用自己的数据训练yolov11目标检测
文章目录
- 概要
- 理论知识
- 整体架构流程
- 架构优化
- 多任务支持
- 多参数体量
- 操作实操
- 环境配置
- 数据准备
- 数据标注
- 数据放置路径
- 训练
- 预测
概要
官网:https://github.com/ultralytics/ultralytics?tab=readme-ov-file
提示:以 停车场空位检测 公开数据集示例,可直接运行本人打包代码: 百度云分享:ultralytics-8.3.2.zip 链接: https://pan.baidu.com/s/18f-9tsgajL46czn5PUcUsA?pwd=hjuk 提取码: hjuk
YOLOv11 是 Ultralytics 团队于 2024 年 9 月 30 日发布的最新目标检测模型,延续了 YOLO 系列实时推理特性,同时通过架构优化与技术创新进一步提升了检测精度、速度和多功能性。以下理论知识部分包括核心特性、改进介绍,操作实操一步步讲怎么训练自己的数据集。
理论知识
整体架构流程
参考于:https://blog.csdn.net/weixin_51832278/article/details/143631804
架构优化
- C3K2 模块:取代了 YOLOv8 的 C2f 模块,通过分割特征图并应用 3x3 小核卷积优化计算效率,减少了参数量的同时提升了特征表达能力。
- SPFF 模块:采用多尺度池化策略聚合不同分辨率的信息,显著增强了小目标检测能力,解决了早期版本对小物体敏感度不足的问题。
- C2PSA 注意力机制:引入跨阶段部分空间注意力模块,通过关注特征图中的关键区域(如小目标或遮挡物体),提升了复杂场景下的检测精度。
多任务支持
- 目标检测(无后缀):基础检测模型,支持旋转边界框(OBB)。
- 图像分割(后缀 -seg):结合实例分割与语义分割,提升边缘精度。
- 姿态估计(后缀 -pose):新增人体关键点检测,支持实时运动分析。
- 图像分类(后缀 -cls):优化分类头结构,经过训练后能够对图像进行类别分类。
- 多目标跟踪(集成 BoT-SORT 算法):支持视频流中的跨帧目标追踪。
多参数体量
灵活模型尺寸,提供 Nano(n)、Small(s)、Medium(m)、Large(l)、Extra-Large(x)五种尺寸,满足不同场景需求,以基础目标检测为例,各模型对比如下,x消耗时间是n的8倍。上述云盘代码中pretrain文件夹内已下载5类任务的m和x版。
操作实操
环境配置
在命令行安装requirements.txt即可,最容易出现不匹配的是tensorflow、pytorch、numpy,测试使用的环境如下:
cuda11.3
torch=1.12.0
tensorflow=2.10.0
numpy=1.23.4
pandas=1.4.3
opencv-python=4.5.5
数据准备
数据标注
见本人另外一篇博客,darklabel数据标注:
https://blog.csdn.net/qq_36112576/article/details/145686376?spm=1001.2014.3001.5502
每张影像对应一张同名txt,txt内格式如下:
0 0.5623046875 0.5 0.629296875 0.9986111111111111
1 0.515625 0.42569444444444443 0.30234375 0.85
第一列为类别编号label;二列为中心横坐标与图像宽度比值;三列为中心纵坐标与图像高度比值y_center;四列为bbox宽度与图像宽度比值width;五列为bbox高度与图像高度比值height。图框计算公式为:
x_min = (x_center - width / 2) * image_width
y_min = (y_center - height / 2) * image_height
x_max = (x_center + width / 2) * image_width
y_max = (y_center + height / 2) * image_height
数据放置路径
我们创建一个统一的data文件夹来放置各类数据,注意images和labels文件名字需一一对应。
data/
├── 数据集1(pklot) /
│ ├── train/
│ │ ├── images/
│ │ └── labels/
│ └── valid/
│ ├── images/
│ └── labels/
└── 数据集2 /
│ ├── train/
│ │ ├── images/
│ │ └── labels/
│ └── valid/
│ ├── images/
│ └── labels/
└── 数据集3 / ........
