLOv11和OpenCV,它们是计算机视觉领域的…...

【Qt】 Data Visualization

三维数据可视化 三维柱状图三维图的创建程序截图示例代码 三维散点图三维图创建程序截图示例代码 三维曲面图三维图创建程序截图示例代码 Data Visualization 是 Qt 中的一个三维数据可视化模块&#xff0c;可用于绘制三维柱状图、三维散点图和三维曲面。与 Charts 模块类似&am…...

python基础语法

文章目录 字面量定义分类 注释定义分类单行注释多行注释 变量定义 数据类型类型转换定义 案例 标识符定义命名规则内容限定大小写敏感不可使用关键字 命名规范变量的命名规范 运算符数学运算符赋值运算符复合赋值运算符 定义字符串定义方式 字符串拼接语法 字符串格式化语法1字…...

【C++游戏开发-五子棋】

使用C开发五子棋游戏的详细实现方案&#xff0c;涵盖核心逻辑、界面设计和AI对战功能&#xff1a; 1. 项目结构 FiveChess/ ├── include/ │ ├── Board.h // 棋盘类 │ ├── Player.h // 玩家类 │ ├── AI.h // AI类 │ └── Game.h // 游戏主逻辑 ├── src/ …...

C/C++ | 每日一练 (2)

&#x1f4a2;欢迎来到张胤尘的技术站 &#x1f4a5;技术如江河&#xff0c;汇聚众志成。代码似星辰&#xff0c;照亮行征程。开源精神长&#xff0c;传承永不忘。携手共前行&#xff0c;未来更辉煌&#x1f4a5; 文章目录 C/C | 每日一练 (2)题目参考答案封装继承多态虚函数底…...

如何在 VS Code 中快速使用 Copilot 来辅助开发

在日常开发中&#xff0c;编写代码往往是最耗时的环节之一。而 GitHub Copilot&#xff0c;作为一款 AI 编码助手&#xff0c;可以帮助开发者 自动补全代码、生成代码片段&#xff0c;甚至直接编写完整的函数&#xff0c;大幅提升编码效率。那么&#xff0c;如何在 VS Code 中快…...

FFmpeg源码:av_strlcpy函数分析

一、引言 在C/C编程中经常会用到strcpy这个字符串复制函数。strcpy是C/C中的一个标准函数&#xff0c;可以把含有\0结束符的字符串复制到另一个地址空间。但是strcpy不会检查目标数组dst的大小是否足以容纳源字符串src&#xff0c;如果目标数组太小&#xff0c;将会导致缓冲区…...

【生产变更】- 集群中配置SCAN ip的不同端口应用

【生产变更】- 集群中配置SCAN ip的不同端口应用 一、概述二、操作步骤三、故障解决 一、概述 使用非默认端口&#xff08;1521&#xff09;监听scan ip。 二、操作步骤 1、添加11521端口 srvctl add listener -l lis11521 -o /opt/grid/products/11.2.0 -p 11521 srvctl st…...

RabbitMQ 3.12.2:单节点与集群部署实战指南

前言&#xff1a;在当今的分布式系统架构中&#xff0c;消息队列已经成为不可或缺的组件之一。它不仅能够实现服务之间的解耦&#xff0c;还能有效提升系统的可扩展性和可靠性。RabbitMQ 作为一款功能强大且广泛使用的开源消息中间件&#xff0c;凭借其高可用性、灵活的路由策略…...

Node.js技术原理分析系列——如何在Node.js中新增一个内置模块

本文由体验技术团队曹杨毅原创。 Node.js 是一个开源的、跨平台的JavaScript运行时环境&#xff0c;它允许开发者在服务器端运行JavaScript代码。Node.js 是基于Chrome V8引擎构建的&#xff0c;专为高性能、高并发的网络应用而设计&#xff0c;广泛应用于构建服务器端应用程序…...

从低清到4K的魔法:FlashVideo突破高分辨率视频生成计算瓶颈(港大港中文字节)

论文链接&#xff1a;https://arxiv.org/pdf/2502.05179 项目链接&#xff1a;https://github.com/FoundationVision/FlashVideo 亮点直击 提出了 FlashVideo&#xff0c;一种将视频生成解耦为两个目标的方法&#xff1a;提示匹配度和视觉质量。通过在两个阶段分别调整模型规模…...

康耐视CAM-CIC-10MR-10-GC工业相机

康耐视(COGNEX)的工业相机CAM-CIC-10MR-10-GC是CAM-CIC-10MR系列中的一款型号,主要应用于工业自动化检测和高精度视觉系统 基本参数与特性 分辨率与帧率: CAM-CIC-10MR-10-GC属于康耐视CIC系列,具备10MP(1000万像素)的分辨能力,帧率为10fps。该系列相机支持卷帘快门(R…...