根目录创建一个 datapklot.yaml 文件(与data文件夹同级),内容如下:
提示:yaml格式文件用于定义数据集的配置,包括数据路径、种类数量、类别名字等信息
train: data/pklot/train/images
val: data/pklot/valid/imagesnc: 2
names: ['space-empty', 'space-occupied']
训练
在pycharm中运行train.py,内容如下
提示:D:\\code\\yolov11\\ultralytics-8.3.2\\datapklot.yaml需要绝对路径
# -*- coding: utf-8 -*-import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO(model=r'ultralytics/cfg/models/11/yolo11.yaml')model.load('pretrain/yolo11m.pt') # 加载预训练权重,改进或者做对比实验时候不建议打开,因为用预训练模型整体精度没有很明显的提升model.train(data=r'D:\\code\\yolov11\\ultralytics-8.3.2\\datapklot.yaml',imgsz=640,epochs=50,batch=4,workers=0,device='',optimizer='SGD',close_mosaic=10,resume=False,project='runs/train',name='exp',single_cls=False,cache=False,)# Evaluate model performance on the validation setmetrics = model.val()
数据正常加载:
训练正常进行:
模型保存在文件夹runs/train/exp次数/weights 中
预测
在pycharm中运行detect.py,内容如下,以下model为实例分割,可替换为训练模型或上述提到的其他任务模型,检测结果同样保存在runs/中。
# -*- coding: utf-8 -*-from ultralytics import YOLOif __name__ == '__main__':# Load a modelmodel = YOLO(model=r'pretrain/yolo11n-seg.pt')model.predict(source=r'123.mp4',save=True,show=True,)
相关文章:
用自己的数据训练yolov11目标检测
文章目录 概要理论知识整体架构流程架构优化多任务支持多参数体量 操作实操环境配置数据准备数据标注数据放置路径 训练预测 概要 官网:https://github.com/ultralytics/ultralytics?tabreadme-ov-file 提示:以 停车场空位检测 公开数据集示例&#x…...
golang如何将结构体和函数进行绑定?
在Go语言中,结构体和函数的绑定通常通过方法(method)来实现。方法是一种特殊的函数,它与某个类型关联,特别是结构体类型。下面是如何将结构体和函数进行绑定的具体步骤: 定义结构体:首先需要定义…...
【苍穹外卖】学习
软件开发整体介绍 作为一名软件开发工程师,我们需要了解在软件开发过程中的开发流程, 以及软件开发过程中涉及到的岗位角色,角色的分工、职责, 并了解软件开发中涉及到的三种软件环境。那么这一小节,我们将从 软件开发流程、角色…...
架构——LVS负载均衡主要模式及其原理、服务水平、优缺点
LVS(Linux Virtual Server)是一款高性能的开源负载均衡软件,支持多种负载均衡模式。以下是其主要模式及其原理、服务水平、优缺点: 1. NAT 模式(Network Address Translation) 原理: 请求流程…...
DFS算法篇:理解递归,熟悉递归,成为递归
1.DFS原理 那么dfs就是大家熟知的一个深度优先搜索,那么听起来很高大尚的一个名字,但是实际上dfs的本质就是一个递归,而且是一个带路径的递归,那么递归大家一定很熟悉了,大学c语言课程里面就介绍过递归,我…...
让编程变成一种享受-明基RD320U显示器
引言 作为一名有着多年JAVA开发经验的从业者,在工作过程中,显示器的重要性不言而喻。它不仅是我们与代码交互的窗口,更是影响工作效率和体验的关键因素。在多年的编程生涯中,我遇到过各种各样的问题。比如,在进行代码…...
C语言简单练习题
文章目录 练习题一、计算n的阶乘bool类型 二、计算1!2!3!...10!三、计算数组arr中的元素个数二分法查找 四、动态打印字符Sleep()ms延时函数system("cls")清屏函数 五、模拟用户登录strcmp()函数 六、猜数字小游戏产生一个随机数randsrandRAND_MAX时间戳time() 示例 …...
基于Python的深度学习音乐推荐系统(有配套论文)
音乐推荐系统 提供实时音乐推荐功能,根据用户行为和偏好动态调整推荐内容 Python、Django、深度学习、卷积神经网络 、算法 数据库:MySQL 系统包含角色:管理员、用户 管理员功能:用户管理、系统设置、音乐管理、音乐推荐管理、系…...
Java:单例模式(Singleton Pattern)及实现方式
一、单例模式的概念 单例模式是一种创建型设计模式,确保一个类只有一个实例,并提供一个全局访问点来访问该实例,是 Java 中最简单的设计模式之一。该模式常用于需要全局唯一实例的场景,例如日志记录器、配置管理、线程池、数据库…...
解锁养生秘籍,拥抱健康生活
在这个快节奏的时代,人们行色匆匆,常常在忙碌中忽略了健康。其实,养生并非遥不可及,它就藏在生活的细微之处,等待我们去发现和实践。 规律作息是健康的基础。日出而作,日落而息,顺应自然规律&am…...
数据结构之堆(Heap)
数据结构之堆(Heap) 数据结构之堆(Heap)一、堆的核心概念1. 定义与性质2. 存储方式 二、核心操作与算法1. 操作复杂度概览2. 关键操作详解(1) 向上调整(Sift Up)(2) 向下调整(Sift Down…...
人工智能 - 机器学习、深度学习、强化学习是人工智能领域的理论基础和方法论
机器学习、深度学习、强化学习是人工智能领域的三大核心方向,各自具有独特的理论基础和方法论。以下是它们的核心理论知识总结: 一、机器学习(Machine Learning, ML) 1. 基础概念 目标:通过数据驱动的方式,让机器从经验中学习规律,完成预测、分类或决策任务。 核心范式…...
github上文件过大无法推送问题
GitHub 对文件大小有限制,超过 100 MB 的文件无法直接推送到仓库中。 解决思路: 使用 Git Large File Storage (Git LFS) 来管理大文件不上传对应的大文件 使用Git LFS: 1. 安装 Git LFS 首先,你需要安装 Git LFS。可以按照以…...
Elasticsearch:将 Ollama 与推理 API 结合使用
作者:来自 Elastic Jeffrey Rengifo Ollama API 与 OpenAI API 兼容,因此将 Ollama 与 Elasticsearch 集成非常容易。 在本文中,我们将学习如何使用 Ollama 将本地模型连接到 Elasticsearch 推理模型,然后使用 Playground 向文档提…...
【Linux】详谈 进程控制
目录 一、进程是什么 二、task_struct 三、查看进程 四、创建进程 4.1 fork函数的认识 4.2 2. fork函数的返回值 五、进程终止 5.1. 进程退出的场景 5.2. 进程常见的退出方法 5.2.1 从main返回 5.2.1.1 错误码 5.2.2 exit函数 5.2.3 _exit函数 5.2.4 缓冲区问题补…...
构建高效智能对话前端:基于Ant Design X 的deepseek对话应用
文章目录 实现的效果前言Ant Design X添加欢迎组件创建对话气泡存储对话历史渲染对话气泡 输入组件WebSocket 连接总结 实现的效果 待机页面: 等待页面: 完成页面: 前言 随着人工智能技术的飞速发展,大模型对话系统已成为…...
WordPress“更新失败,响应不是有效的JSON响应”问题的修复
在使用WordPress搭建网站时,许多人在编辑或更新文章时,可能会遇到一个提示框,显示“更新失败,响应不是有效的JSON响应”。这个提示信息对于不了解技术细节的用户来说,太难懂。其实,这个问题并不复杂&#x…...
华为交换机trunk简介配置
目录 一、Trunk 口简介二、Trunk 口配置案例及命令(一)组网需求(二)配置步骤(三)验证配置 三、注意事项 一、Trunk 口简介 Trunk 口是交换机中一种重要的端口类型,主要用于连接交换机与交换机、…...
DeepSeek从入门到精通(清华大学)
DeepSeek是一款融合自然语言处理与深度学习技术的全能型AI助手,具备知识问答、数据分析、编程辅助、创意生成等多项核心能力。作为多模态智能系统,它不仅支持文本交互,还可处理文件、图像、代码等多种格式输入,其知识库更新至2…...
【SpringBoot3】面向切面 AspectJ AOP 使用详解
文章目录 一、AspectJ介绍二、简单使用步骤 1、引入依赖2、定义一个Aspect3、开启AOP支持 三、AOP 核心概念四、切点(Pointcut) 1. execution2. within3. this & target4. args & args5. within & target & annotation 五、通知…...
容器运行常见数据库
一.涉及镜像压缩包 均为amd架构版本:mysql:5.7.42、postgres:13.16、dm8:20250206_rev257733_x86_rh6_64、oceanbase-ce:v4.0、opengauss:5.0.2 通过网盘分享的文件:db.tgz 链接: https://pan.baidu.com/s/1EBbFPZj1FxCA4_GxjVunWg?pwd563s 提取码: 5…...
OpenGL ES学习大纲
如果您想从头学习 OpenGL ES,以下是一个详细的学习大纲,涵盖了从基础到高级的知识点,循序渐进地帮助您掌握 OpenGL ES 的核心概念、API 使用、渲染管线、着色器编程、性能优化等内容。 1. 学习前的准备 1.1 基础知识 在学习 OpenGL ES 之前,您需要掌握以下基础知识: 数学…...
Kotlin 优雅的接口实现
1. 日常遇到的冗余的接口方法实现 日常开发中,经常会要实现接口,但是很多场景中,只需要用到其中一两个方法,例如 ActivityLifecycleCallbacks,它有很多个接口需要实现,但是很多时候我们只需要用到其中的一…...
数据结构实现顺序表的尾插,尾删,按值查找/修改/删除,按下标查找/增加/删除
头文件:head.h #ifndef __HEAD_H__ #define __HEAD_H__#include <stdio.h> #include <string.h> #include <stdlib.h> #define MAXSIZE 20enum num {success,false-1};typedef int datatype;typedef struct {int len;datatype data[MAXSIZE]; }S…...
qt实现文字跑马灯效果
实现跑马灯的方式多种多少样,可以通过定时器,或者animation等来实现。 本文通过定时器,将第一个文字,移动到最后一个这种方式来实现,还有其他方式哈。 直接上源码 h文件 #ifndef TEXTTICKER_H #define TEXTTICKER_…...
PyTorch Tensor 形状变化操作详解
PyTorch Tensor 形状变化操作详解 在深度学习中,Tensor 的形状变换是非常常见的操作。PyTorch 提供了丰富的 API 来帮助我们调整 Tensor 的形状,以满足模型输入、计算或数据处理的需求。本文将详细介绍 PyTorch 中常见的 Tensor 形状变换操作࿰…...
关于Node.js前端面试的试题概念、工作原理及实际应用
文章目录 1. 什么是Node.js?2. Node.js是如何工作的?3. Node.js与其他流行的框架相比有何优势?4. Node.js如何克服I/O操作阻塞的问题?5. 为什么Node.js是单线程的?6. 如果Node.js是单线程的,那么它是如何处…...
OpenCV机器学习(3)期望最大化(Expectation-Maximization, EM)算法cv::ml::EM
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 cv::ml::EM 是 OpenCV 机器学习模块中的一部分,用于实现期望最大化(Expectation-Maximization, EM)算法。EM …...
Spring Boot 集成 Kettle
Kettle 简介 Kettle 最初由 Matt Casters 开发,是 Pentaho 数据集成平台的一部分。它提供了一个用户友好的界面和丰富的功能集,使用户能够轻松地设计、执行和监控 ETL 任务。Kettle 通过其强大的功能和灵活性,帮助企业高效地处理大规模数据集…...
Debezium同步之如何同步GIS数据
Debezium 可以用于同步数据库中的变更数据(CDC),包括GIS(地理信息系统)数据。GIS 数据通常存储在具有地理空间数据类型的表中,例如 PostGIS(PostgreSQL 的扩展)中的 geometry 或 geography 类型。通过 Debezium,可以实时捕获和同步这类数据的变更。本文章简单介绍Post…...
Java与C语言中取模运算符%的区别对比
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: Java 文章目录 💯前言💯C语言中的取模运算符 %基本行为示例 注意事项示例:负数取模 💯Java中的取模运算符 %基本行为示例 对浮点数的支持示例:浮点数取模 符…...
如何commit后更新.gitignore实现push
目录 步骤 1: 更新 .gitignore 文件 步骤 2: 移除已追踪的大文件 步骤 3: 提交更改 步骤 4: 尝试推送 注意事项 如果已经执行了git commit,但后来意识到需要更新.gitignore文件以排除某些不应该被追踪的大文件或目录,并希望在不丢失现有提交记录的情…...
从MySQL迁移到PostgreSQL的完整指南
1.引言 在现代数据库管理中,选择合适的数据库系统对业务的成功至关重要。随着企业数据量的增长和对性能要求的提高,许多公司开始考虑从MySQL迁移到PostgreSQL。这一迁移的主要原因包括以下几个方面: 1.1 性能和扩展性 PostgreSQL以其高性能…...
20250214 随笔 Nginx 负载均衡在数据库中的应用
Nginx 负载均衡在数据库中的应用 在高并发环境下,数据库的性能往往是系统的瓶颈。为了提高数据库的吞吐能力、优化请求分配、减少单点故障,我们可以使用 Nginx 负载均衡 来优化数据库的访问。本文将介绍如何使用 Nginx 进行数据库负载均衡,以…...
从养殖场到科技前沿:YOLOv11+OpenCV精准计数鸡蛋与鸡
前言 谁能想到,鸡蛋和鸡的计数居然能变成一项高科技活儿?想象一下,早上去市场,卖家把鸡蛋摔得稀巴烂,结果鸡蛋滚得到处都是——难道你就得一个个捡回来数?还得小心别弄错?可是,你又不是超人!别担心,科技来帮忙!今天的主角是YOLOv11和OpenCV,它们是计算机视觉领域的…...
【Qt】 Data Visualization
三维数据可视化 三维柱状图三维图的创建程序截图示例代码 三维散点图三维图创建程序截图示例代码 三维曲面图三维图创建程序截图示例代码 Data Visualization 是 Qt 中的一个三维数据可视化模块,可用于绘制三维柱状图、三维散点图和三维曲面。与 Charts 模块类似&am…...
python基础语法
文章目录 字面量定义分类 注释定义分类单行注释多行注释 变量定义 数据类型类型转换定义 案例 标识符定义命名规则内容限定大小写敏感不可使用关键字 命名规范变量的命名规范 运算符数学运算符赋值运算符复合赋值运算符 定义字符串定义方式 字符串拼接语法 字符串格式化语法1字…...
【C++游戏开发-五子棋】
使用C开发五子棋游戏的详细实现方案,涵盖核心逻辑、界面设计和AI对战功能: 1. 项目结构 FiveChess/ ├── include/ │ ├── Board.h // 棋盘类 │ ├── Player.h // 玩家类 │ ├── AI.h // AI类 │ └── Game.h // 游戏主逻辑 ├── src/ …...
C/C++ | 每日一练 (2)
💢欢迎来到张胤尘的技术站 💥技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌💥 文章目录 C/C | 每日一练 (2)题目参考答案封装继承多态虚函数底…...
如何在 VS Code 中快速使用 Copilot 来辅助开发
在日常开发中,编写代码往往是最耗时的环节之一。而 GitHub Copilot,作为一款 AI 编码助手,可以帮助开发者 自动补全代码、生成代码片段,甚至直接编写完整的函数,大幅提升编码效率。那么,如何在 VS Code 中快…...
FFmpeg源码:av_strlcpy函数分析
一、引言 在C/C编程中经常会用到strcpy这个字符串复制函数。strcpy是C/C中的一个标准函数,可以把含有\0结束符的字符串复制到另一个地址空间。但是strcpy不会检查目标数组dst的大小是否足以容纳源字符串src,如果目标数组太小,将会导致缓冲区…...
【生产变更】- 集群中配置SCAN ip的不同端口应用
【生产变更】- 集群中配置SCAN ip的不同端口应用 一、概述二、操作步骤三、故障解决 一、概述 使用非默认端口(1521)监听scan ip。 二、操作步骤 1、添加11521端口 srvctl add listener -l lis11521 -o /opt/grid/products/11.2.0 -p 11521 srvctl st…...
RabbitMQ 3.12.2:单节点与集群部署实战指南
前言:在当今的分布式系统架构中,消息队列已经成为不可或缺的组件之一。它不仅能够实现服务之间的解耦,还能有效提升系统的可扩展性和可靠性。RabbitMQ 作为一款功能强大且广泛使用的开源消息中间件,凭借其高可用性、灵活的路由策略…...
Node.js技术原理分析系列——如何在Node.js中新增一个内置模块
本文由体验技术团队曹杨毅原创。 Node.js 是一个开源的、跨平台的JavaScript运行时环境,它允许开发者在服务器端运行JavaScript代码。Node.js 是基于Chrome V8引擎构建的,专为高性能、高并发的网络应用而设计,广泛应用于构建服务器端应用程序…...
从低清到4K的魔法:FlashVideo突破高分辨率视频生成计算瓶颈(港大港中文字节)
论文链接:https://arxiv.org/pdf/2502.05179 项目链接:https://github.com/FoundationVision/FlashVideo 亮点直击 提出了 FlashVideo,一种将视频生成解耦为两个目标的方法:提示匹配度和视觉质量。通过在两个阶段分别调整模型规模…...
康耐视CAM-CIC-10MR-10-GC工业相机
康耐视(COGNEX)的工业相机CAM-CIC-10MR-10-GC是CAM-CIC-10MR系列中的一款型号,主要应用于工业自动化检测和高精度视觉系统 基本参数与特性 分辨率与帧率: CAM-CIC-10MR-10-GC属于康耐视CIC系列,具备10MP(1000万像素)的分辨能力,帧率为10fps。该系列相机支持卷帘快门(R…...
解惑Python:一文解决osgeo库安装失败问题
Osgeo(Open Source Geospatial Foundation)是一个支持开源地理空间数据处理的基金会,我们可以在python中使用“osgeo”库来访问其提供的高效地理空间数据。例如,我们使用该模块提供的GDAL处理栅格数据,使用OGR处理矢量…...
3、树莓派5 安装VNC查看器 开启VNC服务器
在前序文章中( 2、树莓派5第一次开机),可以使用三种方式开机,其中使用网线及wifi的方式均需要使用到VNC查看器进行远程桌面控制,本文将介绍如何下载安装并配置及使用VNC查看器及服务器,对前序文章做一些补充…...
Django 创建表时 “__str__ ”方法的使用
在 Django 模型中,__str__ 方法是一个 Python 特殊方法(也称为“魔术方法”),用于定义对象的字符串表示形式。它的作用是控制当对象被转换为字符串时,应该返回什么样的内容。 示例: 我在初学ModelForm时尝…...
STM32 CAN过滤器配置和应用方法介绍
目录 概述 一、CAN过滤器核心概念 二、过滤器配置步骤(以标准ID为例) 三、不同模式的配置示例 四、高级配置技巧 五、调试与问题排查 六、关键计算公式 总结 概述 在STM32微控制器中,CAN过滤器可以配置为标识符屏蔽模式和标识符列表模…...